Exclusification in conditional antecedents

McHugh, D.M.

Publication date
2019

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Evidence from conditional antecedents suggests that semantic content is remarkably fine-grained.

If switch B was up, or switches A and B were up, the light would be on.

References
• Hurford (1974)
• Typically explained in terms of redundancy (Simons, 2001; Katzir and Singh, 2013; Meyer, 2013, 2014; Clardelli et al., 2017)

Why does (1) not violate Hurford’s constraint?

Exclusification
(3) \(\text{exh}(P, a|t) \)

\[= P \land \forall Q \in a|t : \neg(P \to Q) \to \neg Q \]

(4) \(a|t(B \lor (A \land B)) = (A, B) \)

(5) \(\text{exh}(B) \lor \text{exh}(A \land B) \)

\[= (B \land \neg A) \lor (A \land B) \]

(1) If switch B was up, or switches A and B were up, the light would be on.

(6) If switch B was up but not A, the light would be on.

Mean acceptability (SE)

<table>
<thead>
<tr>
<th>Sentence</th>
<th>False</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>Control</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-turk experiment

Joint work with Alexandre Cremers

Cumulative link mixed model (N = 192):
• T1 and T3 rated significantly lower than control (both \(z < -2.5, p < .01 \))
• T2 was rated significantly higher than control (\(z = 2.1, p = .039 \))
• Posthoc comparison of targets T1 and T3 revealed no difference between the two (\(z = -0.5, p = .62 \))

Semantic frameworks
• Possible worlds (Stalnaker, 1968; Lewis, 1973): \([B \lor (A \land B)] = [B] \)
• Inquisitive semantics (Ciardelli et al., 2018): \([B \lor (A \land B)] = [B] \)
• Alternative semantics (Alonso-Ovalle, 2009): \([B \lor (A \land B)] = \{B, |A \cap B|\} \neq \{|B|\} = [B] \)
• Truthmaker semantics (Fine, 2012)

Counterfactual exhaustion

Modal

If (B up, or A and B up)

a. \(\text{exh}_2(\text{switch B is up}) \) (What happened to the switches?)

b. Switch B is up, and nothing happened to switch A

c. \(\forall w' \in \text{f} : \text{switch B is up in } w', \text{ and } w' \text{ agrees with } w \text{ on the position of switch A} \)