Combination of searches for invisible Higgs boson Decays with the ATLAS experiment

Aaboud, M.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.122.231801

Publication date
2019

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment

M. Aaboud et al.*
(ATLAS Collaboration)

(Received 11 April 2019; published 13 June 2019)

Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for $H \rightarrow$ invisible decays where H is produced according to the standard model via vector boson fusion, $Z(e\ell)/H$, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb$^{-1}$ of pp collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV at the LHC. In combination with the results at $\sqrt{s} = 7$ and 8 TeV, an exclusion limit on the $H \rightarrow$ invisible branching ratio of $0.26(0.17^{+0.07}_{-0.08})$ is observed (expected).

DOI: 10.1103/PhysRevLett.122.231801

One of the central open questions in physics today is the nature of dark matter (DM) that is found to comprise most of the matter in the Universe [1–4]. A compelling candidate for DM is a stable electrically neutral particle χ whose nongravitational interactions with Standard Model (SM) particles are weak. Such a particle with a mass comparable to the mass scale of the electroweak sector particles could be detectable [5–7] and accommodate the observed DM relic density [8,9]. Numerous models predict detectable production rates of such DM particles at the Large Hadron Collider (LHC) [10–12]. In a wide class of those models, the 125 GeV Higgs boson H [13,14] acts as a portal between a dark sector and the SM sector, either through Yukawa-type couplings to fermionic dark matter, or other mechanisms [15–28]. If kinematically allowed, decays of the Higgs boson to DM particles represent a distinct signature in such models. Higgs boson decays to DM particles can only be indirectly inferred through missing transverse momentum E_T^{miss} due to DM particles escaping detection, and are therefore termed “invisible” (inv).

Direct searches for invisible Higgs boson decays have been carried out with the ATLAS detector [30–32] in Run 1 of the LHC, using up to 4.7 fb$^{-1}$ of pp collision data at a center-of-mass energy of $\sqrt{s} = 7$ TeV and up to 20.3 fb$^{-1}$ at 8 TeV. Different event topologies were considered, assuming SM production rates: vector boson fusion (VBF) [33], Higgsstrahlung from a Z boson decaying into a pair of electrons or muons (Z(lep)H) [34], and Higgsstrahlung from a W or Z boson decaying into hadrons (V(had)H) [35]. These searches for invisible Higgs boson decays have been statistically combined, and an upper limit at 95% confidence level (C.L.) on the invisible Higgs boson branching ratio of $\mathcal{B}_{H\rightarrow\text{inv}} < 0.25(0.27^{+0.10}_{-0.08})$ [36] was observed (expected). In combination with visible decay modes of the Higgs boson, the upper observed (expected) limit improved to 0.23 (0.24) [36]. Direct searches for invisible Higgs decays were performed using up to 36.1 fb$^{-1}$ of pp collision data at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 in the VBF [37], Z(lep)H [38], and V(had)H [39] topologies at ATLAS. The aforementioned results at $\sqrt{s} = 13$ TeV will be referred to as “Run 2 results” in the following. Similar searches were performed by the CMS Collaboration [40–44].

This Letter presents the statistical combination of the Run 2 searches with 36.1 fb$^{-1}$ of data for invisible decays of the Higgs boson using the ATLAS detector. Subsequently, a statistical combination with the combined Run 1 result [36] from ATLAS is performed. An overview of all results used as inputs in this combination is given in Table I. The analysis is performed under the assumption of SM Higgs boson production. Visible decay modes of the Higgs boson are not considered.

A brief overview of the Run 2 searches for $H \rightarrow \text{inv}$ is given below.

VBF topology [37].—The analysis of the VBF production mode employs an E_T^{miss} trigger that is 98% efficient or better in the considered region of phase space. The event selection requires $E_T^{\text{miss}} > 180$ GeV. Jets (j) are reconstructed up to $|\eta(j)| < 4.5$ from energy clusters in the calorimeter using the anti-k_T algorithm [45] with a radius parameter $R = 0.4$. The two jets leading in p_T are required to be separated by $|\Delta\eta_{jj}| > 4.8$. There should be no additional jets with $p_T > 25$ GeV and no isolated electron or muon candidate with $p_T > 7$ GeV. These requirements serve to reduce the contribution from W/Z production in association with jets ($V + $ jets). In the search signal region...
(SR) the m_{jj} distribution of the background falls more rapidly than the signal, where m_{jj} represents the invariant mass of the two selected leading jets. Thus the SR is divided into three m_{jj} regions ($1 < m_{jj}/\text{TeV} < 1.5$, $1.5 < m_{jj}/\text{TeV} < 2$, and $m_{jj}/\text{TeV} > 2$) to improve the search sensitivity. The dominant background sources are $Z(\nu \nu)$ + jets and $W(\ell \nu)$ + jets production, where the charged lepton ℓ is not detected. Control regions (CR) enriched in $Z(\ell \ell)$ + jets and $W(\ell \nu)$ + jets processes with $\ell = e, \mu$ are defined to determine the respective normalization factors in the SR. The main contributions to uncertainties are from the finite number of simulated Monte Carlo (MC) events, the modeling of initial state radiation, and production via the VBF process. Selected events must pass a E_T^{miss} trigger and must not contain an isolated electron or muon with $p_T > 7$ GeV. As a V is boosted, the two jets from its decay become increasingly collimated and are eventually merged into one single reconstructed jet. Thus, this search is conducted in two topological channels. In the “merged” topology, the SR is defined with $E_T^{\text{miss}} > 250$ GeV and at least one trimmed [48,49] large-R jet (J) that is reconstructed using the anti-k_t algorithm with $R = 1.0$. The signal large-R jet is the one with the highest p_T. For the “resolved” topology, the selected event should have $E_T^{\text{miss}} > 150$ GeV and at least two small-R jets (j) with $R = 0.4$. Each event is first passed through the merged topology selection and, if it fails, it is passed through the resolved topology selection. To improve the search sensitivity, the selected events are further split into categories with zero, one, and two identified b-jets, and into two mass regions of the invariant mass of the signal large-R jet (two signal small-R jets) for the merged (resolved) topology. The low mass region ($70 \lesssim m_j, m_{jj}/\text{GeV} \lesssim 100$) targets the hadronic W/Z boson decays of the associated production, whereas the high mass region ($100 \lesssim m_j, m_{jj}/\text{GeV} < 250$) is sensitive to gluon fusion and VBF production. The main background contributions are from the V + jets and $tt\bar{t}$ processes. The predictions from MC simulations are constrained with CRs that contained one or two leptons, and are kinematically similar to the SR. The final discriminant is E_T^{miss}.

The SRs and CRs of the individual input analyses are either orthogonal by construction, or were shown to have an overlap below 1%, which is neglected in the following.

The statistical combination of the analyses is performed by constructing the product of their likelihoods and maximizing the resulting likelihood ratio $\Lambda(B_{H^{-\text{inv}}}; \theta)$ [50]. This is done following the implementation described in Ref. [51,52], with $B_{H^{-\text{inv}}}$ as the parameter of interest. Systematic uncertainties are modeled in the likelihood function as nuisance parameters θ constrained by Gaussian or log-normal probability density functions [36].
Expected results are obtained using the Asimov dataset technique [50].

In the combination of Run 2 results, most experimental systematic uncertainties as well as the uncertainty on the integrated luminosity and the modeling of additional pp collisions in the same and neighboring bunch crossings (pileup) are correlated across all search channels. Some experimental uncertainties related to flavor tagging and the JES are represented through different parametrizations in the input analyses and are therefore treated as uncorrelated. The impact of this assumption on the combined result is estimated using alternative correlation models where the leading sources of systematic uncertainty in the respective parametrizations are treated as correlated, and found to have an absolute effect on the $B_{H\rightarrow inv}$ limit of the order of 0.01. The systematic uncertainties on the total $H \rightarrow inv$ signal cross section due to the choice of parton distribution functions (PDF) are considered correlated among all channels. By contrast, uncertainties due to missing higher order corrections are estimated through variations of factorization and renormalization scales and treated as correlated between the Z (lep) H and V (had) H processes. This is not done for VBF, which represents a distinct topology. The impact of the corresponding uncertainties on the acceptance rather than the total cross section of V (had) H production is evaluated and found negligible. Few systematic uncertainties that are tightly constrained in a given analysis are left uncorrelated in order not to introduce any potential phase space specific biases.

The negative logarithmic profile likelihood ratios $-2\Delta \ln(\Lambda)(B_{H\rightarrow inv};\theta)$ as a function of $B_{H\rightarrow inv}$ of the individual analyses and of the combined Run 2 result are shown in Fig. 1, corresponding to a best-fit combined value of $B_{H\rightarrow inv} = 0.20 \pm 0.10$. The dominant uncertainty sources are finite event yields in data and MC simulations, reconstruction of jets and leptons, and modeling of diboson and W/Z+jets production. In absence of a significant excess, an upper limit at 95% C.L. of $B_{H\rightarrow inv} < 0.38(0.21^{+0.08}_{-0.06})$ is observed (expected) with the CL_s formalism [53] using the profile likelihood ratio as a test statistic. The excess in data corresponds to a p_{SM} value of 3% under the SM hypothesis of $B_{H\rightarrow inv} \approx 10^{-3}$, and is a direct consequence of the excesses that are present in each of the three input analyses, see Table I. Each of the individual analyses has been scrutinized and these excesses have been found nonsignificant and independent. Subsequently, the above Run 2 result is combined with the Run 1 searches for $H \rightarrow inv$ decays [36]. Because of the differences between the detector layouts and data-taking conditions, reconstruction algorithms and their calibrations, and treatment of systematic uncertainties, the correlations between the runs are not clearly identifiable. Hence, no correlations between Run 1 and 2 are assumed for most instrumental uncertainties. The uncertainties related to the modeling of the calorimeter response dependence on jet flavor and pileup are taken as either correlated or uncorrelated between the runs, and the choice which results in a weaker expected exclusion limit on $B_{H\rightarrow inv}$ is adopted. The uncertainty on the JES of b-quark jets was estimated using MC simulations [54,55] and is therefore considered correlated. For the signal modeling, the parton shower uncertainty in the V (had) H channel, the uncertainty from missing higher order corrections in the Z (lep) H analysis, and the uncertainty on the jet multiplicity in the VBF channel [56] are each taken as correlated between the runs since the estimated uncertainties stem from the same source. For the same reason, the uncertainty from missing higher order corrections on the E_{T}^{miss} observable in the dominant background from diboson production in the Z (lep) H search is treated as correlated. All other background modeling uncertainties are considered uncorrelated. The impact of these correlation assumptions on the combined $B_{H\rightarrow inv}$ limit is found to be at most 0.005. In addition, the impact on $B_{H\rightarrow inv}$ in scenarios ranging from full anti-correlation to full correlation is studied using the best linear unbiased estimator (BLUE) [57] for the components of the JES uncertainty, the $V +$ jets background, and diboson production that are nominally not correlated due to different parametrizations in Run 1 and 2, The resulting absolute effect on the $B_{H\rightarrow inv}$ limit is at most 0.01.

The observed $-2\Delta \ln(\Lambda)(B_{H\rightarrow inv};\theta)$ ratio of the combined Run 1 + 2 result is represented in Fig. 1, alongside the individual Run 1 and Run 2 combinations. A best-fit value of $B_{H\rightarrow inv} = 0.13 \pm 0.08$ is obtained, corresponding to an observed (expected) upper limit of $B_{H\rightarrow inv} < 0.26(0.17^{+0.07}_{-0.09})$ at 95% C.L. The p_{SM} value under the SM hypothesis is 10%, and the compatibility between the Run 1 and Run 2 results is 1.5 standard deviations. The final result, together with the results in the individual Run 2 analyses as well as the Run 2-only and the Run 1-only combinations, are summarized in Table I, and the upper limits on $B_{H\rightarrow inv}$ are graphically represented in Fig. 2.
The results are consistent with a similar statistical combination in Ref. [40].

The constraint from the combined observed Run 1 + 2 exclusion limit of $B_{H \rightarrow \text{inv}} < 0.24$ at 90% C.L. is compared to the results from representative direct DM detection experiments [58–62] in Fig. 3. This comparison is performed in the context of Higgs portal models [63]. The translation of the $H \rightarrow \text{inv}$ result into a weak interacting massive particle–nucleon scattering cross section $\sigma_{\text{WIMP-N}}$ relies on an effective field theory approach [33] under the assumption that invisible Higgs decays to a pair of WIMPs are kinematically possible and that the WIMP is a scalar or a fermion [23,64,65], using the nuclear form factor $f_N = 0.308 \pm 0.018$ [66]. The excluded $\sigma_{\text{WIMP-N}}$ values range down to $2 \times 10^{-45} \text{ cm}^2$ in the scalar WIMP scenario. In the fermion WIMP case, the effective coupling is reduced by m_{W}^2 [33], excluding $\sigma_{\text{WIMP-N}}$ values down to 10^{-46} cm^2. While the ATLAS exclusion limits extend to $m_{\text{WIMP}} < 1 \text{ GeV}$, that region is subject to uncertainties in modelling of the nuclear recoil and is therefore not included in Fig. 3.

In summary, direct searches for invisible Higgs boson decays using 36.1 fb$^{-1}$ of pp collision data at $\sqrt{s} = 13$ TeV recorded in 2015 and 2016 in the VBF, $Z(\ell\ell)H$, and $V(\text{had})H$ topologies are statistically combined assuming SM-like Higgs boson production. An upper limit on the invisible Higgs branching ratio of $B_{H \rightarrow \text{inv}} < 0.38(0.21^{+0.08}_{-0.06})$ is observed (expected) at 95% C.L. A statistical combination of this result with the combination of direct $H \rightarrow \text{inv}$ searches using up to 4.7 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV and up to 20.3 fb$^{-1}$ at 8 TeV collected in Run 1 of the LHC yields an observed (expected) upper limit of $B_{H \rightarrow \text{inv}} < 0.26(0.17^{+0.07}_{-0.05})$ at 95% C.L. The combined Run 1 + 2 result is translated into upper limits on the WIMP-nucleon scattering cross section for Higgs portal models. The derived limits range down to $2 \times 10^{-45} \text{ cm}^2$ in the scalar and 10^{-46} cm^2 in the fermion WIMP scenarios, highlighting the complementarity of DM searches at the LHC and direct detection experiments.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IFR, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF.
and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [67].

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
\(^h\)Also at Istanbul University, Dept. of Physics, Istanbul, Turkey.
\(^c\)Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain.
\(^e\)Also at TRIUMF, Vancouver, British Columbia, Canada.
\(^j\)Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
\(^f\)Also at Department of Physics, California State University, Fresno, California, USA.
\(^l\)Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
\(^m\)Also at Departamento de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.
\(^k\)Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
\(^b\)Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
\(^n\)Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
\(^o\)Also at Universita di Napoli Parthenope, Napoli, Italy.
\(^p\)Also at Institute of Particle Physics (IPP), Canada.
\(^q\)Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
\(^r\)Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
\(^s\)Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
\(^t\)Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
\(^u\)Also at Department of Physics, California State University, East Bay, Hayward, California, USA.
\(^v\)Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
\(^w\)Also at Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.
\(^x\)Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
\(^y\)Also at Graduate School of Science, Osaka University, Osaka, Japan.
\(^z\)Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
\(^aa\)Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
\(^ab\)Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
\(^ac\)Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
\(^ad\)Also at CERN, Geneva, Switzerland.
\(^ae\)Also at Department of Physics, Stanford University, Stanford, California, USA.
\(^af\)Also at Manhattan College, New York, New York, USA.
\(^ag\)Also at Joint Institute for Nuclear Research, Dubna, Russia.
\(^ah\)Also at Hellenic Open University, Patras, Greece.
\(^ai\)Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
\(^aj\)Also at The City College of New York, New York, New York, USA.
\(^ak\)Also at Department of Physics, California State University, Sacramento, California, USA.
\(^al\)Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
\(^am\)Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
\(^an\)Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
\(^ao\)Also at Louisiana Tech University, Ruston, Louisiana, USA.
\(^ap\)Also at School of Physics, Sun Yat-sen University, Guangzhou, China.
\(^aq\)Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
\(^ar\)Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
\(^as\)Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates.
\(^at\)Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
\(^au\)Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Giresun University, Faculty of Engineering, Giresun, Turkey.

Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.