Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.123.161801

Link to publication

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Observation of Electroweak Production of a Same-Sign W Boson Pair in Association with Two Jets in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

M. Aaboud et al.*

(ATLAS Collaboration)

(Received 10 June 2019; published 15 October 2019)

This Letter presents the observation and measurement of electroweak production of a same-sign W boson pair in association with two jets using 36.1 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed in the detector fiducial phase-space region, defined by the presence of two same-sign leptons, electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of 69 ± 7 events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is $\sigma^\text{fid} = 2.89^{+0.51}_{-0.48}$ (stat)$^{+0.20}_{-0.26}$ (syst) fb.

DOI: 10.1103/PhysRevLett.123.161801

The scattering of two massive vector bosons (VBS), $VV \to VV$ with $V = W$ or Z, is an important process for studying the mechanism of electroweak symmetry breaking [1–3]. VBS processes involve quartic gauge-boson self-interactions, and the s- and t-channel exchanges of a gauge or Higgs boson. The Higgs boson regularizes the VBS amplitude by canceling out the divergencies arising from longitudinally polarized vector bosons at high energy [4,5]. These cancellations depend on the gauge structure of the theory and are exact in the standard model (SM) [6,7]. The present measurement of W boson scattering thus serves as a fundamental probe of the SM electroweak theory.

At the LHC, the VBS final state of two gauge bosons and two jets (VVjj) can be produced via two classes of mechanisms. The first class, referred to as strong production, involves both strong and electroweak interactions at Born level, and features diagrams where the incoming partons exchange color, as illustrated in Fig. 1(b). The second class, referred to as electroweak production, involves only weak interactions at Born level [8] and includes VBS diagrams. Figure 1(b) shows a typical VBS diagram where the gauge bosons are radiated off the incoming quarks and then scatter via the quartic self-interaction vertex. In VBS processes, the incoming partons do not exchange color and typically produce the two jets with a large invariant mass and with large rapidity difference [9].

The $W^{\pm}W^{\pm}jj$ final state has the largest ratio of electroweak to strong production cross sections compared to other VBS diboson processes [3]; this is because at leading-order (LO) accuracy in perturbative quantum chromodynamics (QCD) quark-gluon and gluon-gluon initiated diagrams are absent and contributions from quark and (anti-)quark annihilation diagrams are suppressed. This ratio is of order five in the fiducial phase-space region of this analysis. The s-channel VBS diagrams with trilinear self-interactions are absent in this final state. In addition, electroweak diagrams not involving self-interactions are suppressed [10], thus enhancing sensitivity of this final state to gauge-boson self couplings. Previously, an observation of $W^{\pm}W^{\pm}jj$ electroweak production was reported by the CMS Collaboration [11] and evidence was reported by the ATLAS Collaboration using a smaller dataset [12,13].

This Letter presents the observation and measurement of the electroweak production of $W^{\pm}W^{\pm}jj$ events in which both W bosons decay into an electron or muon and a electron or muon, and at least two jets with a large invariant mass and rapidity difference. A total of 122 candidate events are observed for a background expectation of 69 ± 7 events, corresponding to an observed signal significance of 6.5 standard deviations. The measured fiducial signal cross section is $\sigma^\text{fid} = 2.89^{+0.51}_{-0.48}$ (stat)$^{+0.20}_{-0.26}$ (syst) fb.

DOI: 10.1103/PhysRevLett.123.161801

The scattering of two massive vector bosons (VBS), $VV \to VV$ with $V = W$ or Z, is an important process for studying the mechanism of electroweak symmetry breaking [1–3]. VBS processes involve quartic gauge-boson self-interactions, and the s- and t-channel exchanges of a gauge or Higgs boson. The Higgs boson regularizes the VBS amplitude by canceling out the divergencies arising from longitudinally polarized vector bosons at high energy [4,5]. These cancellations depend on the gauge structure of the theory and are exact in the standard model (SM) [6,7]. The present measurement of W boson scattering thus serves as a fundamental probe of the SM electroweak theory.

At the LHC, the VBS final state of two gauge bosons and two jets (VVjj) can be produced via two classes of mechanisms. The first class, referred to as strong production, involves both strong and electroweak interactions at Born level, and features diagrams where the incoming partons exchange color, as illustrated in Fig. 1(b). The second class, referred to as electroweak production, involves only weak interactions at Born level [8] and includes VBS diagrams. Figure 1(b) shows a typical VBS diagram where the gauge bosons are radiated off the incoming quarks and then scatter via the quartic self-interaction vertex. In VBS processes, the incoming partons do not exchange color and typically produce the two jets with a large invariant mass and with large rapidity difference [9].

The $W^{\pm}W^{\pm}jj$ final state has the largest ratio of electroweak to strong production cross sections compared to other VBS diboson processes [3]; this is because at leading-order (LO) accuracy in perturbative quantum chromodynamics (QCD) quark-gluon and gluon-gluon initiated diagrams are absent and contributions from quark and (anti-)quark annihilation diagrams are suppressed. This ratio is of order five in the fiducial phase-space region of this analysis. The s-channel VBS diagrams with trilinear self-interactions are absent in this final state. In addition, electroweak diagrams not involving self-interactions are suppressed [10], thus enhancing sensitivity of this final state to gauge-boson self couplings. Previously, an observation of $W^{\pm}W^{\pm}jj$ electroweak production was reported by the CMS Collaboration [11] and evidence was reported by the ATLAS Collaboration using a smaller dataset [12,13].

This Letter presents the observation and measurement of the electroweak production of $W^{\pm}W^{\pm}jj$ events in which both W bosons decay into an electron or muon and a
neutrino. This study uses 36.1 fb$^{-1}$ of proton-proton (pp) collision data collected by the ATLAS detector at $\sqrt{s} = 13$ TeV. The ATLAS detector [14] is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and almost 4π coverage in solid angle [15]. The inner tracking detector (ID) covers $|\eta| < 2.5$ in pseudorapidity and consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a superconducting solenoid magnet and an almost hermetic calorimeter system, which provides three-dimensional reconstruction of particle showers up to $|\eta| = 4.9$. The muon spectrometer (MS) has three air-core toroidal magnets: a barrel toroid and two end cap toroids. Three layers of precision tracking stations with drift tubes and cathode strip chambers allow precise muon momentum measurement up to $p_T > 30$ GeV. Jets are reconstructed using the anti-k_T algorithm [36] with radius parameter $R = 0.4$ and using all final-state particles, except for neutrinos and charged leptons from W boson decays. Jets are required to have $p_T > 35$ GeV and $|\eta| < 4.5$. Events with a charged lepton that is within a cone of radius $\Delta R_{jj} = 0.3$ around a jet are vetoed. The fiducial region requires at least two jets, including one with $p_T > 65$ GeV and another with $p_T > 35$ GeV. The two highest-p_T jets must have an invariant mass $m_{jj} > 500$ GeV and a rapidity difference $|\Delta y_{jj}| > 2$.

The fiducial cross section predicted by SHERPA for $W^\pm W^\pm jj$ electroweak production is 2.01$^{+0.33}_{-0.23}$ fb. The uncertainty includes independent variations of the renormalization and factorization scales by factors of 0.5 and 2 with the constraint $0.5 \leq \mu_F/\mu_R \leq 2$ which contribute $+14\%-11\%$. It also includes uncertainties from the NNPDF3.0NNLO ensemble, as well as differences between the CT14 [37] and MMHT2014 [38] PDF sets ($+3.5\%-14\%$) [39]. Uncertainties in the parton shower, hadronization, and underlying-event modeling are evaluated by varying the MEPS matching and resummation scales and amount to $+8\%-1\%$. POWHEG +PYTHIA8 predicts a signal fiducial cross section of 3.08$^{+0.45}_{-0.40}$ fb, with the uncertainties derived using the same procedures as for the SHERPA prediction, except for the uncertainty in the parton shower modeling, which is estimated as the difference relative to POWHEG +HERWIG7 [40,41]. The SHERPA electroweak samples suffer from a nonoptimal setting of the color flow, which leads to an excess of central jet emissions from the parton shower. Since up to one additional parton is included in the matrix element of the $W^\pm W^\pm jj$ electroweak process, the effect on its differential distributions is reduced but accompanied by a significant suppression of the predicted cross section [24].
Events are required to contain at least one reconstructed proton interaction vertex. The vertex with the highest p_T^2 sum of associated ID tracks is selected as the primary vertex. Electrons are reconstructed from energy clusters in the electromagnetic calorimeter that are matched to tracks reconstructed in the ID with the requirement of a hit in the innermost pixel layer [42]. Muon are reconstructed by combining ID and MS information [43]. Electron and muon candidates must satisfy loose identification criteria [42,43], have $p_T > 6$ GeV, and $|\eta| < 2.47$ and $|\eta| < 2.7$, respectively. The ID tracks associated to electron (muon) candidates are matched to the primary vertex by requiring their transverse impact parameter significance to satisfy $|d_0|/\sigma_{d_0} < 5(10)$; the longitudinal impact parameter multiplied by the sine of the polar angle of the lepton candidates must satisfy $|z_0\sin\theta| < 0.5$ mm. Electrons and muons passing these selections are further referred to as baseline leptons.

Jets are reconstructed from calorimeter energy clusters [44,45] using the anti-k_{t} algorithm with radius parameter $R = 0.4$. Jets are required to have $p_T > 30$ GeV in the forward region ($2.4 < |\eta| < 4.5$) and $p_T > 25$ GeV in the central region ($|\eta| < 2.4$). Central jets with $p_T < 60$ GeV must be matched to the primary vertex [46]. Jets containing b hadrons (b jets) are identified in the range of $|\eta| < 2.5$ with an efficiency of 85% using techniques described in Ref. [47]. Selected electron, muon, and jet candidates are required to be nonoverlapping using the procedures described in Ref. [18]. The missing transverse momentum, E_T^{miss}, is computed using selected electrons, muons, and jets, and the track-based soft term defined in Ref. [48].

Events are selected online by single-electron or single-muon triggers [49]. Candidate events are selected by requiring exactly two same-sign baseline leptons, electron or muon, with $m_{e\ell} > 20$ GeV and by requiring $E_T^{\text{miss}} > 30$ GeV. They are required to contain at least two jets, including one with $p_T > 65$ GeV and another with $p_T > 35$ GeV. Events with at least one identified b jet are rejected in order to reduce background contributions from top-quark pair production ($t\bar{t}$). The two highest-p_T jets are required to have $m_{jj} > 200$ GeV and $|\Delta y_{jj}| > 2$. These jet selection criteria were optimized to separate the $W^+W^-j j$ electroweak process from the strong production and other background processes.

After these selections, the dominant source of background events is due to leptons originating from decays of heavy-flavor hadrons and jets misidentified as electrons, collectively referred to as nonprompt leptons. Additional selection criteria are applied to reduce their contributions. Signal electrons are required to satisfy tight identification criteria [42], to have $p_T > 27$ GeV, and to be outside the calorimeter transition region ($1.37 < |\eta| < 1.52$). Signal muons are required to satisfy medium identification criteria [43], and to have $p_T > 27$ GeV and $|d_0|/\sigma_{d_0} < 3$. Signal electrons and muons are further required to be isolated from nearby particles, with isolation criteria defined using calorimeter clusters and ID tracks. These isolation criteria are optimized to have an efficiency of at least 90% for $p_T > 25$ GeV and at least 99% for $p_T > 60$ GeV [42,43]. For dielectron events, the electron pseudorapidity is restricted to $|\eta| < 1.37$ and events with $m_{ee} - 91.2$ GeV < 15 GeV are discarded. These criteria reduce the background from electron charge misidentification described later. Candidate events with exactly two signal leptons are said to pass the full event selection.

The contributions from the WZ, $V\gamma$, ZZ, and triboson production are estimated using simulation. The predicted event yields of the WZ and $V\gamma$ processes are normalized to data in dedicated control regions. The normalization of the WZ background is determined using events with exactly three baseline leptons, two of which are required to pass the signal lepton selection, and that satisfy the dijet and E_T^{miss} selection criteria. Events from $V\gamma$ production enter the signal region when a photon is misidentified as an electron. The modeling of this misidentification process in simulation is corrected using $Z \rightarrow \mu^+\mu^-\gamma$ events where a photon is emitted by a muon and then misidentified as an electron. These events are selected by requiring exactly two opposite-sign signal muons, one signal electron, $E_T^{\text{miss}} < 30$ GeV and a trilepton invariant mass satisfying 75 GeV $< m_{\mu e e} < 100$ GeV. A normalization factor of 1.8 is derived from this control region and used to correct the simulated $V\gamma$ events. To account for the differences between the $Z\gamma$ and $W\gamma$ processes, the full effect of this correction factor is assigned as a systematic uncertainty, corresponding to 44% of the estimated $V\gamma$ yield. The relative contributions from electroweak and strong production of WZ and $V\gamma$ processes are estimated from simulation since this analysis is not sensitive to their different admixtures. Theoretical uncertainties in the predictions of the ZZ, $V\gamma$, triboson, and $t\bar{t}V$ backgrounds vary from 20% to 30% [25,50,51].

Background contributions with nonprompt leptons are estimated by weighting data events from dedicated control regions by scale factors. These scale factors are measured in dijet events containing exactly one lepton that is p_T balanced by a b jet. The b-jet requirement enhances nonprompt lepton contributions and suppresses contributions from W/Z bosons, which are subtracted from data using simulation. The scale factor is defined as the ratio of the number of signal leptons to the number of leptons passing a dedicated background selection. The background leptons are required to pass the baseline lepton selection and fail the signal lepton selection, where background electrons are in addition required to satisfy medium
identification criteria [42]. Moreover, the background electron (muon) p_T is required to be greater than 20(15) GeV. Separate scale factors are computed for muons and for central and forward electrons. In order to reduce the dependence on the underlying p_T spectrum of b jets that produce nonprompt leptons, the scale factors are measured as a function of the scalar sum of the background lepton p_T and the additional activity around the lepton. This activity, p_T^{iso30}, is quantified by the sum of the p_T of ID tracks that are within a cone of size $\Delta R = 0.3$ around the lepton and originate from the primary vertex.

Data events, that are weighted by the scale factors, are taken from control regions defined using the full event selection criteria except that one lepton is required to pass the background lepton selection and its p_T is replaced with $p_T + p_T^{iso30}$, with this sum required to be greater than 27 GeV. A statistically independent control region is defined for each bin of the m_{jj} distribution. The uncertainty of the estimated nonprompt background yields is approximately 50% in $\mu^+\mu^-$ final states and varies between 40% and 90% for $e^\pm e^\pm$ and $e^\pm\mu^\pm$ final states. It includes the systematic uncertainty of the scale factors and the statistical uncertainty of the control regions. The former uncertainty is derived from variations in the composition of the dijet control regions where these factors are measured, obtained by varying the selection criteria. The entire method is validated in regions enriched with nonprompt leptons from $tt (W + jet)$ events selected by requiring exactly two same-sign leptons and exactly one (zero) b jet among a total of at least (than) two jets. In these regions, the number of observed data events and the number of predicted background events agree within their uncertainties.

Opposite-sign lepton pairs pass the full event selection when an electron undergoes an interaction with the detector material resulting in incorrect charge reconstruction. The probability of this charge misreconstruction, ϵ_{misrec}, is measured in $Z \rightarrow e^+e^-$ events [42] and it increases from about 0.1% in the central region to a few percent for $|\eta| > 2$. The background contributions from electron charge misreconstruction are estimated from data using opposite-sign lepton pairs that satisfy the full event selection criteria, except for the same-sign requirement; these events are weighted by ϵ_{misrec} and the electron energy loss due to the material interaction is corrected with η-dependent factors derived from simulation [42]. The overall method is validated by comparing the number of observed same-sign electron pairs having $|m_{ee} - 91.2 \text{ GeV}| < 15 \text{ GeV}$ with the predicted background yield, with the two numbers agreeing within the systematic uncertainty of 15%. This uncertainty is dominated by the statistical uncertainty in the measurement of ϵ_{misrec}, which is less than 10% for $|\eta| > 2$ and up to 20% in the central region. The charge misreconstruction of muons is found to be negligible.

The detector systematic uncertainties arising from the mismodeling of the reconstructed objects are estimated primarily from data and their impact on the analysis is assessed using simulated events. The dominant source is the uncertainty of the jet energy scale, which amounts to 2% for the signal and 10% for the WZ background. The uncertainty in the measurement of the integrated luminosity is 2.1% [52].

The theory modeling uncertainties of the m_{jj} distributions predicted by SHERPA for $W^\pm W^\pm jj$ and WZ processes are evaluated using the procedures described above. They account for uncertainties in the total cross section, the acceptance of the fiducial selection, the modeling of the event selection efficiency and the shape of the m_{jj} distribution. Only the latter two affect the measured fiducial cross section of the $W^\pm W^\pm jj$ signal, since absolute normalization uncertainties cancel in this measurement. The uncertainty in the modeling of the event selection efficiency also accounts for extrapolations from the fiducial phase space to the detector level, in particular for the η acceptance in dielectron events. Effects of the NLO electroweak corrections [53] and of the interference between electroweak and strong $W^\pm W^\pm jj$ production [9] are assigned as an uncertainty in the m_{jj} shape of the $W^\pm W^\pm jj$ signal, amounting to 6% and 4%, respectively. This approach is used because no event generator implemented the complete NLO calculation until recently [54] and because the interference contribution is defined only at the leading order [8]. The overlap of the photon radiation in the SHERPA parton shower model with the NLO EW corrections is found to be negligible.

Signal events are categorized by their lepton flavor and charge into six mutually exclusive channels: $e^\pm e^\pm$, $e^\pm\mu^\pm$, and $\mu^\pm\mu^\pm$, in order to exploit their different signal and background compositions. The signal region is defined as $m_{jj} > 500 \text{ GeV}$ and further split into four m_{jj} bins, optimized to increase the expected signal sensitivity. Events with $200 \text{ GeV} < m_{jj} < 500 \text{ GeV}$ serve as additional control regions, dominated by contributions from nonprompt leptons and WZ backgrounds. The resulting 30 bins of the m_{jj} distributions in the signal and control regions are combined in a profile likelihood fit [55] to extract the fiducial cross section.

The signal strength, a free parameter in the fit, multiplies the expected fiducial $W^\pm W^\pm jj$ electroweak production cross section used to produce the signal template. The signal template of reconstructed $W^\pm W^\pm jj$ electroweak events also includes candidate events with electrons and muons produced in W decays into τ lepton. Since the fiducial cross section prediction does not include such events, their fractional contribution predicted by the simulation is removed from the fiducial cross section measurement. Systematic uncertainties are included in the fit as nuisance parameters constrained by Gaussian functions. The WZ control region is also included in the fit as a single
TABLE I. Summary of the data event yields, and the signal and background event yields in the signal region as obtained after the fit. The numbers are shown for the six individual channels and for all channels combined. The backgrounds from $V\gamma$ production and electron charge misreconstruction are combined in the e/γ conversions category. The other prompt category combines ZZ, VVV, and $t\bar{t}V$ background contributions.

<table>
<thead>
<tr>
<th>Category</th>
<th>e^+e^+</th>
<th>e^-e^-</th>
<th>$e^+\mu^+$</th>
<th>$e^-\mu^+$</th>
<th>$\mu^+\mu^+$</th>
<th>$\mu^-\mu^-$</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>WZ</td>
<td>1.48 ± 0.32</td>
<td>1.09 ± 0.27</td>
<td>11.6 ± 1.9</td>
<td>7.9 ± 1.4</td>
<td>5.0 ± 0.7</td>
<td>3.4 ± 0.6</td>
<td>30 ± 4</td>
</tr>
<tr>
<td>Nonprompt</td>
<td>2.2 ± 1.1</td>
<td>1.2 ± 0.6</td>
<td>5.9 ± 2.5</td>
<td>4.7 ± 1.6</td>
<td>0.56 ± 0.05</td>
<td>0.68 ± 0.13</td>
<td>15 ± 5</td>
</tr>
<tr>
<td>e/γ conversions</td>
<td>1.6 ± 0.4</td>
<td>1.6 ± 0.4</td>
<td>6.3 ± 1.6</td>
<td>4.3 ± 1.1</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Other prompt</td>
<td>0.16 ± 0.04</td>
<td>0.14 ± 0.04</td>
<td>0.90 ± 0.20</td>
<td>0.63 ± 0.14</td>
<td>0.39 ± 0.09</td>
<td>0.22 ± 0.05</td>
<td>2.4 ± 0.5</td>
</tr>
<tr>
<td>W^+W^-jj strong</td>
<td>0.35 ± 0.13</td>
<td>0.15 ± 0.05</td>
<td>2.9 ± 1.0</td>
<td>1.2 ± 0.4</td>
<td>1.8 ± 0.6</td>
<td>0.76 ± 0.25</td>
<td>7.2 ± 2.3</td>
</tr>
<tr>
<td>Expected background</td>
<td>5.8 ± 1.4</td>
<td>4.1 ± 1.1</td>
<td>28 ± 4</td>
<td>18.8 ± 2.6</td>
<td>7.7 ± 0.9</td>
<td>5.1 ± 0.6</td>
<td>69 ± 7</td>
</tr>
<tr>
<td>W^+W^-jj electroweak</td>
<td>5.6 ± 1.0</td>
<td>2.2 ± 0.4</td>
<td>24 ± 5</td>
<td>9.4 ± 1.8</td>
<td>13.4 ± 2.5</td>
<td>5.1 ± 1.0</td>
<td>60 ± 11</td>
</tr>
<tr>
<td>Data</td>
<td>10</td>
<td>4</td>
<td>44</td>
<td>28</td>
<td>25</td>
<td>11</td>
<td>122</td>
</tr>
</tbody>
</table>

The numbers are shown for the six individual channels and for all channels combined. The backgrounds from $V\gamma$ production and electron charge misreconstruction are combined in the e/γ conversions category. The other prompt category combines ZZ, VVV, and $t\bar{t}V$ background contributions.

FIG. 2. Event yields for data, signal, and background in the WZ and $200 < m_{jj} < 500$ GeV control regions (left) and the m_{jj} distribution for events meeting all selection criteria for the signal region (right). Signal and background distributions are shown as predicted after the fit. The hatched band represents the statistical and systematic uncertainties of the background predictions added in quadrature. The backgrounds from $V\gamma$ production and electron charge misreconstruction are combined into the e/γ conversions category. The other prompt category combines ZZ, VVV, and $t\bar{t}V$ background contributions. The last bin on the right figure includes the overflow.

bin and the normalization of the WZ background is included as a free parameter. The analysis choices maximize the expected significance for the $W^\pm W^\mp jj$ electroweak signal predicted by SHERPA at 4.4σ. A significance of 6.5σ is expected by the alternative signal sample simulated with POWHEG-BOX.

Table I compares the numbers of data events in the signal region with the background and signal event yields after the fit; the signal region contains 122 data events, compared with a best-fit yield of 69 ± 7 background events. By fitting the data and background events in the signal and control regions, the background-only hypothesis is rejected with a significance of 6.5σ. Figure 2 shows the control region events separated into categories and the m_{jj} distribution in the signal region after the fit. All nuisance parameters remain within their 1 standard deviation uncertainty after the fit. The normalization of the WZ background is scaled by a factor of $0.86^{+0.07}_{-0.08}$ (stat)$^{+0.18}_{-0.23}$ (exp syst)$^{+0.31}_{-0.06}$ (mod syst), constrained mainly by the observed number of data events in the WZ control region. Figure 3 shows the m_{ee} distribution in the signal region after the fit.

A signal strength of $1.44^{+0.26}_{-0.24}$ (stat)$^{+0.28}_{-0.22}$ (syst) is measured with respect to the SHERPA fiducial cross section prediction for $W^\pm W^\mp jj$ electroweak production, where the systematic uncertainty also includes the absolute normalization uncertainty of this prediction. This corresponds to a fiducial signal cross section of

$$
\sigma_{\text{fid}} = 2.89^{+0.51}_{-0.48} \text{(stat)}^{+0.24}_{-0.22} \text{(exp syst)} \times 1.14^{+0.08}_{-0.06} \text{(lumi)} \text{ fb},
$$

where the uncertainties correspond to the statistical, experimental systematic, theory modeling systematic, and luminosity uncertainties, respectively. The experimental systematic uncertainty includes the detector systematic uncertainties and the uncertainties in estimating all background processes except for the WZ and $W^\pm W^\mp jj$ strong production and γ conversions.
TABLE II. Impact of different components of systematic uncertainty on the measured fiducial cross section, without taking into account correlations. The impact of one source of systematic uncertainty is computed by first performing the fit with the corresponding nuisance parameter fixed to 1 standard deviation up or down from the value obtained in the nominal fit, then these up and down variations are symmetrized. The impacts of several sources of systematic uncertainty are added in quadrature for each component. The categorization of sources of systematic uncertainties into experimental and theory modeling correspond to those used for the measured fiducial cross section.

<table>
<thead>
<tr>
<th>Source</th>
<th>Impact [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td></td>
</tr>
<tr>
<td>Electron energy scale and resolution, and efficiency</td>
<td>0.6</td>
</tr>
<tr>
<td>Muon momentum scale and resolution, and efficiency</td>
<td>1.3</td>
</tr>
<tr>
<td>Jet energy and E_T^{miss} scale and resolution</td>
<td>3.2</td>
</tr>
<tr>
<td>b-tagging inefficiency</td>
<td>2.1</td>
</tr>
<tr>
<td>Pileup modeling</td>
<td>1.6</td>
</tr>
<tr>
<td>Background, statistical</td>
<td>3.2</td>
</tr>
<tr>
<td>Background, misid. leptons</td>
<td>3.3</td>
</tr>
<tr>
<td>Background, charge misrec.</td>
<td>0.3</td>
</tr>
<tr>
<td>Background, other</td>
<td>1.8</td>
</tr>
<tr>
<td>Theory modeling</td>
<td></td>
</tr>
<tr>
<td>$W^\pm W^\pm jj$ electroweak-strong interference</td>
<td>1.0</td>
</tr>
<tr>
<td>$W^\pm W^\pm jj$ electroweak, EW corrections</td>
<td>1.4</td>
</tr>
<tr>
<td>$W^\pm W^\pm jj$ electroweak, shower, scale, PDF & α_s</td>
<td>2.8</td>
</tr>
<tr>
<td>$W^\pm W^\pm jj$ strong</td>
<td>2.9</td>
</tr>
<tr>
<td>WZ</td>
<td>3.3</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [56].

[15] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam direction. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, Φ) are used in the (x, y) plane, Φ being the azimuthal angle around the beam direction. The rapidity is defined as $y = \frac{1}{2} \ln \left(\frac{E + p_y}{E - p_y} \right)$, where E is the energy of the particle and p_y is the projection of the momentum along the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The distance ΔR is defined as $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$.

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
Department of Physics, University of Arizona, Tucson, Arizona, USA
Department of Physics, University of Texas at Austin, Austin, Texas, USA
Physics Department, National and Kapodistrian University of Athens, Athens, Greece
Physics Department, National Technical University of Athens, Zografou, Greece
Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
Department of Physics, Bogazici University, Istanbul, Turkey
Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
Physics Department, Tsinghua University, Beijing, China
Department of Physics, Nanjing University, Nanjing, China
University of Chinese Academy of Science (UCAS), Beijing, China
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica, Italy
INFN Sezione di Bologna, Italy
Physikalisches Institut, Universität Bonn, Bonn, Germany
Department of Physics, Boston University, Boston, Massachusetts, USA
Department of Physics, Brandeis University, Waltham, Massachusetts, USA
Transilvania University of Brasov, Brasov, Romania
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Department of Physics, Alexandria Ioan Cuza University of Iasi, Iasi, Romania
National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
University Politehnica Bucharest, Bucharest, Romania
West University in Timisoara, Timisoara, Romania
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Physics Department, Brookhaven National Laboratory, Upton, New York, USA
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
California State University, California, USA
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Cape Town, Cape Town, South Africa
Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Carleton University, Ottawa, Ontario, Canada
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
Faculté des Sciences, Université Ibn-Tofail, Kenitra, Morocco
Faculté des Sciences, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
Faculté des sciences, Université Mohammed V, Rabat, Morocco
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Dipartimento di Fisica, Università della Calabria, Rende, Italy
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
Physics Department, Southern Methodist University, Dallas, Texas, USA
aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
dAlso at TRIUMF, Vancouver, British Columbia, Canada.
eAlso at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
fAlso at Physics Department, An-Najah National University, Nablus, Palestine.
gAlso at Department of Physics, California State University, Fresno, USA.
hAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
iAlso at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
jAlso at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
kAlso at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
lAlso at Universita di Napoli Parthenope, Napoli, Italy.
mAlso at Institute of Particle Physics (IPP), Canada.
nAlso at II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany.
oAlso at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
pAlso at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
qAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
rAlso at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
sAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
tAlso at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
uAlso at Department of Physics, California State University, East Bay, USA.
vAlso at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
wAlso at Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.
xAlso at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
yAlso at Graduate School of Science, Osaka University, Osaka, Japan.
zAlso at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
aaAlso at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
bbAlso at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
ccAlso at CERN, Geneva, Switzerland.
ddAlso at Hellenic Open University, Patras, Greece.
eeAlso at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
ffAlso at The City College of New York, New York, New York, USA.
ggAlso at Universidad de Granada, Granada (Spain), Spain.
hhAlso at Department of Physics, California State University, Sacramento, USA.
iiAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
jjAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
kkAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
mmAlso at Louisiana Tech University, Ruston, Louisiana, USA.
nnAlso at School of Physics, Sun Yat-sen University, Guangzhou, China.
ooAlso at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
ppAlso at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates.
qqAlso at National Research Nuclear University MEPhI, Moscow, Russia.
rrAlso at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
ssAlso at Giresun University, Faculty of Engineering, Giresun, Turkey.
ttAlso at Institute of Physics, Academia Sinica, Taipei, Taiwan.