Measurement of W^\pm -boson and Z-boson production cross-sections in pp collisions at $\sqrt{s} = 2.76$ TeV with the ATLAS detector

ATLAS Collaboration

DOI
10.1140/epjc/s10052-019-7399-7

Publication date
2019

Document Version
Final published version

Published in
European Physical Journal C

License
CC BY

Citation for published version (APA):
Measurement of W^{\pm}-boson and Z-boson production cross-sections in pp collisions at $\sqrt{s} = 2.76$ TeV with the ATLAS detector

ATLAS Collaboration
CERN, 1211 Geneva 23, Switzerland

Received: 9 July 2019 / Accepted: 16 October 2019 / Published online: 8 November 2019
© CERN for the benefit of the ATLAS collaboration 2019

Abstract The production cross-sections for W^{\pm} and Z bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s} = 2.76$ TeV. The decay channels $W \rightarrow \ell \nu$ and $Z \rightarrow \ell\ell$ are used, where ℓ can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are:

$$\sigma_{W^{\pm} \rightarrow \ell \nu}^{\text{tot}} = 2312 \pm 26 \text{ (stat.)}$$
$$\pm 27 \text{ (syst.)} \pm 72 \text{ (lumi.)} \pm 30 \text{ (extr.) pb},$$

$$\sigma_{W^{\pm} \rightarrow \ell \nu}^{\text{tot}} = 1399 \pm 21 \text{ (stat.)} \pm 17 \text{ (syst.)}$$
$$\pm 43 \text{ (lumi.)} \pm 21 \text{ (extr.) pb},$$

$$\sigma_{Z \rightarrow \ell\ell}^{\text{tot}} = 323.4 \pm 9.8 \text{ (stat.)} \pm 5.0 \text{ (syst.)}$$
$$\pm 10.0 \text{ (lumi.)} \pm 5.5 \text{ (extr.) pb}.$$

Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.

Contents

1 Introduction .. 1
2 ATLAS detector 2
3 Data and simulation samples 2
4 Event selection 3
5 Background estimation 4
6 Correction for detector effects 5
7 Systematic uncertainties 5
8 Results 8
9 Conclusion 13
Appendix .. 14
A Theoretical predictions 14
References 14

*e-mail: atlas.publications@cern.ch

1 In this paper it is implicit that Z boson refers to Z/γ^* bosons.
a defined fiducial region, and also extrapolated to the total cross-section.

Previous measurements of the W-boson and Z-boson production cross-sections in pp collisions at the LHC were performed by the ATLAS, CMS and LHCb Collaborations at $\sqrt{s} = 5.02$ TeV [9], 7 TeV [10–14], 8 TeV [15–19] and 13 TeV [20–22], and by the PHENIX and STAR Collaborations at the RHIC at $\sqrt{s} = 500$ GeV [23,24] and 510 GeV [25]. This is the first measurement at 2.76 TeV. Other measurements of these processes were performed in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV and 1.96 TeV by the CDF [26–30] and D0 [31] Collaborations, and at $\sqrt{s} = 546$ GeV and 630 GeV by the UA1 [32] and UA2 [33] Collaborations.

2 ATLAS detector

The ATLAS detector [34] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) incorporating three large superconducting toroid magnets. The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the pseudorapidity range $|\eta| < 2.5$.\(^2\)

The high-granularity silicon pixel detector covers the vertex region and typically provides three measurements per track. It is followed by the silicon microstrip tracker, which usually provides eight measurements from eight strip layers. These silicon detectors are complemented by the transition radiation tracker (TRT), which enables radially extended track reconstruction up to $|\eta| = 2.0$. The TRT also provides electron identification information based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold associated with the presence of transition radiation.

The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, EM calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) sampling calorimeters, with an additional thin LAr presampler covering $|\eta| < 1.8$ that is used to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry in this region is provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures with $|\eta| < 1.7$, and two copper/LAr hadronic end-cap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for EM and hadronic measurements, respectively.

The muon spectrometer comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chamber system covers the region $|\eta| < 2.7$ with three layers of monitored drift tubes, complemented by cathode strip chambers in the forward region, where the backgrounds are highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive plate chambers in the barrel and thin gap chambers in the endcap regions.

The ATLAS detector selected events using a three-level trigger system [35]. The first-level trigger is implemented in hardware and used a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This was followed by two software-based triggers that together reduced the event rate to about 200 Hz.

3 Data and simulation samples

The data used in this measurement were collected in February 2013 during a period when proton beams at the LHC were collided at a centre-of-mass energy of 2.76 TeV. During this running period a typical value of the instantaneous luminosity was 1×10^{32} cm$^{-2}$ s$^{-1}$, significantly lower than in 7, 8 and 13 TeV data-taking conditions. The typical value of the mean number of collisions per proton bunch crossing (pile-up) (μ) was 0.3. Only data from stable collisions when the ATLAS detector was fully operational are used, yielding a data sample corresponding to an integrated luminosity of 4.0 pb$^{-1}$.

Samples of Monte Carlo (MC) simulated events are used to estimate the signals from W-boson and Z-boson production, and the backgrounds containing prompt leptons: electroweak-diboson production and top-quark pair ($t\bar{t}$) production. Background contributions arising from multijet events that do not contain prompt leptons are estimated directly from data, with simulated events used to cross-check these estimations in the muon channel.

Production of single W and Z bosons was simulated using POWHEG-BOX v1 r1556 [36–39]. The parton showering was performed using PYTHIA 8.17 [40]. The PDF set used for the simulation was CT10 [41], and the parton shower parameter values were those of the AU2 tune [42]. Additional quantum electrodynamics (QED) emissions from electroweak (EW) vertices and charged leptons were simulated using PHOTOS v3.52 [43]. Additional samples of simulated W-boson events generated with SHERPA 2.1 [44] are used to estimate uncertainties arising from the choice of event generator.
model. In these SHERPA samples, simulation of W-boson production in association with up to two additional partons was performed at next-to-leading order (NLO) in QCD while production of W bosons in association with three or four additional partons was performed at leading order (LO) in QCD. The sample cross-sections were normalised to next-to-next-to-leading-order (NNLO) QCD predictions for the total cross-sections described in Sect. 8.

POWHEG-BOX v1 r2330 was used to generate $t\bar{t}$ samples [45]. These samples had parton showering performed using PYTHIA 6.428 [46] with parameters corresponding to the Perugia2011C tune [47]. The CT10 PDF set was used, arising from the production of Jimmy multiparton interactions modelled using PYTHIA using muon with transverse momentum were used. Events were required to contain an electron or compared with Tauola performed using PHOTOS++ applied using (erated.

The detector response to generated events was simulated, by requiring that the scalar sum of the p_T of additional tracks within a cone of size $\Delta R = 0.2$ around the centroid of the electron cluster and excluding the core\(^3\) must be less than 10% of the electron p_T.

Muon candidates are reconstructed by combining tracks reconstructed in the ID with tracks reconstructed in the MS [57]. They are required to have $p_T > 20$ GeV and $|\eta| < 2.8$. The muon candidates are also required to be isolated, by requiring that the scalar sum of the p_T of additional tracks within a cone of size $\Delta R = 0.4$ around the muon is less than 80% of the muon p_T.

The missing transverse momentum vector \(E_T^{\text{miss}} \) is calculated as the negative vector sum of the transverse momenta of electrons and muons, and of the transverse momentum of the recoil. The magnitude of this vector is denoted by \(E_T^{\text{miss}} \). The recoil vector is obtained by summing the transverse momenta of all clusters of energy measured in the calorimeter, excluding those within $\Delta R = 0.2$ of the lepton candidate. The momentum vector of each cluster is determined by the magnitude and coordinates of the energy deposits; the cluster is assumed to be massless. Cluster energies are initially measured assuming that the energy deposition occurs only through EM interactions, and are then corrected for the different calorimeter responses to hadrons and electromagnetically interacting particles, for losses due to dead material, and for energy that is not captured by the clustering process [59]. The definition of the recoil does not make use of reconstructed jets, to avoid threshold effects. The procedure used to calibrate the recoil closely follows

\[\Delta \eta \times \Delta \phi = 0.125 \times 0.175 \text{ around the cluster barycentre.} \]
that used in the recent ATLAS measurement of the W-boson mass [60], first correcting the modelling of the overall recoil in simulation and then applying corrections for residual differences in the recoil response and resolution that are derived from Z-boson data and transferred to the W-boson sample.

The W-boson selection requires events to contain exactly one lepton (electron or muon) candidate and have $E_T^{miss} > 25$ GeV. The lepton must match a lepton candidate that met the trigger criteria. The transverse mass, m_T, of the W-boson candidate in the event is calculated using the lepton candidate and E_T^{miss} according to

$$m_T = \sqrt{2 p_T^e E_T^{miss} (1 - \cos(\phi_\ell - \phi_{E_T^{miss}}))}.$$

The transverse mass in W-boson production events is expected to exhibit a Jacobian peak around the W-boson mass. Thus, requiring that $m_T > 40$ GeV suppresses background processes. After these requirements there are 3914 events in the $W \to e^+\nu$ channel, 2209 events in the $W \to e^-\bar{\nu}$ channel, 4365 events in the $W \to \mu^+\nu$ channel, and 2460 events in the $W \to \mu^-\bar{\nu}$ channel.

The Z-boson selection requires events to contain exactly two lepton candidates with the same flavour and opposite charge. At least one lepton must match a lepton candidate that met the trigger criteria. Background processes are suppressed by requiring that the invariant mass of the lepton pair satisfies $66 < m_{\ell\ell} < 116$ GeV. After these requirements there are 430 events in the $Z \to e^+e^-$ channel, and 646 events in the $Z \to \mu^+\mu^-$ channel.

5 Background estimation

The background processes that contribute to the sample of events passing the W-boson and Z-boson selections can be separated into two categories: those estimated from MC simulation and theoretical calculations, and those estimated directly from data. The main backgrounds that contribute to the event sample passing the W-boson selection are processes with a τ-lepton decaying into an electron or muon plus neutrinos, leptonic Z-boson decays where only one lepton is reconstructed, and multijet processes. The main background contribution to the event sample passing the Z-boson selection is production of two massive electroweak bosons.

The backgrounds arising from $W \to \tau\nu$, $Z \to \ell^+\ell^-$, diboson production, and $t\bar{t}$ production are estimated from the simulated samples described in Sect. 3. Predictions of the backgrounds to the W-boson and Z-boson production measurements arising from multijet production suffer from large theoretical uncertainties, and therefore the contribution to this background in the W-boson measurement is estimated from data. This is achieved by constructing a shape template for the background using a discriminating variable in a control region and then performing a template fit to the same distribution in the signal region to extract the background contribution. The choice of template variable is motivated by the difference between signal and background and by the available number of events. Previous ATLAS measurements at 7 TeV [10] and 13 TeV [21] found that multijet production makes a background contribution of less than 0.1% for Z-boson measurements; this is therefore neglected.

Electron candidates in multijet background events are typically misidentified candidates produced when jets mimic the signature of an electron, for example when a neutral pion and a charged pion overlap in the detector. Additional candidates can arise from ‘non-prompt’ electrons produced when a photon converts, and in decays of heavy-flavour hadrons. To construct a control region for the multijet template, a selection is used that differs from the W-boson selection described in Sect. 4 in only two respects: the medium electron identification criteria are inverted (while keeping the looser identification criteria) and the E_T^{miss} requirement is removed. By construction, this control region is statistically independent of the W-boson signal region. A template for the shape of the

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>Generator QCD precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \to \ell\nu$</td>
<td>Powheg-Box + Pythia 8</td>
<td>NLO</td>
</tr>
<tr>
<td>$Z \to \ell^+\ell^-$</td>
<td>Powheg-Box + Pythia 8</td>
<td>NLO</td>
</tr>
<tr>
<td>$W \to \tau\nu$</td>
<td>Powheg-Box + Pythia 8</td>
<td>NLO</td>
</tr>
<tr>
<td>$Z \to \tau^+\tau^-$</td>
<td>Powheg-Box + Pythia 6</td>
<td>NLO</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>Herwig</td>
<td>LO</td>
</tr>
<tr>
<td>WW</td>
<td>Herwig</td>
<td>LO</td>
</tr>
<tr>
<td>ZZ</td>
<td>Herwig</td>
<td>LO</td>
</tr>
<tr>
<td>bb</td>
<td>Pythia 8</td>
<td>LO</td>
</tr>
<tr>
<td>$c\bar{c}$</td>
<td>Pythia 8</td>
<td>LO</td>
</tr>
</tbody>
</table>
multijet background in the E_T^{miss} distribution is then obtained from that distribution in the control region after subtraction of expected contributions from the signal and other backgrounds determined using MC samples. The normalisation of the multijet background template in the signal region is extracted by performing a χ^2 fit of the E_T^{miss} distribution (applying all signal criteria except the requirement on E_T^{miss}) to a sum of the templates for the multijet background, the signal, and all other backgrounds. The normalisation of the signal is allowed to vary freely in the fit as is the multijet background; however, the other backgrounds are only allowed to vary from their expected values by up to 5%, corresponding to the largest level of variation in predicted electroweak-boson production cross-sections obtained from varying the choice of PDF. The normalisation from this fit can then be used together with the inverted selection to construct multijet background distributions in any other variable that is not correlated with the electron identification criteria.

Muon candidates in multijet background events are typically ‘non-prompt’ muons produced in the decays of hadrons. The multijet background contribution to the $W \to \mu\nu$ selection is estimated by using the same method as described for the $W \to e\nu$ selection. In this case the control region is defined by inverting the isolation requirement and removing the requirement on m_T. The distribution used for the fits is m_T.

The overall number of multijet background events is estimated from a fit to the total W-boson sample. Comparisons between the fitted distributions and data for $W \to e\nu$ and $W \to \mu\nu$ are shown in Fig. 1. Fits to the separate W^+-boson and W^--boson samples are used in the evaluation of the systematic uncertainties, as described in Sect. 7. The final estimated multijet contributions are $30 \pm 1 \text{.}1$ events for $W \to e^+\nu$ and $W \to e^-\nu$ and 2.5 ± 1.9 events for $W^+ \to \mu^+\nu$ and $W^- \to \mu^-\nu$. The relative contribution of the multijet events (1%) is lower than in 13 TeV (4%) and 7 TeV (3%) data. This is in agreement with expectations for this lower pile-up running, where the resolution in E_T^{miss} is improved compared to the higher pile-up running.

6 Correction for detector effects

The measurements in this paper are performed within specific fiducial regions and extrapolated to the total W-boson or Z-boson phase space. The fiducial regions are defined by the kinematic and geometric selection criteria given in Table 2; in simulations these are applied at the generator level before the emission of QED final-state radiation from the decay lepton(s) (QED Born level).

The fiducial W-boson/Z-boson production cross-section is obtained from the number of observed events meeting the selection criteria after background contributions are subtracted, $A_{W,Z}^{\text{sig}}$, using the following formula:

$$
A_{W,Z}^{\text{fid}} = \frac{N_{W,Z}^{\text{sig}}}{C_{W,Z} \cdot \mathcal{L}_{\text{int}}},
$$

where \mathcal{L}_{int} is the total integrated luminosity of the data samples used for the analysis. The factor $C_{W,Z}$ is the ratio of the number of generated events that satisfy the final selection criteria after event reconstruction to the number of generated events within the fiducial region. It includes the efficiency for triggering, reconstruction and identification of W, $Z \to \ell\nu$, $\ell^+\ell^-$ events falling within the acceptance. The different components of the efficiency are calculated using a mixture of MC simulation and measurements from data.

The total W-boson and Z-boson production cross-sections are obtained using the following formula:

$$
A_{W,Z}^{\text{tot}} = B(W, Z \to \ell\nu, \ell\ell) \frac{N_{W,Z}^{\text{sig}}}{A_{W,Z} \cdot C_{W,Z} \cdot \mathcal{L}_{\text{int}}},
$$

The factor $B(W, Z \to \ell\nu, \ell\ell)$ is the per-lepton branching fraction of the vector boson. The factor $A_{W,Z}$ is the acceptance for W/Z-boson events being studied. It is defined as the fraction of generated events that satisfy the fiducial requirements. This acceptance is determined using MC signal samples, corrected to the generator QED Born level, and is used to extrapolate the measured cross-section in the fiducial region to the full phase space. The central values of $A_{W,Z}$ are around 0.6 for these measurements, compared with 0.5 at $\sqrt{s} = 7$ TeV and 0.4 at $\sqrt{s} = 13$ TeV, so the fiducial region is closer to the full phase space in this measurement than for those at higher centre-of-mass energies. This is due to a combination of higher p_T thresholds for leptons in other measurements, and more-central production of vector bosons at lower \sqrt{s}. The values of C_{W} are approximately 0.67 for the $W \to e\nu$ channels and 0.75 for the $W \to \mu\nu$ channels. The values of C_{Z} are 0.55 for the $Z \to e^+e^-$ channel and 0.79 for $Z \to \mu^+\mu^-$. The $C_{W,Z}$ values are a little higher than for previous measurements at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 13$ TeV.

7 Systematic uncertainties

The systematic uncertainty in the electron reconstruction and identification efficiency is estimated using the tag-and-probe method in 8 TeV data [55, 61] and extrapolated to the 2.76 TeV dataset. The extrapolation procedure results in absolute increases of $\pm 2\%$, due to uncertainties in the effect of the differing pile-up conditions in 2.76 TeV data relative to the 8 TeV data, as well as a different setting of the noise filtering in the LAr calorimeter of the 2.76 TeV data relative to the 8 TeV data. These uncertainties were estimated using a comparison between 7 TeV and 8 TeV data and MC samples,
Fig. 1 Distributions used to estimate the multijet background contribution in (a) the $W \rightarrow e\nu$ channel, and (b) the $W \rightarrow \mu\nu$ channel. The data is compared to the fit result.

after having established that the central values of the efficiencies are the same for different centre-of-mass energies when the same LAr filter settings are used. A similar methodology had been used for internal estimates of the electron efficiency performance at 13 TeV before the start of Run-2 data taking and was found to give a good prediction of the efficiencies in data as well as a conservative estimate of the uncertainties. Transverse-momentum-dependent isolation corrections, calculated with the tag-and-probe method in 2.76 TeV data, are very close to 1, so the systematic uncertainty in the electron isolation requirement is set to the size of the correction itself, that is ±1% for low p_T and ±0.3% for higher p_T. The electron energy scale has associated statistical uncertainties and systematic uncertainties arising from a possible bias in the calibration method, the choice of generator, the presampler energy scale, and imperfect knowledge of the material in front of the EM calorimeter [62]. The total energy-scale uncertainty is calculated as the sum in quadrature of these components.

Systematic uncertainties associated with the muon momentum can be divided into three major independent categories: momentum resolution of the MS track, momentum resolution
Table 2 Summary of the selection criteria that define the measured fiducial regions

<table>
<thead>
<tr>
<th>W-boson fiducial region</th>
<th>Z-boson fiducial region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T > 20$ GeV</td>
<td>$p_T^{±} > 20$ GeV</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>$E_T^{miss} > 25$ GeV</td>
<td>$66 < m_{\ell^+\ell^-} < 116$ GeV</td>
</tr>
<tr>
<td>$m_T > 40$ GeV</td>
<td></td>
</tr>
</tbody>
</table>

of the ID track, and an overall scale uncertainty [57]. The total momentum scale/resolution uncertainty is the sum in quadrature of these components. An η-independent uncertainty of approximately $\pm 1.1\%$ in the muon trigger efficiency, determined using the tag-and-probe method [57] in 2.76 TeV data, is taken into account. Furthermore, a p_T- and η- dependent uncertainty in the identification and reconstruction efficiencies of approximately $\pm 0.3\%$, derived using the tag-and-probe method on 8 TeV data is applied. The uncertainty in the p_T-dependent isolation correction in the muon channel, calculated with the tag-and-probe method in 2.76 TeV data, is about $\pm 0.6\%$ for low p_T and $\pm 0.5\%$ for higher p_T.

The luminosity uncertainty for the 2.76 TeV data is $\pm 3.1\%$. This is determined, following the same methodology as was used for the 7 TeV data recorded in 2011 [63], from a calibration of the luminosity scale derived from beam-separation scans performed during the 2.76 TeV operation of the LHC in 2013.

Systematic uncertainties in the E_T^{miss} arising from the smearing and bias corrections applied to obtain satisfactory modelling of the recoil [58] affect the C_W factors in the $W \rightarrow \ell \nu$ measurement, and are taken into account.

Uncertainties arising from the choice of PDF set are evaluated using the error sets of the initial CT10 PDF set (at 90% confidence level (CL)) and from comparison with the results obtained using the central PDF sets from ABKM09 [64], NNPDF23 [65], and ATLAS-epWZ12 [66]. The effect of this uncertainty on A_{W^+} (A_{W^-}) is estimated to be $\pm 1.0\%$ (1.2%), and the effect on A_Z is estimated to be $\pm 1.4\%$. The effect on $C_{W,Z}$ is between $\pm 0.05\%$ and $\pm 0.4\%$ depending on the channel.

A summary of the systematic uncertainties in the $C_{W,Z}$ factors is shown in Table 3. The muon trigger, and electron reconstruction and identification uncertainties are dominant.

Uncertainties arising from the choice of event generator and parton shower models are estimated by comparing results obtained when using SHERPA 2.1 signal samples instead of the (nominal) POWHEG-BOX +PYTHIA 8. The effect of this uncertainty on $A_{W,Z}$ is estimated to be $\pm 0.9\%$.

The systematic uncertainty in the multijet background estimation can be divided into several components: the normalisation uncertainty from the χ^2 fit, the uncertainty in the modelling of electroweak processes by simulated samples in the fitted region, uncertainty from fit bias due to binning choice, and uncertainty from template shape. The scale normalisation uncertainty from the χ^2 fit is approximately $\pm 13\%$ for the $W \rightarrow e\nu$ channel. This uncertainty is neglected in the $W \rightarrow \mu\nu$ channel where the template bias is dominant. The mismodelling uncertainty is estimated by comparison of the fit results for $\ell^+\ell^-$ and ℓ^-, and for the combined ℓ^\pm candidates. The central value used is $0.5N^\pm$ with the uncertainties $N^+ - 0.5N^\pm$ and $N^- - 0.5N^\pm$, where N^+ is the fitted number of ℓ^+ background events, N^- is the fitted number of ℓ^- and N^\pm is the fitted total number of ℓ^\pm background events. In the $W \rightarrow e\nu$ channel this leads to an uncertainty of $\pm 28\%$ in the multijet background. In the $W \rightarrow \mu\nu$ channel the multijet template normalisation is derived from the fit in the small-m_T region, where electroweak contributions are negligible and there are many data events, and this source of systematic error is found to be negligible. The fit-bias uncertainty arising from the choice of bin width is estimated by repeating the fit with different binnings. This component is negligible in the $W \rightarrow \mu\nu$ case and $\pm 15\%$ in the $W \rightarrow e\nu$ case. The uncertainty due to a potential bias from template choice is estimated by employing different template selections. For the $W \rightarrow e\nu$ channel, different inverted-isolation criteria were investigated. The overall differences are considered negligible. For the $W \rightarrow \mu\nu$ channel, template vari-

Table 3 Relative systematic uncertainties (%) in the correction factors $C_{W,Z}$ in different channels

<table>
<thead>
<tr>
<th>$\delta C/C$ (%)</th>
<th>$W^+\rightarrow e^+\nu$</th>
<th>$W^-\rightarrow e^-\nu$</th>
<th>$Z\rightarrow e^+e^-$</th>
<th>$W^+\rightarrow \mu^+\nu$</th>
<th>$W^-\rightarrow \mu^-\nu$</th>
<th>$Z\rightarrow \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton trigger</td>
<td>0.14</td>
<td>0.13</td>
<td>< 0.01</td>
<td>1.07</td>
<td>1.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Lepton reconstr. and ident.</td>
<td>2.31</td>
<td>2.33</td>
<td>4.55</td>
<td>0.30</td>
<td>0.32</td>
<td>0.62</td>
</tr>
<tr>
<td>Lepton isolation</td>
<td>0.71</td>
<td>0.71</td>
<td>1.41</td>
<td>0.51</td>
<td>0.51</td>
<td>1.01</td>
</tr>
<tr>
<td>Lepton scale and resolution</td>
<td>0.44</td>
<td>0.43</td>
<td>0.34</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Recoil scale and resolution</td>
<td>0.25</td>
<td>0.20</td>
<td>–</td>
<td>0.22</td>
<td>0.22</td>
<td>–</td>
</tr>
<tr>
<td>PDF</td>
<td>0.22</td>
<td>0.29</td>
<td>0.11</td>
<td>0.11</td>
<td>0.20</td>
<td>0.06</td>
</tr>
<tr>
<td>MC statistical uncertainty</td>
<td>0.24</td>
<td>0.31</td>
<td>0.30</td>
<td>0.24</td>
<td>0.34</td>
<td>0.43</td>
</tr>
<tr>
<td>Total</td>
<td>2.5</td>
<td>2.5</td>
<td>4.8</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>
ground estimations are treated as uncorrelated between the measurements. Further correlations occur due to similarities and the recoil are reconstructed identically in the different relations arise mostly due to the fact that electrons, muons, systematic uncertainties between different measurements. Cor-

Table 4 The correlation model for the grouped systematic uncertainties for the measurements of W-boson and Z-boson production. The entries in different rows are uncorrelated with each other. Entries in a row with the same letter are fully correlated. Entries in a row with a starred letter are mostly correlated with the entries with the same letter (most of the individual sources of uncertainties within a group are taken as correlated). Entries with different letters in a row are either fully or mostly uncorrelated with each other.

<table>
<thead>
<tr>
<th>Source</th>
<th>Muon channel</th>
<th>Electron channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Z W⁺ W⁻</td>
<td>Z W⁺ W⁻</td>
</tr>
<tr>
<td>Muon trigger</td>
<td>A A A</td>
<td>– – –</td>
</tr>
<tr>
<td>Muon reconstruction/ID</td>
<td>A A A</td>
<td>– – –</td>
</tr>
<tr>
<td>Muon energy scale/resolution</td>
<td>A A A</td>
<td>– – –</td>
</tr>
<tr>
<td>Muon isolation</td>
<td>A A A</td>
<td>– – –</td>
</tr>
<tr>
<td>Electron trigger</td>
<td>– – –</td>
<td>A* A* A*</td>
</tr>
<tr>
<td>Electron reconstruction/ID</td>
<td>– – –</td>
<td>A A A</td>
</tr>
<tr>
<td>Electron energy scale/resolution</td>
<td>– – –</td>
<td>A A A</td>
</tr>
<tr>
<td>Electron isolation</td>
<td>– – –</td>
<td>A A A</td>
</tr>
<tr>
<td>Recoil related</td>
<td>– A A</td>
<td>– A A</td>
</tr>
<tr>
<td>EW background</td>
<td>A B B</td>
<td>A B B</td>
</tr>
<tr>
<td>Top-quark background</td>
<td>A A A</td>
<td>A A A</td>
</tr>
<tr>
<td>Multijet background</td>
<td>– A A</td>
<td>– A A</td>
</tr>
<tr>
<td>PDF</td>
<td>A A A</td>
<td>A A A</td>
</tr>
</tbody>
</table>

Table 5 The numbers of observed candidate events with the estimated numbers of selected electroweak (EW) plus top, and multijet background events, together with their total uncertainty. In addition, the number of background-subtracted signal events is shown with the first uncertainty given being statistical and the second uncertainty being the total systematic uncertainty, obtained by summing in quadrature the EW+top and multijet uncertainties. Uncertainties shown as ±0.0 have a magnitude less than 0.05.

<table>
<thead>
<tr>
<th>Measurement Channel</th>
<th>Observed candidates</th>
<th>Background (EW + top)</th>
<th>Background (multijet)</th>
<th>Background-subtracted data N^sig_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W^+ \rightarrow e^+\nu$</td>
<td>3914</td>
<td>108 ± 6</td>
<td>30 ± 11</td>
<td>3776 ± 63 ± 12</td>
</tr>
<tr>
<td>$W^- \rightarrow e^-\bar{\nu}$</td>
<td>2209</td>
<td>74.2 ± 3.3</td>
<td>30 ± 11</td>
<td>2105 ± 47 ± 12</td>
</tr>
<tr>
<td>$W^+ \rightarrow \mu^+\nu$</td>
<td>4365</td>
<td>152 ± 7</td>
<td>2.5 ± 1.9</td>
<td>4210 ± 66 ± 7</td>
</tr>
<tr>
<td>$W^- \rightarrow \mu^-\bar{\nu}$</td>
<td>2460</td>
<td>108 ± 4</td>
<td>2.5 ± 1.9</td>
<td>2350 ± 50 ± 5</td>
</tr>
<tr>
<td>$Z \rightarrow e^+e^-$</td>
<td>430</td>
<td>1.3 ± 0.0</td>
<td>–</td>
<td>428.7 ± 20.7 ± 0.0</td>
</tr>
<tr>
<td>$Z \rightarrow \mu^+\mu^-$</td>
<td>646</td>
<td>1.6 ± 0.1</td>
<td>–</td>
<td>644.4 ± 25.4 ± 0.1</td>
</tr>
</tbody>
</table>

...ations were estimated from fits that use $b\bar{b} + c\bar{c}$ MC samples as the multijet templates, leading to an uncertainty of ±75%; this is the largest uncertainty in the multijet background in the $W \rightarrow \mu\nu$ channel.

Combining results and building ratios or asymmetries of results require a model for the correlations of particular systematic uncertainties between different measurements. Correlations arise mostly due to the fact that electrons, muons, and the recoil are reconstructed identically in the different measurements. Further correlations occur due to similarities in the analysis methodology such as the methods of signal and background estimation.

The systematic uncertainties from the electroweak background estimations are treated as uncorrelated between the W-boson and Z-boson measurements, and fully correlated among different flavour decay channels of the W and Z boson. The top-quark background is treated as fully correlated across all W-boson and Z-boson decay channels. The multijet background and recoil-related systematic uncertainties are also treated as fully correlated between all four W-boson decay channels despite there being an expected uncorrelated component, since the statistical uncertainty is dominant in this case.

The systematic uncertainties due to the choice of PDF are treated as fully correlated between all W-boson and Z-boson channels. The uncertainties in electron and muon selection, reconstruction and efficiency are treated as fully correlated between all W-boson and Z-boson channels.

A simplified form of the correlation model with the grouped list of the sources of systematic errors is presented in Table 4.

8 Results

The numbers of events passing the event selections described in Sect. 4 are presented in Table 5, together with the estimated background contributions described in Sect. 5. The distribution of m_T for $W \rightarrow \ell\nu$ candidate events is shown in Fig. 2, compared with the expected distribution for signal plus back-
grounds, where the signal is normalised to the NNLO QCD prediction. Similarly, Fig. 3 shows the distribution of $m_{\ell\ell}$ for $Z \rightarrow \ell^+\ell^-$ candidate events compared with the expectations for signal. In this case, the background contributions are not shown, because they would not be visible in the figure if included.

The measured fiducial (σ_{fid}) and total (σ_{tot}) cross-sections for the electron and muon channels are presented separately in Table 6. For these measurements, the dominant contribution to the systematic uncertainty arises from the luminosity determination.

The results obtained from the electron and muon final states are consistent. The fiducial measurements from electron and muon final states are combined following the procedure described in Ref. [67] and the result is extrapolated to the full phase space to obtain the total cross-section. The total W-boson cross-section is calculated by summing the separate W^+ and W^- cross-sections. The results are shown in Table 7.

Theoretical predictions of the fiducial and total cross-sections are computed for comparison with the measured cross-sections using DYNNLO 1.5 [68] which provides calculations at NNLO in the strong-coupling constant, $\mathcal{O}(\alpha_s^2)$, including the boson decays into leptons ($\ell^+\nu$, $\ell^-\bar{\nu}$ or $\ell^+\ell^-$) with full spin correlations, finite width and interference effects. These calculations allow kinematic requirements to be implemented for direct comparison with experimental data. The procedure used follows that used for the previous ATLAS measurement at $\sqrt{s} = 7$ TeV [10].

Corrections for NLO EW effects are calculated with FEWZ 3.1 [69–72], for the Z bosons and with SANC [73,74] for the W bosons. The calculation was done in the G_{μ} EW scheme [75]. The following input parameters are taken from the Particle Data Group’s Review of Particle Properties 2014 edition [76]: the Fermi constant, the masses and widths of W and Z bosons as well as the elements of the CKM matrix. The cross-sections for vector bosons decaying into these leptonic final states are calculated such that they match the definition of the measured cross-sections in the data. Thus, from complete NLO EW corrections, the following components are included: virtual QED and weak corrections, real initial-state radiation (ISR), and interference between ISR and real final-state radiation (FSR) [77]. The calculated effect of these corrections on the cross-sections is $(-0.26\pm0.02)\%$ for $\sigma_{\text{fid}}^{W^+}$, $(-0.21\pm0.03)\%$ for $\sigma_{\text{fid}}^{W^-}$, and $(-0.25\pm0.12)\%$ for σ_{fid}^{Z}. DYNNLO is used for the central values of the predictions while FEWZ is used for the PDF variations and all other systematic variations such as QCD scale and α_s. The predictions are calculated using the CT14nnlo [78], NNPDF3.1 [79], MMHT14nnlo68cl [80], ABMP16 [81], HERAPDF2.0 [82],

Fig. 2 The distribution of m_T for $W \rightarrow \ell\nu$ candidate events. The expected signal, normalised to the NNLO theoretical predictions, is shown as an unfilled histogram on top of the stacked background predictions. Backgrounds that do not originate from W production are grouped together into the ‘Others’ histogram. Systematic uncertainties for the signal and background distributions are combined in the shaded band. Systematic uncertainties from the measurement of the integrated luminosity are not included. The lower panel shows the ratio of the data to the prediction.
Table 6 Results of the fiducial and total cross-section measurements of the W^+-boson, W^--boson, and Z-boson production cross-sections in the electron and muon channels. The cross-sections are shown with their statistical, systematic and luminosity uncertainties (and extrapolation uncertainty for total cross-section).

<table>
<thead>
<tr>
<th></th>
<th>Value ± stat. ± syst. ± lumi. (± extr.)</th>
<th>Value ± stat. ± syst. ± lumi. (± extr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W^+ \rightarrow e\nu$</td>
<td>$1416 \pm 24 \pm 36 \pm 44$</td>
<td>$1438 \pm 23 \pm 19 \pm 45$</td>
</tr>
<tr>
<td>$W^+ \rightarrow \mu\nu$</td>
<td>$1416 \pm 24 \pm 36 \pm 44$</td>
<td>$1438 \pm 23 \pm 19 \pm 45$</td>
</tr>
<tr>
<td>$W^+ \rightarrow e\nu$</td>
<td>$2284 \pm 38 \pm 58 \pm 71$ (±30)</td>
<td>$2319 \pm 36 \pm 30 \pm 72$ (±30)</td>
</tr>
<tr>
<td>$W^- \rightarrow e\nu$</td>
<td>$2284 \pm 38 \pm 58 \pm 71$ (±30)</td>
<td>$2319 \pm 36 \pm 30 \pm 72$ (±30)</td>
</tr>
<tr>
<td>$W^- \rightarrow \mu\nu$</td>
<td>$789 \pm 18 \pm 20 \pm 25$</td>
<td>$799 \pm 17 \pm 11 \pm 25$</td>
</tr>
<tr>
<td>$Z \rightarrow ee$</td>
<td>$1385 \pm 31 \pm 36 \pm 43$ (±21)</td>
<td>$1402 \pm 30 \pm 19 \pm 44$ (±21)</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>$1385 \pm 31 \pm 36 \pm 43$ (±21)</td>
<td>$1402 \pm 30 \pm 19 \pm 44$ (±21)</td>
</tr>
<tr>
<td>$\sigma^f_{Z} [pb]$</td>
<td>$197.6 \pm 9.6 \pm 9.5 \pm 6.1$</td>
<td>$205.6 \pm 8.1 \pm 2.6 \pm 6.4$</td>
</tr>
<tr>
<td>$\sigma^f_{Z} [pb]$</td>
<td>$313.6 \pm 15.2 \pm 15.0 \pm 9.7$ (±5.3)</td>
<td>$326.3 \pm 12.9 \pm 4.1 \pm 10.1$ (±5.5)</td>
</tr>
</tbody>
</table>

Table 7 Combined fiducial and total cross-section measurements for W^+-boson, W^--boson and Z-boson production. The cross-sections are shown with their statistical, systematic and luminosity uncertainties (and extrapolation uncertainty for total cross-section).

<table>
<thead>
<tr>
<th></th>
<th>Value ± stat. ± syst. ± lumi. (± extr.)</th>
<th>Value ± stat. ± syst. ± lumi. (± extr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W^+ \rightarrow \ell\nu$</td>
<td>$1433 \pm 16 \pm 17 \pm 44$</td>
<td>$798 \pm 12 \pm 10 \pm 25$</td>
</tr>
<tr>
<td>$W^+ \rightarrow \ell\nu$</td>
<td>$1433 \pm 16 \pm 17 \pm 44$</td>
<td>$798 \pm 12 \pm 10 \pm 25$</td>
</tr>
<tr>
<td>$W^+ \rightarrow \ell\nu$</td>
<td>$2312 \pm 26 \pm 27 \pm 72$ (±30)</td>
<td>$1399 \pm 21 \pm 17 \pm 43$ (±21)</td>
</tr>
<tr>
<td>$W^+ \rightarrow \ell\nu$</td>
<td>$2312 \pm 26 \pm 27 \pm 72$ (±30)</td>
<td>$1399 \pm 21 \pm 17 \pm 43$ (±21)</td>
</tr>
<tr>
<td>$W^- \rightarrow \ell\nu$</td>
<td>$2231 \pm 20 \pm 26 \pm 69$</td>
<td>$1399 \pm 21 \pm 17 \pm 43$ (±21)</td>
</tr>
<tr>
<td>$W^- \rightarrow \ell\nu$</td>
<td>$2231 \pm 20 \pm 26 \pm 69$</td>
<td>$1399 \pm 21 \pm 17 \pm 43$ (±21)</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>$3711 \pm 34 \pm 43 \pm 115$ (±51)</td>
<td>$1399 \pm 21 \pm 17 \pm 43$ (±21)</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>$3711 \pm 34 \pm 43 \pm 115$ (±51)</td>
<td>$1399 \pm 21 \pm 17 \pm 43$ (±21)</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>$203.7 \pm 6.2 \pm 3.2 \pm 6.3$</td>
<td>$203.7 \pm 6.2 \pm 3.2 \pm 6.3$</td>
</tr>
<tr>
<td>$Z \rightarrow \ell\ell$</td>
<td>$203.7 \pm 6.2 \pm 3.2 \pm 6.3$</td>
<td>$203.7 \pm 6.2 \pm 3.2 \pm 6.3$</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>$323.4 \pm 9.8 \pm 5.0 \pm 10.0$ (±5.5)</td>
<td>$323.4 \pm 9.8 \pm 5.0 \pm 10.0$ (±5.5)</td>
</tr>
</tbody>
</table>

Fig. 3 The distribution of $m_{\ell\ell}$ for $Z \rightarrow \ell^+\ell^-$ candidate events. The expected signal, normalised to the NNLO theoretical predictions, is shown as an unfilled histogram. Systematic uncertainties for the signal and background distributions are combined in the shaded band. Systematic uncertainties from the measurement of the integrated luminosity are not included. The background distributions are neglected here, but would not be visible if included. The lower panel shows the ratio of the data to the prediction.
and ATLAS-epWZ12nnlo PDF sets. The dynamic scale, $m_{\ell\ell}$, and fixed scale, m_W, are used as the nominal renormalisation, μ_R, and factorisation, μ_F, scales for Z and W predictions, respectively.

Theoretical uncertainties in the predictions are also derived from the following sources:

- PDF: these uncertainties are evaluated from the variations of the NNLO PDFs according to the recommended procedure for each PDF set. A table with all PDF uncertainties and their central values is shown in Appendix A; the PDF uncertainty from CT14nnlo was rescaled from 90% CL to 68% CL.
- Scales: the scale uncertainties are defined by the envelope of the variations in which the scales are changed by factors of two subject to the constraint $0.5 \leq \mu_R/\mu_F \leq 2$.
- α_s: the uncertainty due to α_s was estimated by varying the value of α_s used in the CT14nnlo PDF set by ± 0.001, corresponding to a 68% CL variation.

The statistical uncertainties in these theoretical predictions are negligible.

The numerical values of the predictions for the CT14nnlo PDF set are presented in Table 8. The predictions for the acceptance factor $A_{W/Z}$ can differ by a few percent from those derived from simulated signal samples, this may be due to a poorer description of production of low p_T W-bosons by the fixed-order calculations. The predictions are shown in comparison with the combined W-boson and Z-boson production measurements, and with results from pp and $p\bar{p}$ collisions at other centre-of-mass energies in Fig. 4. A comparison of the measurements with predictions from various different PDF sets is presented in Figs. 5 and 6. Overall there is good agreement.

Taking ratios of measurements leads to results that have significantly reduced systematic uncertainties due to full or partial cancellation of correlated systematic uncertainties, as discussed in Sect. 7. The ratios of the fiducial cross-sections for W-boson and Z-boson production are presented, together with the ratio for W^+-boson and W^--boson production, in Fig. 7. It can be seen that the predictions from the different PDF sets are mostly in good agreement with the measurements. There is a slight (less than two standard deviations) tension between the data and the prediction using the ABMP16 PDF set. The measured values of the ratios are:

$$R_{W/Z} = 10.95 \pm 0.35 \text{ (stat.)} \pm 0.10 \text{ (syst.)};$$
$$R_{W^+}/W^- = 1.797 \pm 0.034 \text{ (stat.)} \pm 0.009 \text{ (syst.)}.$$
Fig. 5 NNLO predictions for the fiducial cross-section (a) $\sigma_{W^+}^{\text{fid}}$ and (b) $\sigma_{W^-}^{\text{fid}}$ for the six PDFs CT14nnlo, MMHT2014, NNPDF3.1, ATLASepWZ12, ABMP16 and HERAPdf2.0 compared with the measured fiducial cross-section as given in Table 7. The inner shaded band represents the statistical uncertainty only, the outer band corresponds to the experimental uncertainty (including the luminosity uncertainty). The theory predictions are given with the corresponding PDF (total) uncertainty shown by inner (outer) error bar.

Fig. 6 NNLO predictions for the fiducial cross-sections (a) $\sigma_{W^+}^{\text{fid}}$ and (b) $\sigma_{W^-}^{\text{fid}}$ for the six PDFs CT14nnlo, MMHT2014, NNPDF3.1, ATLASepWZ12, ABMP16 and HERAPdf2.0 compared with the measured fiducial cross-section as given in Table 7. The inner shaded band represents the statistical uncertainty only, the outer band corresponds to the experimental uncertainty (including the luminosity uncertainty). The theory predictions are given with the corresponding PDF (total) uncertainty shown by inner (outer) error bar.

$$A_\ell = \frac{\sigma_{W^+}^{\text{fid}} - \sigma_{W^-}^{\text{fid}}}{\sigma_{W^+}^{\text{fid}} + \sigma_{W^-}^{\text{fid}}}.$$

This observable also benefits from the cancellation of systematic uncertainties in the same way as the cross-section ratios. The measured value is:

$$A_\ell = 0.285 \pm 0.009(\text{stat.}) \pm 0.002(\text{syst.}).$$

The ratio of measured cross-sections in the electron and muon decay channels provides a test of lepton universality in W-boson decays. The measured ratios are:

$$R_{W^+} = \frac{\sigma_{W^+}^{\text{fid}} \rightarrow e^+\nu}{\sigma_{W^+}^{\text{fid}} \rightarrow \mu^+\nu} = 0.985 \pm 0.023(\text{stat.}) \pm 0.028(\text{syst.})$$

$$R_{W^-} = \frac{\sigma_{W^-}^{\text{fid}} \rightarrow e^-\bar{\nu}}{\sigma_{W^-}^{\text{fid}} \rightarrow \mu^-\bar{\nu}} = 0.988 \pm 0.030(\text{stat.}) \pm 0.028(\text{syst.})$$

$$R_W = \frac{\sigma_{W}^{\text{fid}} \rightarrow e^+e^-}{\sigma_{W}^{\text{fid}} \rightarrow \mu^+\mu^-} = 0.986 \pm 0.018(\text{stat.}) \pm 0.028(\text{syst.})$$

$$R_Z = \frac{\sigma_{Z}^{\text{fid}} \rightarrow e^+e^-}{\sigma_{Z}^{\text{fid}} \rightarrow \mu^+\mu^-} = 0.96 \pm 0.06(\text{stat.}) \pm 0.05(\text{syst.})$$

These results lie within one standard deviation of the Standard Model prediction and previous measurements by ATLAS.
9 Conclusion

This paper presents measurements of the $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ production cross-sections based on about 12 400 W-boson and 1100 Z-boson candidates, after subtracting background events, reconstructed from $\sqrt{s} = 2.76$ TeV proton–proton collision data recorded by the ATLAS detector at the LHC, corresponding to integrated luminosity of 4.0 pb$^{-1}$. The total inclusive W-boson production cross-sections for the combined electron and muon channels are

$$\sigma_W^{\text{tot}} = 2312 \pm 26 \text{ (stat.)} \pm 27 \text{ (syst.)} \pm 72 \text{ (lumi.)} \pm 30 \text{ (extr.)} \text{pb},$$

$$\sigma_Z^{\text{tot}} = 1399 \pm 21 \text{ (stat.)} \pm 17 \text{ (syst.)} \pm 43 \text{ (lumi.)} \pm 21 \text{ (extr.)} \text{pb},$$

and the total inclusive Z-boson cross-section in the combined electron and muon channels is:

$$\sigma_Z^{\ell \ell} = 323.4 \pm 9.8 \text{ (stat.)} \pm 5.0 \text{ (syst.)} \pm 10.0 \text{ (lumi.)} \pm 5.5 \text{ (extr.)} \text{pb}.$$
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.

Appendix

A Theoretical predictions

This appendix presents the theoretical predictions used for comparison with the measurements in the main body of the paper. Table 9 shows the predictions using the MMHT14nnlo68cl, NNPDF31_nnlo_as_0118, ATLASepWZ12, HERAPDF2.0, and ABMP16 PDF sets, for the cross-sections measured in this study.

Table 9 The predictions at NNLO in QCD, using the MMHT14nnlo68cl, NNPDF31_nnlo_as_0118, ATLASepWZ12, HERAPDF2.0, and ABMP16 PDF sets, for the cross-sections measured in this study.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>MMHT14</th>
<th>NNPDF31</th>
<th>ATLASepWZ12</th>
<th>HERAPDF20</th>
<th>ABMP16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma^\text{fid.}_W^-)</td>
<td>1397^{+29}_{-30}</td>
<td>1428^{+34}_{-24}</td>
<td>1375^{+34}_{-30}</td>
<td>1429^{+19}_{-24}</td>
<td>1397^{+14}_{-14}</td>
</tr>
<tr>
<td>(\sigma^\text{fid.}_W^+)</td>
<td>773^{+17}_{-20}</td>
<td>778^{+14}_{-14}</td>
<td>784^{+19}_{-14}</td>
<td>806^{+31}_{-21}</td>
<td>746^{+9}_{-9}</td>
</tr>
<tr>
<td>(\sigma^\text{tot.}_W^-)</td>
<td>199^{+4}_{-4}</td>
<td>203^{+4}_{-4}</td>
<td>199^{+4}_{-4}</td>
<td>199^{+11}_{-5}</td>
<td>198.6^{+2.0}_{-2.0}</td>
</tr>
<tr>
<td>(\sigma^\text{tot.}_W^+)</td>
<td>2138^{+43}_{-45}</td>
<td>2271^{+36}_{-36}</td>
<td>2086^{+54}_{-47}</td>
<td>2140^{+40}_{-70}</td>
<td>2214^{+21}_{-21}</td>
</tr>
<tr>
<td>(\sigma^\text{fid.}_Z)</td>
<td>1295^{+28}_{-33}</td>
<td>1330^{+22}_{-22}</td>
<td>1296^{+48}_{-29}</td>
<td>1338^{+52}_{-32}</td>
<td>1283^{+16}_{-16}</td>
</tr>
<tr>
<td>(\sigma^\text{tot.}_Z)</td>
<td>308^{+6}_{-6}</td>
<td>313^{+5}_{-5}</td>
<td>308^{+6}_{-5}</td>
<td>312^{+16}_{-16}</td>
<td>305.7^{+3.0}_{-3.0}</td>
</tr>
</tbody>
</table>

References

26. CDF Collaboration, A measurement of the production and muonic decay rate of W and Z bosons in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. Phys. Rev. Lett. 69, 28 (1992)

27. CDF Collaboration, Measurement of $\sigma(B(W \rightarrow e\nu))$ and $\sigma(B(Z \rightarrow e^+e^-))$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. Phys. Rev. Lett. 76, 3070 (1996). arXiv:hep-ex/9509010 [hep-ex]

28. CDF Collaboration, Measurement of Z^0 and Drell-Yan production cross section using dimuons in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. Phys. Rev. D 59, 052002 (1999)

33. UA2 Collaboration, A measurement of the W and Z production cross-sections and a determination of Γ_W at the CERN $p\bar{p}$ collider. Phys. Lett. B 276, 365 (1992)

34. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider. JINST 3 S08003 (2008)

(a)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil; (b)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (c)Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil; (d)Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, UK

Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, UK

Department of Physics, Royal Holloway University of London, Egham, UK

Department of Physics and Astronomy, University College London, London, UK

Louisiana Tech University, Ruston, LA, USA

Fysiska institutionen, Lunds universitet, Lund, Sweden

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, UK

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, MA, USA

Department of Physics, McGill University, Montreal, QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, University of Michigan, Ann Arbor, MI, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus

Group of Particle Physics, University of Montreal, Montreal, QC, Canada

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics of the National Research Centre Kurchatov Institute, Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands

Department of Physics, Northern Illinois University, DeKalb, IL, USA

(a)Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia; (b)Novosibirsk State University, Novosibirsk, Russia

Institute for High Energy Physics of the National Research Centre, Kurchatov Institute, Protvino, Russia

Department of Physics, New York University, New York, NY, USA

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
126 Ohio State University, Columbus, OH, USA
127 Faculty of Science, Okayama University, Okayama, Japan
128 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
129 Department of Physics, Oklahoma State University, Stillwater, OK, USA
130 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
131 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
132 LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
133 Graduate School of Science, Osaka University, Osaka, Japan
134 Department of Physics, University of Oslo, Oslo, Norway
135 Department of Physics, Oxford University, Oxford, UK
136 LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France
137 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
138 Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
139 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
140 (a) Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c) Departamento de Física, Universidade de Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e) Departamento de Física, Universidade do Minho, Braga, Portugal; (f) Universidad de Granada, Granada, Spain; (g) Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; (h) Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
141 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
142 Czech Technical University in Prague, Prague, Czech Republic
143 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
144 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
145 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
146 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
147 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Department of Physics, Universidad Andres Bello, Santiago, Chile; (c) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
148 Department of Physics, University of Washington, Seattle, WA, USA
149 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
150 Department of Physics, Shinshu University, Nagano, Japan
151 Department Physik, Universität Siegen, Siegen, Germany
152 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
153 SLAC National Accelerator Laboratory, Stanford, CA, USA
154 Physics Department, Royal Institute of Technology, Stockholm, Sweden
155 Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
156 Department of Physics and Astronomy, University of Sussex, Brighton, UK
157 School of Physics, University of Sydney, Sydney, Australia
158 Institute of Physics, Academia Sinica, Taipei, Taiwan
159 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
160 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
161 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
162 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
163 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
164 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
165 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
166 Tomsk State University, Tomsk, Russia
167 Department of Physics, University of Toronto, Toronto, ON, Canada
168 (a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
169 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

© Springer
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain
Also at Department of Physics, Istanbul University, Istanbul, Turkey
Also at Joint Institute for Nuclear Research, Dubna, Russia
Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
Also at Louisiana Tech University, Ruston, LA, USA
Also at LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France
Also at Manhattan College, New York, NY, USA
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Physics Department, An-Najah National University, Nablus, Palestine
Also at Physics Dept, University of South Africa, Pretoria, South Africa
Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
Also at School of Physics, Sun Yat-sen University, Guangzhou, China
Also at The City College of New York, New York, NY, USA
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China
Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at TRIUMF, Vancouver, BC, Canada
Also at Universita di Napoli Parthenope, Naples, Italy
* Deceased