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Abstract

Robustness of credit portfolio models is of great interest for financial institutions and
regulators, since misspecified models translate to insufficient capital buffers and a crisis-prone
financial system. In this paper, we propose a method to enhance credit portfolio models
based on the model of Merton by incorporating contagion effects. While in most models the
risks related to financial interconnectedness are neglected, we use Bayesian network methods to
uncover the direct and indirect relationships between credits, while maintaining the convenient
representation of factor models. A range of techniques to learn the structure and parameters
of financial networks from real Credit Default Swaps (CDS) data is studied and evaluated.
Our approach is demonstrated in detail in a stylized portfolio and the impact on standard risk
metrics is estimated.

Keywords – Portfolio Credit Risk; Bayesian Learning; Credit Default Swaps; Default Conta-
gion; Probabilistic Graphical Models; Network Theory

1 Introduction
In recent years, there has been an increasing interest in modelling credit risk by practitioners as well
as academics (see e.g., Gregory, 2015, Green, Kenyon, & Dennis, 2014, Sourabh, Hofer, & Kandhai,
2018, De Graaf, Feng, Kandhai, & Oosterlee, 2014, de Graaf, Kandhai, & Reisinger, 2018, Simaitis,
de Graaf, Hari, & Kandhai, 2016, Anagnostou & Kandhai, 2019). Portfolio credit risk models are
concerned with the occurrence of large losses due to defaults or deteriorations in credit quality. In
practice, these models have a wide range of applications, such as regulatory and economic capital
measurements, portfolio management, and risk-adjusted pricing. The robustness of such models is
of great interest both for financial institutions and regulators, since misspecified models could lead
to insufficient capital buffers, which in turn would result in a crisis-prone financial system and the
need for regular bail-outs.

The key challenge in portfolio credit risk modelling is the incorporation of default dependence.
Joint defaults of many issuers to which a portfolio is exposed to may lead to extreme losses.
Therefore, understanding the relationship between default events is crucial. In most portfolio
credit risk models existing in the literature, defaults of individual issuers depend on a set of
common underlying risk factors, describing the state of a sector, region, or the economy as a
whole. Notable examples of this approach are the Asymptotic Single Risk Factor (ASRF) model
(Gordy, 2003) in the Basel regulations and industrial adaptations of Merton model (Merton, 1974)
such as the CreditMetrics (JP Morgan, 1997) and KMV models (Bohn & Kealhofer, 2001; Crosbie
& Bohn, 2002).

∗i.anagnostou@uva.nl
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Many researchers have challenged the claim that default dependence can be fully explained by
dependence on common underlying factors, on the grounds that such models often fail to capture
default clustering that does occur from time to time. Schönbucher & Schubert, 2001 suggest that
in most cases the default correlations that can be achieved with common factors are not as high as
the ones in empirical data. Das, Duffie, Kapadia, & Saita, 2007 perform statistical tests and reject
the hypothesis that factor correlations can sufficiently explain the empirically observed default
correlations. Thus, it becomes evident that an additional channel of default dependence needs to
be considered.

Besides dependence on common factors, joint defaults might occur as a result of direct links
between issuers, a phenomenon known as contagion. Davis & Lo, 2001 were among the first ones
who introduced contagion in credit risk models, by considering that any default might infect to
any other issuer in the portfolio. Jarrow & Yu, 2001 tried to generalize already existing models,
included particular specifications of the issuers and focused on their effect on bonds and credit
derivatives. Egloff, Leippold, & Vanini, 2007 introduced network theory to allow for a variety of
infections, however the model required detailed information making its application more difficult
than expected.

Following the financial crisis, there has been a significant interest in using network-based meth-
ods for financial stability and systemic risk (see e.g., Battiston, Gatti, Gallegati, Greenwald,
& Stiglitz, 2012, Cont, Moussa, & Santos, 2013, Squartini, Van Lelyveld, & Garlaschelli, 2013,
Battiston et al., 2016, Poledna, Thurner, Farmer, & Geanakoplos, 2014, Musmeci, Nicosia, Aste,
Di Matteo, & Latora, 2017). Next to network models, there is a growing literature on particle sys-
tems with mean-field interaction, considered, e.g., in Hambly, Ledger, & Sojmark, 2018; Hambly &
Sojmark, 2018; Kaushansky & Reisinger, 2018; Kaushansky, Lipton, & Reisinger, 2018; Nadtochiy,
Shkolnikov, et al., 2019. Nevertheless, the use of these methods for valuation and measurement of
risk charges such as capital is limited. In a recent study, Anagnostou, Sourabh, & Kandhai, 2018
introduced a portfolio credit risk model that can account for both channels of default dependence:
common underlying factors and contagion from sovereigns to corporates and sub-sovereigns. The
authors augment systematic risk factors with a contagious default mechanism where the default
probabilities of issuers in the portfolio are immediately affected by a sovereign default. To estimate
the contagion effect they use a network constructed from CDS time series and introduce Coun-
tryRank, a network based metric that approximates the probability of default of a node conditional
on the infectious default of a sovereign. The article presents a thorough approach of how contagion
effects can be introduced to portfolio credit risk modes using complex networks. However, the un-
derlying network in Anagnostou et al., 2018 is based on one-to-one relationships between issuers.
While this can capture the direct relationships effectively, it is well-known that the associations
between entities might be indirect and often mediated through others. In this article we use Prob-
abilistic Graphical Models (PGM) to learn the network using the data in a holistic manner. This
extends the one-to-one approach and provides a more natural and accurate representation of the
network. Moreover, we can efficiently approximate the joint default probability distribution of the
issuers in a PGM.

PGMs are a powerful framework for representing complex relationships using probability distri-
butions. Their ability to model associations in complex datasets has proven them particularly useful
for a wide range of machine learning problems, including natural language processing (Galley, McK-
eown, Hirschberg, & Shriberg, 2004), medical diagnosis (Beinlich, Suermondt, Chavez, & Cooper,
1989), and genetic linkage analysis (Fishelson & Geiger, 2004). One of the most important classes
of PGMs is Bayesian networks (BNs). More recently, there have been attempts to utilize BNs for
solving financial problems. In particular, Denev, 2013 presented a method to calculate portfolio
losses in the presence of stress events using BNs. Nevertheless, his approach, relies on the ability
of the risk manager to identify causal links and subjectively assign probabilities. Chong & Klüp-
pelberg, 2018 developed a structural default model for interconnected financial institutions, but
the need for balance sheet data makes its applicability limited. Kitwiwattanachai, 2015 used credit
default swaps (CDS) data to learn the structure of interbank networks, which would enable policy
makers to make decisions on the too-big-to-fail problem. In order to learn the BN, the author uses
the log of CDS spreads under the assumption of normality. However, this strong assumption is
barely supported by empirical evidence.

In this paper, we overcome the need for making assumptions about the distribution of CDS
spreads by introducing a discretization method based on the notion of modified ε-drawups (Kaushik
& Battiston, 2013; Anagnostou et al., 2018). This transformation enables us to utilize algorithms
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Figure 1: A Bayesian network with Conditional Probability Tables (CPTs).

for structure and parameter learning that assume discrete random variables, without having to
sacrifice the interpretability of the resulting models. We use the discretized CDS time series
to learn a BN of interactions between issuers, and to estimate the contagion effects following a
sovereign default. Different techniques to learn the structure and parameters of financial networks
are studied and evaluated, with the results confirming that the structures are robust. In order to
investigate the impact of these effects on credit losses, we carry out simulations and calculate the
percentiles of the loss distribution in the presence of contagion. Finally, we perform a comparative
analysis with the results obtained by Anagnostou et al., 2018.

The rest of the article is organized as follows. Section 2 presents BNs and outlines the methods
for learning their structure and parameters. Section 3 demonstrates a method to learn BNs for
CDS data. Section 4 gives a brief description of factor models for portfolio credit risk, along with a
model for credit contagion. In Section 5, we present empirical analysis on a synthetic test portfolio.
Finally, in Section 6 we summarize and draw conclusions. Additional information is included in
the Appendices.

2 Bayesian networks
A Bayesian network (BN) is a graphical model that allows us to represent and reason about an
uncertain domain. The nodes in a BN represent random variables, and the edges represent the
direct dependencies between variables (Korb & Nicholson, 2003).

The graphical structure G = (V, E) of a BN is a directed acyclic graph (DAG), where V =
{X1, ..., Xn} is a finite vertex set and E ⊆ {(i, j) : Xi, Xj ∈ V, i 6= j} is a set of edges without any
self-loops. The DAG defines a factorization of the joint probability distribution of V, into a set
of local probability distributions, one for each variable. The form of the factorization states that
every random variable Xi directly depends only on its parents PaXi

:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|PaXi
) (1)

BNs have this useful property of conditional independence that allows us to represent a joint
distribution in a tractable manner. For example, even if the random variables X1, . . . , Xn follow
a binomial distribution, we would need 2n − 1 probabilities to represent their joint distribution.
With a BN, the order of representation of joint distribution is linear in the number of variables.

In order to demonstrate this representation, we provide a commonly used example from (Jensen
& Nielsen, 2007), illustrated in Figure 1. We consider that the grass can appear wet in the morning
either because the sprinkler was on during the night or because it rained. Note that these events
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are not mutually exclusive: it is possible that the sprinkler was on and it rained at the same time.
Thus we have two binary-valued random variables, Sprinkler (S) and Rain (R). We also have two
more binary-valued variables, Cloudy (C) and Wet (W), which are correlated to both Sprinkler and
Rain. The strength of these relationships is shown in the Conditional Probability Tables (CPTs).
For example, we see that P (W |S,R) = 0.99, and thus, P (¬W |S,R) = 1−0.99 = 0.01. Since the C
node has no parents, its CPT specifies the prior probability that it is cloudy, which in this case is
equal to 0.5. Overall, our probability space has 24 = 16 values which correspond to all the possible
assignments of these four variables. By the chain rule of probability, the joint probability of all
the nodes in the graph is:

P (C, S,R,W ) = P (C)P (S|C)P (R|C, S)P (W |C, S,R). (2)

By using conditional independence relationships, this can be rewritten as:

P (C, S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R), (3)

where it was possible to simplify the third term because Rain is independent of Sprinkler given
its parent Cloudy, and the last term because Wet is independent of Cloudy given its parents
Season and Rain. Thus, it is clear that the conditional independence relationships allow for a
more compact representation of the joint probability distribution.

Although, in theory, there are many possible options for the distributions of the random vari-
ables in a BN, the literature has mainly focused on two cases (Nagarajan, Scutari, & Lèbre, 2013):

• Multinomial variables: this representation is used for discrete/categorical data and is often
referred to as the discrete case. This assumption is the most common in the literature, and
the corresponding Bayesian networks are called discrete Bayesian networks.

• Multivariate normal variables: used for continuous data and therefore referred to as the
continuous case. These Bayesian networks are referred to as Gaussian Bayesian networks.

In this work, the nodes in BNs represent random variables characterizing issuers of debt and
the edges how these issuers influence each other. More specifically, the random variables of interest
are the probabilities of default. It should be noted that, since BNs are DAGs, the existence of
cycles or loops is neglected in our analysis. It can be argued, however, that the magnitude of such
second order effects can be, in fact, negligible as far as the contagion process is concerned1. To
learn the structure and parameters of the BNs we use time series of CDS spreads. The rest of this
section describes the process of learning the structure and parameters of a BN from data.

2.1 Learning
In order to estimate the joint probability distribution from a BN, we first need to learn both the
structure and the parameters of the network from data. In the first place we will explain the
parameter learning and afterwards the structure learning. The reason for this order is the use of
some parameter estimation techniques in the latter.

Parameter learning Suppose we have a collection of n random variables X1, . . . ,Xn such that
the number of states of the random variable Xi are 1, 2, . . . , ri and the number of configurations
of parents of Xi are 1, 2, . . . , qi. The parameters which have to be estimated in this case are:

θijk = P (Xi = j |PaXi
= k), i ∈ {1, . . . , n}, j ∈ {1, . . . , ri} and k ∈ {1, . . . ,qi}.

We use θG = {θijk | i ∈ {1, . . . , n}, j ∈ {1, . . . , ri}, k ∈ {1, . . . ,qi}} to denote the parameter vector.
Let us assume that we know the structure of a BN. There are two different methods for learning

the parameters: Maximum Likelihood Estimation (MLE) and Bayesian estimation. MLE is based
1Several contributions in the contagion literature, for instance (May & Arinaminpathy, 2009), (Gai & Kapadia,

2010), (Gleeson, Hurd, Melnik, & Hackett, 2012), and (Hurd & Gleeson, 2013), take advantage of conditional
independence relationships in order to approximate the probability of contagion with a closed-form expression. The
authors of the above papers test their approximations to the contagion probability when applied to finite networks
that entail cycles by performing numerical simulations, and show that the analytic approximations work surprisingly
well. These results can be seen as a test on the actual relevance of second order, cycle effects in contagion processes.
Taking this into consideration, we believe that we can neglect the existence of cycles in our financial networks
without compromising our contagion analysis.
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on choosing the parameters which maximize the likelihood of the data. Given a data set D, the
MLE method chooses parameters θ̂G such that:

θ̂G = arg max
θG∈ΘG

L(θG : D) = arg max
θG∈ΘG

P (D : θG) = arg max
θG∈ΘG

∏
m

P (ξ[m] : θG),

where ΘG is the space of possible values of θG , ξ[m] is the m-th instance of D.
The alternative Bayesian estimation method is based on assuming a prior distribution over

the parameters P (θG), and updating it with each instance of the data to obtain the posterior
distribution, P (θG | D) using the Bayes rule as follows:

P (θG | ξ[1], . . . , ξ[M ]) =
P (ξ[1], . . . , ξ[M ] | θG)P (θG)

P (ξ[1], . . . , ξ[M ])
, (4)

where the denominator is a normalizing factor and P (ξ[1], . . . , ξ[M ] | θG) is the likelihood.
The choice of the prior distribution is key for the Bayesian estimation procedure. From Equation

4, we can see that the posterior distribution is proportional to the product of the likelihood and
the prior. Therefore, we need to choose the prior in such a way that it can be updated easily
after each new sample, while maintaining the form of the posterior distribution. It is well-known
that the Dirichlet distribution is the conjugate prior for the multinomial distribution (Koller &
Friedman, 2009, Section 17.3.2), which means that if the prior distribution of the multinomial
parameters is Dirichlet then the posterior distribution is also a Dirichlet distribution. Since we
deal with multinomial variables in our case, we choose Dirichlet distribution as the prior for our
experiments.

Structure learning The structure learning for a BN is essentially an optimization problem
where we minimize a score over the search space of possible configurations of the network. The
score measures how likely a particular structure is based on the data, and is divided into two
categories: likelihood scores and Bayesian scores.

The likelihood scores rely mainly on the likelihood function, which is the probability of sampling
the data given the structure, L(G |D) = P (D |G). The notation 〈G, θG〉 denotes a BN, where G
represents the structure and θG the parameters of the network. The structure of the network is
chosen so as to maximize the likelihood score, using the MLE parameters.

max
G,θG

L(〈G, θG〉 : D) = max
G

[
max
θG

L(〈G, θG〉 : D)

]
= max

G
L(〈G, θ̂G〉 : D).

The Bayesian scores have a similar approach as the Bayesian estimation for the parameters.
First, we define a prior distribution over the structure P (G) and a conditional prior over the
parameters P (θG | G). Then, we obtain the posterior distribution P (G |D) using the Bayes rule.
Similar to the Bayesian estimation for the parameters, the denominator is a normalizing factor and
it remains the same for all the structures. Then, the score can be defined by taking the logarithm
of the numerator:

scoreB(G : D) = logP (D |G) + logP (G),

where the second term, the prior, makes no significant difference in the score (see, e.g. Koller &
Friedman, 2009, Section 18.3.2). The first term, called marginal likelihood, is the average over all
the possible choices of θG based on the conditional probability provided before:

P (D |G) =

∫
ΘG

P (D | θG , G)P (θG | G) dθG . (5)

The average over all the possible parameters makes the model more conservative, and hence it tries
to avoid over-fitting as we take into account the sensitivity to the values of the parameters. Finally,
we briefly describe the search space and the optimization procedure for structure learning. The
search space is a network itself where each of the nodes is a candidate structure G. Given a node
G corresponding to a structure in the search space network, the neighbours of G are structures
obtained by either adding an edge, deleting an edge or reversing an edge. The Hill-Climbing
algorithm follows the steps below:

1. Set initial BN structure to a network without edges G.
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2. Compute its score.

3. Consider all the neighbours of G, obtained by either adding, deleting or reversing an edge in
G.

4. Choose the neighbour Gbest which leads to the best improvement in the score.

5. Set G ← Gbest and repeat until no further improvement to the score is possible.

Some improvements can be made to this algorithm: (Koller & Friedman, 2009, Section 18.4.3,
Glover, 1995).

3 Learning Bayesian networks from CDS data
As mentioned in Section 2, the BN literature has mostly focused on multinomial and multivariate
normal data. In Kitwiwattanachai, 2015, the authors make the assumption that the residuals of the
regressions on the log returns of the CDS spreads are normally distributed which is not supported
by empirical data. In this work, we choose to work with discrete Bayesian networks. Therefore,
we transform the continuous CDS time series data into a discrete distribution. For details on CDS
contracts, the reader is referred to Section A in the Appendix.

3.1 CDS dataset
The data used for the construction of the network are credit default swaps (CDS) spreads for
different maturities obtained from Markit. These consist of daily CDS liquid spreads of Russian
issuers from September 14th 2010 until August 15th 2015. This period is of particular interest
because of the financial crisis in Russia in 2014-2015, which followed a sharp depreciation of the
Russian ruble. Apart from the spreads, the dataset also includes information about the recovery
rates, region, sector and average of the ratings from Standard & Poor’s, Moody’s, and Fitch Group
of each issuer. We use the CDS spreads of issuers for the 5 year tenor for our analysis, since they are
the most liquid quotes. Since recovery rates are not the same for all issuers, we have to normalize
CDS spreads to do a consistent analysis. The normalization of CDS spreads for the recovery rate
RR is done as follows:

Ŝ = S
0.6

(1−RR)
, (6)

where Ŝ denotes the normalized CDS spread, which corresponds to a recovery rate of 40%. The
choice of normalizing the CDS spreads using a recovery rate of 40% is based on the literature (see
e.g., Das & Hanouna, 2009) where the recovery rate is often assumed to be a constant. We use
the normalized CDS spread of the five year tenor in our analysis. Figure 2 shows the normalized
spreads for the Russian issuers in the portfolio.

3.2 Discretization of CDS data
We use the notion of modified ε-drawups to transform the continuous CDS time series data into
a discrete distribution. Modified ε-drawups build up on the notion of ε-drawups (Kaushik &
Battiston, 2013, Sornette & Zhou, 2006) and can detect instances in the time series where it shows
significant upward jumps. Note that, in the context of CDS spreads, upward jumps translate to
rapid deteriorations in credit quality.

Definition 1. A modified ε-drawup is defined as an upward movement in the time series at a local
minimum, in which the amplitude of the movement, that is, the difference between the subsequent
local maximum and the local minimum, is greater than a threshold ε. We record such a local
minimum in the time series as a modified ε-drawup.

An illustration of the above definition is shown in Figure 3. The ε parameter at time t is
set to be the standard deviation in the time series between days t − n and t, where n is chosen
to be 10 days consistent with the choice in Kaushik & Battiston, 2013. The CDS data can be
transformed into a discrete distribution for learning the BN as follows. Firstly, we compute the
modified ε-drawups for each of the time series. Thus, each issuer i will either have a modified
ε-drawup at time t or not. We define a binary random variable Xt

i corresponding to the issuer
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Figure 2: Normalized five year CDS spread of Russian Issuers.

i such that Xt
i = 1, if issuer i has a modified ε-drawup on day t, and 0, otherwise. Note that a

company cannot have two modified ε-drawups on consecutive days by definition.
An additional step which is needed to prepare the CDS data for learning the co-dependence of

defaults is to introduce the concept of time-lag. This allows us to capture the fact that issuers can
impact each other with a slight delay. For time-lag, we introduce a new categorical value, 0.5, in
the following way. Let a company i have a modified ε-drawup on day t, so Xt

i = 1. If a different
company j has a modified ε-drawup on at least one of the following three days, t + 1, t + 2 or
t + 3, and not on day t, then we set Xt

j = 0.5. Hence, the number of modified ε-drawups in the
time series remains unchanged which ensures that the marginal probability of having a modified
ε-drawup remains unchanged.

3.3 Bayesian network learning
For learning the structure of the network we use the Hill-Climbing algorithm based on two different
scores: Bayesian Information Criterion (BIC) (Schwarz, 1978) which is a likelihood score, and
Bayesian Dirichlet Sparse (BDs) (Scutari, 2016), which is a Bayesian score. We refer to Section C
in the Appendix for details on the two scores.

For learning the network, we also applied a bootstrapping technique for ensuring the robustness
of results (Friedman, Goldszmidt, & Wyner, 1999). For the structure learning, we obtain the
structure 1000 times and then we compute the average structure by including the edges which
appear in at least 50% of the networks. The data set Dk used at iteration k is obtained by
sampling uniformly |D| instances from the original training data D.

Once the BN is learnt, we can evaluate the queries for conditional probabilities P (Q|E), of
eventsQ given evidence2E. To perform these queries, we use the logic sampling algorithm (Henrion,
1988) which has the following steps. First, it orders the variables in the topological order implied
by the structure G. This means that the variables with no parents appear first followed by their
children. Next, we set the counters nE = 0 and nE,Q = 0. Afterwards we generate a sufficiently
large number of samples M where each sample consists of a vector of instances of all the random
variables in the network. Note that generating the instance for Xi only requires the values of PaXi .
Then, for each sample if it includes E, set nE = nE + 1, and, if it includes both Q and E, set
nQ,E = nQ,E + 1. Finally, we can estimate P (Q |E) by nQ,E/nE . This method is based on a
Monte Carlo simulation, therefore a sufficiently large number of simulations is needed to assure a
reliable result.

2An event in the BN terminology refers to a (some) random variable(s) taking a particular value(s). An evidence
is mathematically the same as an event with the difference that it is known.
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4 Portfolio credit risk modelling
The most widely used portfolio credit risk models assume that issuers depend on some common
underlying factors. Factor models based on the Merton model are particularly popular for portfolio
credit risk. The model presented in Anagnostou et al., 2018 extends the muti-factor Merton model
to allow for credit contagion. In this section we provide a brief description of factor models for
portfolio credit risk, along with an overview of the contagion model from Anagnostou et al., 2018.

4.1 Factor models
Factor models for portfolio credit risk can be motivated by a multivariate firm-value model based
on Merton, 1974. This category includes widely used industry models such as CreditMetrics and
KMV. Default occurs for an issuer i if a critical variable Xi, representing the standardized asset
return, falls below a critical threshold di. For a portfolio of m issuers, (X1, ..., Xm)′ ∼ Nm(0,Σ)
and thus, the probability of default for issuer i is satisfying pi = Φ(di), where Φ(·) denotes the
cumulative distribution function of the standard normal distribution. The default probabilities are
usually estimated by historical default experience using external ratings by agencies or model-based
approaches.

In the factor model approach, the critical variables Xi, i = 1, ...,m, are linearly dependent on
a vector F of p < m common underlying factors satisfying F ∼ Np(0,Ω). Issuer i’s standardized
asset return is assumed to be driven by an issuer-specific combination F̃i = α′iF of the systematic
factors

Xi =
√
βiF̃i +

√
1− βiεi, (7)

where F̃i and ε1, ..., εm are independent standard normal variables, and εi represents the idiosyn-
cratic risk. Consequently, βi can be seen as a measure of sensitivity of Xi to systematic risk, as
it represents the proportion of the Xi variation that is explained by the systematic factors. The
assumption that var(F̃i) = 1 implies that αi

′Ωαi = 1 for all i. The correlations between asset
returns are given by

ρ(Xi, Xj) = cov(Xi, Xj) =
√
βiβjcov(F̃i, F̃j) =

√
βiβjα

′
iΩαj , (8)

since F̃i and ε1, ..., εm are independent and standard normal and var(Xi) = 1.
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4.2 A model for credit contagion
Consider a corporate issuer Ci, and its country of operation S. Denote by pCi

the probability of
default of Ci, and by YCi

the corresponding default indicator variable; YCi
= 1 ⇐⇒ Ci defaults

and YCi
= 0 ⇐⇒ Ci does not default. Under the standard Merton model, default occurs if Ci’s

standardized asset return XCi falls below its default threshold dCi . The critical threshold dCi

is assumed to be equal to Φ−1(pCi) and is independent of the state of the country of operation
S. In the proposed model, a corporate is subject to shocks from its country of operation; its
corresponding state is described by a binary state variable. The state is considered to be stressed
in the event of sovereign default. In this case, the issuer’s default threshold increases, causing it
more likely to default, as the contagion effect suggests. In case the corresponding sovereign does
not default, the corporates liquidity state is considered stable. We replace the default threshold
dCi with d∗Ci

, where

d∗Ci
=

{
dsdCi

if the corresponding sovereign defaults,
dnsdCi

otherwise,
(9)

or equivalently

d∗Ci
= 1{YS=1}d

sd
Ci

+ 1{YS=0}d
nsd
Ci

, (10)

where YS is the default indicator of the sovereign. We denote by pS the probability of default of
the sovereign, and by γCi

the parameter which indicates the increased probability of default of Ci
given the default of S. Our objective is to calibrate dsdCi

and dnsdCi
in such way that the overall

default rate remains unchanged and P (YCi = 1|YS = 1) = γCi . Denote by

φ2(x, y; ρ) :=
1

2π
√

1− ρ2
exp

(
−x

2 + y2 − 2ρxy

2(1− ρ2)

)
(11)

Φ2(h, k; ρ) :=

∫ h

−∞

∫ k

−∞
φ2(x, y; ρ)dydx (12)

the density and distribution function of the bivariate standard normal distribution with correlation
parameter ρ ∈ (−1, 1). Note that d∗Ci

(ω) = dsdCi
for ω ∈ {YCi = 1, YS = 1} ⊂ {YS = 1}, and

d∗Ci
(ω) = dnsdCi

for ω ∈ {YCi = 1, Ys = 0} ⊂ {YS = 0}. We rewrite P (YCi = 1|YS = 1) in the
following way

P (YCi = 1|YS = 1) =
1

P (YS = 1)
P (YCi = 1, YS = 1) (13)

=
1

pS
P
[
XCi

< dsdCi
, XS < dS

]
(14)

=
1

pS
Φ2(dsdCi

, dS ; ρSCi). (15)

Using the above representation and given dS = Φ−1 (pS) and ρSCi
one can solve the equation

P (YCi
= 1|YS = 1) = γCi

, (16)

over dsdCi
.

We proceed to the derivation of dnsdCi
in such way that the overall default probability remains

equal to pCi
. This constraint is important, since contagion is assumed to have no impact on the

average loss. Clearly,

pCi
= P (YCi

= 1) (17)
= P (YCi

= 1, YS = 1) + P (YCi
= 1, YS = 0) (18)

= P (YCi
= 1|YS = 1)P (YS = 1) + P (YCi

= 1, YS = 0), (19)

and thus

P (YCi = 1, YS = 0) = pCi − γCi · pS . (20)
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The left-hand side of the above equation can be represented as follows

P (YCi
= 1, YS = 0) = P

[
XCi

< dnsdCi
, XS > dS

]
(21)

= P
[
XCi

< dnsdCi

]
− P

[
XCi

< dnsdCi
, XS < dS

]
(22)

= Φ(dnsdCi
)− Φ2(dnsdCi

, dS ; ρSCi
). (23)

By use of the above and given dS = Φ−1 (pS) and ρSCi one can solve the previous equation over
dnsdCi

.

5 Numerical study
In this section we describe the setup of the problem and the results obtained in the calibrations
and simulations.

5.1 Bayesian network learning and robustness
We use CDS data as described in Section 3 to learn the structure and the parameters of the BN.
The bnlearn (Scutari, 2010) library in R is used for the Hill-Climbing procedure. The numerical
experiments were performed using two scores: BDs and BIC. Both scores resulted in similar struc-
ture of the network as shown in Figure 5, except for one edge, GAZPRU.Gneft → AKT which is
present in the network learnt with BIC, whereas with BDs it is substituted by CITMOS → AKT,
as we can see in Figure 5. The table in Appendix A, lists the tickers of the issuers and the complete
names.

After learning the network, the next step is to estimate the conditional probability of default of
an issuer, conditional on the default of the sovereign. In order to estimate these probabilities we run
a Monte Carlo simulation of 100 iterations. For each of these iterations, we calculate the conditional
probability using 4 × 105 samples. Finally, we take the mean of the Monte Carlo simulations as
an estimate for conditional probabilities. We compare the probabilities for both BIC and BDs
scores including mean, standard deviation and absolute difference in Table 3. Figure 4 shows the
structure with the nodes colored according to their probability of default given sovereign default
to have a more visual explanation. The darker the color of the node, the higher is the probability
of default of the node conditional on sovereign default. We see that Gazprom and Gazprom Neft,
which are the two nodes connected to the sovereign, are the ones more affected and the issuers
which are further from the sovereign have relatively lower conditional default probabilities.
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(a) Structure with BIC score
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(b) Structure with BDs score

Figure 5: Structure obtained with the different scores. Note that the visualization system is mirroring the plot but close inspection reveals that the structure is
not that different.
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Figure 4: Bayesian network learnt with BIC with colored nodes according to its probability of
default given sovereign default. Note that having a darker color means that the node has a higher
conditional probability of default.

We observe that the standard deviation of the conditional probabilities estimates is quite small
for all the issuers, ranging between 0.002 and 0.0035. This implies that the estimates are quite
robust, and gives us a strong confidence on the reliability of the results. Moreover, we notice
that the absolute difference of the probabilities from the two scores is smaller than the standard
deviation except in two cases.

The main difference we note in the table is Transneft, whose probability of default conditional
on sovereign default decreases by more than 0.07 when changing the score from BIC to BDs.
This is caused by the change in the structure, which directly affects this issuer. With BIC score,
Gazprom Neft is a parent of Transneft whereas City Moscow is not, and using BDs score it is the
other way around. We see that with both scores Gazprom Neft is more affected by the sovereign
than City Moscow. This is also a confirmation of the fact that the stress spreads faster from one
issuer to another if they are directly connected. The second difference in conditional probability
is for MDM Bank. If we look at the structures, we see that MDM has only one parent, which
is Transneft. As the parent (Transneft) is less affected in the structure learnt by BDs, its child
being less affected is in line with intuition. This causes a small but still noticeable difference in
the conditional probabilities.

5.2 Comparative analysis
We set up a multi-factor Merton model, as it was described in Section 4. We define a set of
systematic factors that will represent region and sector effects. We choose 6 region and 6 sector
factors, for which we select appropriate indices, as shown in Table 6. We then use 10 years of
index time series to derive the region and sector returns FR(j), j = 1, ..., 6 and FS(k), k = 1, ..., 6
respectively, and obtain an estimate of the correlation matrix Ω. Subsequently, we map all issuers
to one region and one sector factor, FR(i) and FS(i) respectively. For instance, a Dutch bank will
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be associated with Europe and Financial factors. As a proxy of individual asset returns we use
10 years of equity or CDS time series, depending on the data availability for each issuer. Finally,
we standardize the individual returns time series (Xi,t) and perform the following Ordinary Least
Squares regression against the systematic factor returns

Xi,t = αR(i)FR(i),t + αS(k)FS(k),t + εi,t (24)

to obtain α̂R(i), α̂S(i), and β̂i = R2, where R2 is the coefficient of determination, and it is higher
for issuers whose returns are largely affected by the performance of the systematic factors.

To investigate the properties of the contagion model, we set up a test portfolio. The resulting
risk measures for this portfolio are compared to those of the standard latent variable model with
no contagion. The portfolio consists of 1 Russian government bond and 17 bonds issued by cor-
porations registered and operating in the Russian Federation. As it is illustrated in Table 1, the
issuers are of medium and low credit quality. The sectors represented are shown in Appendix B,
Table 2. The portfolio is assumed to be equally weighted with a total notional of e10 million.

Rating Issuers %
BBB 1 5.56%
BB 15 83.33%
B 2 11.11%

Table 1: Rating classification for the test portfolio.

Sector Issuers %
Materials 5 27.78%
Services 3 16.67%

Financial 7 38.89%
Government 3 16.67%

Table 2: Sector classification for the test portfolio.

In order to generate portfolio loss distributions and derive the associated risk measures we per-
form Monte Carlo simulations. This process entails generating joint realizations of the systematic
and idiosyncratic risk factors, and comparing the resulting critical variables with the corresponding
default thresholds. By this comparison we obtain the default indicator Yi for each issuer and this
enables us to calculate the overall portfolio loss for this trial. The only difference between the stan-
dard and the contagion model is that in the contagion model we first obtain the default indicators
for the sovereigns, and their values determine which default thresholds are going to be used for the
corporate issuers. A liquidity horizon of 1 year is assumed throughout and the figures are based on
a simulation with 106 samples. Moreover, for the results shown we used the probabilities of default
computed with the structure learnt with the score BIC. However, this choice does not make any
notable difference in the percentiles of the loss distribution because the probabilities were almost
the same and such tiny difference would not cause a large disturbance.

We compared the BN model with the CountryRank model of Anagnostou et al., 2018. In Table
4 we can observe the difference between the probabilities obtained with both methods, using the
same data, and same parameters, 10 days to compute the standard deviation and 3 days as time
lag. Following the sensitivity analysis by Anagnostou et al., 2018 we can expect that the 15%
increase of the mean will not have a substantial impact on the percentiles of the loss distribution.
This hypothesis can be confirmed by the results shown in Table 5 and the graph depicted in Figure
6.

6 Concluding remarks
In this article, we presented a novel method of estimating contagion effects from CDS data using
BNs. Rather than assuming a certain distribution for CDS spreads, we introduced a method
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BIC BDs
Order Issuer γC s.d. γC s.d. Abs diff

1 JSC Gazprom 0.7824 0.0030 0.7809 0.0028 0.0015
2 JSC Gazprom Neft 0.7024 0.0026 0.7018 0.0028 0.0006
3 Sberbank 0.6260 0.0034 0.6261 0.0032 0.0001
4 Russian Agriculture Bank 0.6165 0.0032 0.6167 0.0030 0.0002
5 Oil Transporting JSC Transneft 0.5754 0.0025 0.4983 0.0026 0.0771
6 Lukoil Company 0.5417 0.0024 0.5410 0.0023 0.0007
7 Open JSC Rosneft 0.5394 0.0030 0.5407 0.0025 0.0013
8 JSC Russian Railways 0.5186 0.0029 0.5189 0.0025 0.0003
9 JSC VTB Bank 0.4913 0.0027 0.4911 0.0030 0.0002
10 Vnesheconombank 0.4583 0.0028 0.4583 0.0024 < 10−4

11 Bank of Moscow 0.4576 0.0027 0.4572 0.0025 0.0004
12 City Moscow 0.4377 0.0031 0.4375 0.0025 0.0002
13 MDM Bank Open JSC 0.4251 0.0026 0.4028 0.0032 0.0223
14 Alrosa C.L. 0.3890 0.0025 0.3885 0.0028 0.0005
15 Mobile Telesystems 0.3542 0.0025 0.3540 0.0023 0.0002
16 Open JSC VimpelCom Limited 0.3523 0.0022 0.3524 0.0023 0.0001
17 JSC Russian Standard Bank 0.3290 0.0024 0.3296 0.0021 0.0006

Table 3: Probabilities of default given sovereign default with BIC and BDs score.

Order Issuer BN CountryRank Diff
1 JSC Gazprom 0.7824 0.6220 0.1585
2 JSC Gazprom Neft 0.7024 0.5610 0.1415
3 Sberbank 0.6260 0.5854 0.0406
4 Russian Agric Bank 0.6165 0.5854 0.0312
5 Oil Transporting JSC Transneft 0.5754 0.5732 0.0022
6 Lukoil Company 0.5417 0.3381 0.2036
7 Open JSC Rosneft 0.5394 0.5244 0.0150
8 JSC Russian Railways 0.5186 0.5427 -0.0241
9 JSC VTB Bk 0.4913 0.6098 -0.1184
10 Vnesheconombank 0.4583 0.3339 0.1244
11 Bank of Moscow 0.4576 0.5305 -0.0729
12 City Moscow 0.4377 0.5122 -0.0745
13 MDM Bk Open JSC 0.4251 0.3131 0.1120
14 Alrosa C.L. 0.3890 0.2293 0.1596
15 Mobile Telesystems 0.3542 0.2446 0.1096
16 Open JSC VimpelCom Limited 0.3523 0.2964 0.0559
17 JSC Russian Standard Bank 0.3290 0.0869 0.2420

Mean 0.5056 0.4405 0.0651

Table 4: Comparison of γC using BN and CountryRank model.
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Figure 6: Percentiles of the Loss distribution without and with contagion with the BN and the
CountryRank model.

BN model CountryRank model
Percentile Loss - Standard model Contagion impact Contagion impact

99% 1,115,153 117,341 11% 124,903 11%
99.5% 1,443,579 1,054,844 73% 769,694 53%
99.9% 2,324,088 2,302,667 99% 1,930,166 83%
99.99% 3,514,968 2,198,517 63% 1,883,240 54%

Table 5: Comparison of the percentiles using Bayesian networks and CountryRank model.

for learning BNs using ε-drawups. Different techniques to learn the structure and parameters
of financial networks were studied and evaluated. We used CDS spreads of issuers in a stylized
portfolio and incorporated the conditional probabilities in the credit portfolio model presented by
Anagnostou et al., 2018. Simulations were carried out for a stylized portfolio and the impact on
standard risk metrics was estimated. Contagion was shown to have a significant impact in the
tails of the credit loss distribution, with the results being in line with results obtained by using the
CountryRank metric.

The results presented are a first step in the application of BNs on portfolio credit risk models.
However, the BN framework we developed is flexible enough to allow for wider applications. For
instance, one can extend the contagion so that stress originates from any issuer and not only at
the sovereign. Moreover, one can test scenarios where multiple issuers default. Two examples of
such scenarios can be found in the Appendix D. These applications can be particularly useful for
risk managers, who are often interested in building scenarios for catastrophic risks and testing the
resilience of their portfolios to such scenarios.

In order to extend our analysis, we plan to further investigate applications of the developed
probabilistic framework in problems beyond credit portfolio modelling. A promising direction is
to use our framework in order to identify systemically important nodes in the financial system and
measure systemic risk. This could be done by considering, in a recursive manner, the fact that a
node is more systemically important if it impacts many systemically important nodes. Another
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interesting direction is the modelling of wrong-way risk (WWR) arising in the case of a sovereign
default in the pricing of Credit Valuation Adjustment (CVA) and Funding Valuation Adjustment
(FVA) for interest-rate and foreign exchange derivatives.
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A CDS and Ticker list
In this section we briefly illustrate what a CDS contract is and after that provide the list with the
CDS tickers with a mapping to the names of the issuers in the synthetic portfolio.

A credit default swap is a financial contract in which a buyer B gets insurance from a protection
seller A against the default of a third party C. More precisely, given a contractual notional N ,
regular coupon payments with respect to N and a fixed rate s, the CDS spread, are swapped
with a payment of N(1 − RR) in the event of the default of C, where RR, the so-called recovery
rate, is the contractual parameter which represents the part of the investment supposed to be
recovered in the event of default of C. An extensive description of these contracts including various
modifications can be found in O’Kane, 2011.

The following list contains the issuers in the synthetic portfolio and the corresponding ticker
which represent them in the networks depicted.

Ticker Issuer name
AKT Oil Transporting JSC Transneft
ALROSA Alrosa C.L.
BKECON Vnesheconombank
BOM Bank of Moscow
CITMOS City Moscow
GAZPRU JSC Gazprom
GAZPRU.Gneft JSC Gazprom Neft
LUKOIL Lukoil Company
MBT Mobile Telesystems
MDMOJC MDM Bank Open JSC
ROSNEF Open JSC Rosneft
RSBZAO JSC Russian Standard Bank
RUSAGB Russian Agriculture Bank
RUSRAI JSC Russian Railways
RUSSIA Russian Federation
SBERBANK Sberbank
VIP Open JSC VimpelCom Limited
VTB JSC VTB Bank

Note that JSC is the acronym for Joint Stock Company.

B Systematic factors

Factor Index
Europe MSCI EUROPE
Asia MSCI AC ASIA
North America MSCI NORTH AMERICA
Latin America MSCI EM LATIN AMERICA
Middle East and Africa MSCI FM AFRICA
Pacific MSCI PACIFIC
Materials MSCI WRLD/MATERIALS
Consumer products MSCI WRLD/CONSUMER DISCR
Services MSCI WRLD/CONSUMER SVC
Financial MSCI WRLD/FINANCIALS
Industrial MSCI WRLD/INDUSTRIALS
Government ITRAXX SOVX GLOBAL LIQUID INVESTMENT GRADE

Table 6: Systematic factor - Index mapping.
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C Scores
We briefly describe the two scores namely the BIC and BDs used for BN learning. For details, we
refer to Koller & Friedman, 2009, Section 18.3. BIC is a likelihood score defined as:

scoreBIC(G : D) = logL(G : D)− 1

2
|G| logN,

where |G| is the complexity of the network, the number of independent parameters in the net-
work. This score penalizes explicitly the score with the number of independent parameters, hence
assigning higher scores to sparser structures.

The following expression is the closed-form derived for the marginal-likelihood of the structure
score:

P (D |G) =
∏
i

qi∏
k=1

Γ(αXi|k)

Γ(αXi|k +M [k])

ri∏
j=1

[
Γ(αj|k +M [j, k])

Γ(αj|k)

]
, (25)

where αXi|k =
∑ri
j=1 αj|k.

BDs is derived from a different score, BDeu, which is obtained from 25 by assuming a uniform
prior distribution over the parameters (Dirichlet distribution with all the hyperparameters taking
the same value α). Let αj|k = αi/(riqi) and αi = α, where ri is the number of states of Xi and qi
is the number of configurations of parents of Xi, the number of parents configuration of Xi. Then
score BDeu is defined as follows

BDeu(G,D;α) =
∏
i

qi∏
k=1

Γ(riαi)

Γ(riαi +M [k])

ri∏
j=1

Γ(αi +M [j, k])

Γ(αi)
. (26)

Scutari, 2016 argues that choosing uniform prior distributions over θGXi |PaXi and G can have
a negative effect over the quality of the results obtained with the score BDeu. To avoid this he
introduces the score BDs.

In the first place we see that if P (k) = 0 for some k ∈ {1, . . . , qi} and i ∈ [n], or if the sample
size of D is very small, it may happen that M [k] = 0 for some configurations of PaXi

which do not
appear in D, then we can split

BDeu(G,D;α) =
∏
i


(

qi∏
k=1)
M [k]=0

�
�
��Γ(riαi)

Γ(riαi)

ri∏
j=1�

�
�Γ(αi)

Γ(αi)

)

(
qi∏
k=1

M [k]>0

Γ(riαi)

Γ(riαi +M [k])

ri∏
j=1

Γ(αi +M [j, k])

Γ(αi)

) .

We note that as the number of parent configurations which appear in the data D decreases, the
effective imaginary sample size decreases, as∑

k:M [k]>0

∑
j

αi ≤
∑
k,j

αi = α. (27)

This induces the posterior to converge to the corresponding likelihood estimation and hence leaning
towards overfitting and including spurius edges in G. To avoid this problem we define:

q̃i = |{k ∈ {1, . . . , qi} : M [k] > 0}| and α̃i =

{
α/(riq̃i) if q̃i > 0,
0 otherwise.

With this new definition the expression 27 becomes an equality,
∑
k:M [k]>0

∑
j αi = α. Moreover,

we see that the uniform prior that we just defined is on the conditional distribution which can be
estimated from D, so this is a empirical Bayesian score. Finally, we substitute αi in 26 by α̃i and
obtain:

BDs(G,D;α) =
∏
i

qi∏
k=1

M [k]>0

Γ(riα̃i)

Γ(riα̃i +M [k])

ri∏
j=1

Γ(α̃i +M [j, k])

Γ(α̃i)
. (28)
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D Stress scenarios
The first scenario is stressing three banks in the network, BKECON, BOM and SBERBANK.
Figure 7 depicts the network with the nodes colored according to the probabilities obtained in
that scenario, shown next to it. We observe that the values obtained are similar to the ones of the
scenario where the sovereign is stressed. This may be due to the strong connections of the sovereign
with big companies such as GAZPRU and GAZPRU.Gneft and because the stressed banks are in
the periphery of the network.

Issuer Prob.
BKECON 1

BOM 1
SBERBANK 1

RUSAGB 0.7757
VTB 0.7287

GAZPRU 0.69
AKT 0.5797

GAZPRU.Gneft 0.5593
ROSNEF 0.5514
RUSSIA 0.5351
CITMOS 0.5107
LUKOIL 0.4948

VIP 0.4742
RUSRAI 0.4528
ALROSA 0.4244
MDMOJC 0.4242

MBT 0.3379
RSBZAO 0.3319

AKT

ALROSA

BKECON

BOM

CITMOS

GAZPRU

GAZPRU.Gneft

LUKOIL

MBT

MDMOJC

ROSNEF

RSBZAO

RUSAGB

RUSRAI

RUSSIA

SBERBANK

VIP

VTB

Figure 7: Probabilities and network in the scenario of three banks stressed.

As the Russian crisis of 2014 was strongly related to oil industry, in the second scenario we
stress four of the largest oil companies: AKT, GAZPRU, LUKOIL, and ROSNEF. Figure 8 shows
the network and the probabilities for this case. It is noticeable that the oil companies have a larger
impact on the network. Note also that in this case four nodes are stressed. However, one can see
that these nodes are more centered and the rest of the nodes are more stressed.

Issuer Prob.
AKT 1

GAZPRU 1
LUKOIL 1
ROSNEF 1

GAZPRU.Gneft 0.8382
RUSAGB 0.7867

SBERBANK 0.7563
RUSSIA 0.6469

VTB 0.6028
RUSRAI 0.5814

MDMOJC 0.5321
BKECON 0.5273
CITMOS 0.5133

MBT 0.5078
BOM 0.4972

ALROSA 0.4708
RSBZAO 0.4053

VIP 0.366

AKT

ALROSA

BKECON

BOM

CITMOS

GAZPRU

GAZPRU.Gneft

LUKOIL

MBT

MDMOJC

ROSNEF

RSBZAO

RUSAGB

RUSRAI

RUSSIA

SBERBANK

VIP

VTB

Figure 8: Probabilities and network in the scenario of four oil companies stressed.
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