Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence

Keysers, C.; Gazzola, V.; Wagenmakers, E.-J.

DOI
10.1038/s41593-020-0660-4

Publication date
2020

Document Version
Final published version

Published in
Nature Neuroscience

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 01 Feb 2024
Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence

Christian Keysers, Valeria Gazzola and Eric-Jan Wagenmakers

Most neuroscientists would agree that for brain research to progress, we have to know which experimental manipulations have no effect as much as we must identify those that do have an effect. The dominant statistical approaches used in neuroscience rely on P values and can establish the latter but not the former. This makes non-significant findings difficult to interpret: do they support the null hypothesis or are they simply not informative? Here we show how Bayesian hypothesis testing can be used in neuroscience studies to establish both whether there is evidence of absence and whether there is absence of evidence. Through simple tutorial-style examples of Bayesian t-tests and ANOVA using the open-source project JASP, this article aims to empower neuroscientists to use this approach to provide compelling and rigorous evidence for the absence of an effect.

Neuroscientists would need to know and publish whether a manipulation does not have an effect as much as whether it does. One may use drugs to block a candidate pathway. If the drug has an effect, that pathway is involved; if it doesn’t, one would like to conclude the pathway is not involved. Or one may alter activity in a brain region X and measure behavior B. If de-activating X changes B, X is involved in B; if B remains unchanged, one would like to conclude that X is not involved in B.

Neuroscience research is characterized by advanced measurement techniques and sophisticated experimental designs, but the data analyses almost always employ the standard framework of frequentist statistics, featuring P value null-hypothesis significance testing (NHST). NHST is arguably appropriate when one wants to quantify evidence against the null hypothesis (H₀: there is no effect) and therefore for the presence of an effect (but see ref. 1); however, NHST is problematic when one wants to quantify evidence for the null hypothesis. It is notoriously difficult to establish whether non-significant results support the null hypothesis (i.e., yield evidence for absence) or are simply not informative (i.e., show absence of evidence1-3). NHST biases us to emphasize positive effects, because those are the effects it equips us to quantify, and to ignore null findings. If we agree that the absence of an effect is important because those are the effects it equips us to quantify, and to ignore

...
A Bayesian solution

In contrast to frequentist NHST, which focuses exclusively on the null hypothesis (H_0), Bayesian hypothesis testing aims to quantify the relative plausibility of alternative hypotheses H_1 and H_0 (Box 1).

Figure 2 shows an example of how evidence is computed, using a Bayesian approach, for the case of a t-test when the question of interest is whether an experimental manipulation has a positive effect. This translates into two rival hypotheses: the manipulation had no effect versus the manipulation increased the dependent variable. Rather than expressing hypotheses in raw values specific to a given experiment, they are expressed using the population standardized effect size δ (with $\delta = (\mu - \mu_0)/\sigma$). The sceptic’s hypothesis, H_s: $\delta = 0$, states that the effect is absent, whereas the alternative hypothesis, H_a: $\delta > 0$, states that the effect is positive (Fig. 2a). Note that a ‘one-tailed’ H_0 is denoted as H_a to indicate the direction of the hypothesized effect. To quantify which hypothesis best predicts the data, we quantify the observed effect size d ($d = (m_a - m_b)/\sigma$) in the data and transform it into a t-value ($t = d \times \sqrt{n}$), because the distribution of t-values expected for any δ is well known. Next, we transform the qualitative hypotheses H_0 and H_a into quantitative predictions about the probability of encountering every t-value using this t-distribution. This is achieved by assigning prior probability distributions to δ (Fig. 2b), and then computing the probability of each observable t based on these δ-value distributions (Fig. 2c).

For the sceptic’s H_s: $\delta = 0$, the distribution of effect sizes is simply a spike at $\delta = 0$ (red in Fig. 2b), and this makes predictions about the likelihood of each observable t-value using the same distribution that is used in a frequentist t-test with n participants: the Student’s t-distribution with $n - 2$ degrees of freedom (red in Fig. 2c). For H_a: $\delta > 0$, we need to be specific about the probability of each possible positive δ to become specific about t. The one-tailed nature of our hypothesis is reflected in a truncated distribution, with negative values having zero probability under H_a (ref. 1 p. 283; note that two-tailed hypotheses are usually implemented by means of symmetrical distributions, for example, the dotted line in Fig. 3b). We also know that most neuropsychology papers report effect sizes of $\delta < 1$ (ref. 9), with smaller effect sizes being more common than larger effect sizes; this is reflected in a peak for small positive δ and low probability for $\delta > 1$. Indeed, that we feel that we need to perform a test in the first place corresponds to this presumption that the effect size must be fairly small. These considerations about the plausible direction and magnitudes of the effect under H_a generate the prior distribution shown in blue in Fig. 2b (see section “Default priors provide an objective anchor” for guidance on how to define this prior distribution).

For each of the hypothesized δ values, we can make predictions about t using the non-central t distribution with $\mu = \delta$. The mixture of these non-central t-distributions associated with each δ, weighted by the prior plausibility of that δ, predicts the probability of each possible t-value under H_a (blue in Fig. 2c). When the data arrive (Fig. 2d), we first calculate the t-value for our data, which we will call t_0, and then see where t_0 falls on the t-distribution expected under H_0 (red) and under H_a (blue). The traditional frequentist P value corresponds to the area to the right of t_0 on the red distribution; note that the predictions from H_0, indicated by the blue distribution, are entirely ignored in the frequentist approach. In contrast, for the Bayesian approach, we take the ordinates $p(t_0 | H_0)$ and $p(t_0 | H_a)$ and calculate the evidence that the data provide in favor of H_a over H_0 as $p(t_0 | H_a)/p(t_0 | H_0)$ (Fig. 2e). At that specific t_0 value, the ratio equals 4, indicating that our data was predicted four times better by H_a than H_0; we may conclude that our data supports H_a. The evidence—the relative predictive performance of H_a versus H_0—is known as the Bayes factor (Box 1). We abbreviate it as BF and use subscripts to denote which model is in the numerator versus the denominator; thus, $BF_{aa} = p(t_0 | H_a)/p(t_0 | H_0)$ and $BF_{da} = p(t_0 | H_a)/p(t_0 | H_0)$.

If the t-value from our data were to be closer to 0, as exemplified by another hypothetical t-value, t_1 (Fig. 2e), the ordinates of the red and blue distributions would be about equally high, indicating that the observed t_1 is about equally likely to occur under H_0 and H_a; hence the predictive performance of H_a and H_0 is about equal, the Bayes factor is near 1, and consequently we have absence of evidence. If the t-value were to fall at t_2 (Fig. 2e), this value would be 4 times more likely to occur under H_0 than under H_a; consequently, $BF_{sa} = 1/4$, that is, $BF_{sa} = 4$, and we may conclude that our data support H_0—in other words, we have some evidence of absence.

Thus, the P value of a frequentist approach has two logical states, significant versus not significant, which translate into evidence for H_a ("great, I found the effect") versus a state of suspended disbelief ("I did not find an effect, but it could be because I was unlucky or because the effect does not exist or because my sample size was too small"), whereas the BF has three qualitatively different logical states: $BF_{aa} > x$ ("great, I have compelling evidence for the effect"), $1/x < BF_{sa} < x$ ("oops, my data are not sufficiently diagnostic"), and $BF_{sa} < 1/x$ ("great, I have compelling evidence for the absence of the effect"). Here x is the researcher-defined target level of evidence. The BF should primarily be seen as a continuous measure of evidence. However, since larger deviations from 1 provide stronger evidence, Jeffreys proposed reference values to guide the interpretation of the strength of the evidence. These values were spaced out in exponential half steps of 10, 10$^{0.5}$ \approx 3, 10$^{1.0}$ \approx 10, 10$^{1.5}$ \approx 30, etc., to be equidistant on a log scale. He then compared these values with critical values in frequentist t-tests (see Extended Data Fig. 1a for a modern equivalent) and χ^2 tests, and declared, "Users of these tests speak of the 5 per cent point [$p = 0.05$] in much the same way as I

Fig. 1 | P value of a t-test and BF_{da} as a function of effect size and sample size. a, Each histogram shows the distribution of P values obtained from 1,000 one-tailed one-sample t-tests based on n random numbers drawn from a normal distribution with mean μ and s.d. = 1. To differentiate levels of significance, the first bin was split into multiple bins based on standard critical values. Note how, when there is an effect in the data (i.e., $\mu > 0$, all but leftmost column), increasing sample size (downwards) or effect size (rightwards) leads to a leftwards shift of the distribution: more evidence for an effect leads to lower P values. In this case, P values <0.05 are considered hits and are shown in green, while P values >0.05 are considered misses and shown in red. However, somewhat counterintuitively, the converse does not hold true: in the absence of an effect ($\mu = 0$, leftwards column), increasing sample size does not lead to a rightward shift (increase) of the P values. Instead the distribution is completely flat, with all P values equally likely (note that the distribution seems to thin out below 0.05, but this is because we subdivided the last leftmost bin into several bins to resolve levels of significance). In this case, $P < 0.05$ represents false alarms, shown in red, and $P > 0.05$ represents correct rejections, shown in green. P values are not thus a symmetrical instrument: cases with much evidence for H_a(high effect size and sample size) give us quasi-certainty to find a very low P value, whereas cases with much evidence for H_0 (for example, $\mu = 0$ with $n = 100$) do not make P values close to 1 highly likely; instead, any P value remains as likely as any other. b, Distribution of BF_{sa} (using $r = \sqrt{2}/2$ for the effect size prior Cauchy width) values obtained from 1,000 t-tests based on n random numbers drawn from an $N(\mu,1)$ normal distribution with mean μ and s.d. = 1. Each histogram has the same bounds specified below the graphs, representing conventional limits for moderate and strong evidence. When an effect is absent ($\mu = 0$, leftmost column), evidence of absence (green bars and percentages, $BF_{sa} < 1/3$) increases with increasing sample size and the false alarm rate is well controlled. When an effect is present ($\mu > 0$), evidence for a positive effect ($BF_{sa} > 3$, green bars and green percentages) increases with sample size and effect size, and misses ($BF_{sa} < 1/3$, red bars and red percentages) are rare ($\mu = 0.5$) or absent ($\mu = 1.2$ or 2). When percentages are not shown, they are 0% (red) or 100% (green). Data can be found at https://osf.io/md9k9p/.

NATURE NEUROSCIENCE | VOL 23 | JULY 2020 | 788–799 | www.nature.com/natureneuroscience 789
should speak of the $K = 10^{1/2}$ [i.e. BF$_{10} = 3$] point, and of the 1 per cent [$p = 0.01$], point as I should speak of the $K = 10^0$ point [i.e. BF$_{10} = 10$]; and for moderate numbers of observations the points are not very different. These reference values remain in use: BF > 3 is considered moderate evidence for the hypothesis in the numerator (i.e., H_1 if BF$_{10} > 3$), roughly similar to $P < 0.05$; BF > 10 is considered

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Decision criteria for hypothesis testing.}
\end{figure}

- Hit ($P < 0.05$ when $\mu > 0$) or correct rejection ($P > 0.05$ when $\mu = 0$)
- Miss ($P > 0.05$ when $\mu > 0$) or false alarm ($P < 0.05$ when $\mu = 0$)
- Absence of evidence ($1/3 < \text{BF}_{10} < 3$)
The Bayesian formalism describes how an optimal observer updates beliefs in response to data. In the context of hypothesis testing, at the start, observers entertain a set of two or more rival accounts. In the context of a t-test, they would be called hypotheses H_0 and H_1; in the case of an ANOVA, they would be called models. Each is specified via parameters we can call θ, for example, the effect size δ in a t-test hypothesis or a regression parameter β in an ANOVA. Prior to looking at the data, the rival accounts have prior probabilities, and the parameter values within each account also have prior probabilities. At the level of the accounts, we may assume them to be equally believable a priori (for example, prior hypothesis probabilities $p(H_0) = p(H_1) = 0.5$). At the level of the parameters within each account, they are associated with prior parameter distributions (for example, $H_0; \delta = 0$, $H_1; \delta \sim \text{Cauchy}$; Fig. 2). When data become available, the probabilities are reallocated: accounts and parameters-within-accounts that predict the data relatively well receive a boost in credibility, whereas those that predict the data poorly suffer a decline. Note the similarity to models of reinforcement learning. Mathematically, this updating is done using Bayes’ rule, as we describe below separately for parameters and accounts.

\[
\frac{p(\theta | \text{data})}{p(\theta)} = \frac{p(\text{data} | \theta)}{p(\text{data})} \times \frac{p(\theta)}{p(\theta)}
\]

Here the probability of each possible value of θ within an account after seeing the data (i.e., posterior parameter beliefs) is calculated as the product of the prior probability of that value (i.e., parameter prior beliefs) times the predictive updating factor. The latter reflects how likely the observed data is according to that particular parameter value divided by the average predictive performance across all values of θ weighted by their prior probability, i.e. $p(\text{data}) = \int p(\text{data} | \theta) \cdot p(\theta) d\theta$. This posterior parameter belief is the basis for the credible intervals (CI) that the Bayesian analysis provides for the parameters conditional on a given model.

Box 1 | Bayesian updating

For instance, assume the rival hypotheses are equally plausible a priori (i.e., $p(H_0) = p(H_1) = 0.5$). The prior hypothesis odds are then equal to one. If the predictive updating factor is 10 (i.e., the observed data is 10 times more likely under H_0 than under H_1), this means that the posterior odds are then also 10. Given that for mutually exclusive hypotheses $p(H_0) + p(H_1) = 1$, these odds mean that the data have increased the probability of H_0 from 0.5 (the prior hypothesis probability) to $10/11 \approx 0.91$ (the posterior H_0 probability).

The Bayes factor quantifies the degree to which the data warrant a change in beliefs, and it therefore represents the strength of evidence that the data provide for H_0 vs H_1. Note that this strength measure is symmetric: evidence may support H_0 just as it may support H_1; neither of the rival hypotheses enjoys a special status.

For a neuroscientist who wants to know whether or not their manipulation had an effect, the posterior odds might seem like the most obvious metric, as they reflect the plausibility of one hypothesis over another after considering the data. However, these posterior odds depend both on the evidence provided by the data (i.e., the Bayes factor) and the prior odds. The prior odds capture subjective beliefs before the experiment and introduce an often-undesirable element of subjectivity that could bias the conclusions drawn from the posterior beliefs. Scientists who embrace a certain theoretical standpoint and those who do not might fiercely disagree on these prior odds while agreeing on the evidence, that is, the extent to which the data should change their beliefs. As beliefs are considered less valuable for scientific reporting than evidence, the data-informed Bayes factor is the less controversial and thus favored metric to report.

There are three broad qualitative categories of Bayes factors. First, the Bayes factor may support H_0; second, the Bayes factor may support H_1; third, the Bayes factor may be near 1 and support neither of the two rival hypotheses. In the second case we have ‘evidence of absence’ , and in the third care we have ‘absence of evidence’ (see also ref. 2). More fine-grained classification schemes have been proposed. To develop an intuition for the continuous strength of evidence that a Bayes factor provides, one may use a probability wheel. Examples are shown in Fig. 3b. To construct the wheel, we have assumed that H_0 and H_1 are equally likely; the red part in the wheel is then the posterior probability for H_0, and the blue part is the complementary probability for H_1. Now pretend that the wheel is a pizza, with the red area covered with pepperoni and the blue area covered with mozzarella. Imagine that you poke your finger blindly onto the pizza and that it comes back covered in the non-dominant topping (in this case, pepperoni). How surprised are you? Your level of imagined surprise is an indication for the strength of evidence that a Bayes factor provides. We additionally compare the BF with traditional P values in Extended Data Fig. 1.
Figure 1b shows how a Bayesian t-test performs compared to a frequentist t-test (Fig. 1a). The target level of evidence was set at $x = 3$, considered similar to the α-level of 0.05 in Fig. 1a (ref. 9). When an effect is absent ($\mu = 0$), the Bayesian test will seldom come to the erroneous conclusion that an effect is present (less than 4% $BF_{10} > 3$), similarly to the frequentist approach. However, unlike the frequentist approach, the Bayesian t-test provides increasing evidence for the absence of an effect (see green percentages in Fig. 1b) with increasing sample size. Similarly, evidence for an effect increases as sample size or effect size increases (Extended Data Fig. 1b).

Hence, unlike the frequentist P value, the BF has a symmetric property of quantifying evidence for the presence or the absence of an effect that scales with evidence in either direction, be it due to increased sample size or effect size. In each case, inconclusive cases (i.e., absence of evidence, defined here as $1/3 < BF < 3$) become increasingly rare as sample size increases.

Figure 1b also shows the statistical power to provide evidence for or against an effect. When an effect is absent, evidence of absence ($BF_{10} < 1/3$) in the presence of noise is limited when sample size is very small (40% at $n = 5$), but reasonable in sample sizes often used in neuroscience ($n = 20$–100). When an effect is present, evidence for the presence of an effect ($BF_{10} > 3$) is slightly less frequent than that of the frequentist approach ($P < 0.05$), but not dramatically different. However, as sample sizes become very large, the Bayes factor and P values diverge more dramatically: P values will become significant even for arguably irrelevantly small effect sizes (for example, at $n = 1,000, d = 0.05$, $t(999) = d\sqrt{1000}, P = 0.05$), whereas the BF continues to require more relevant effect sizes (Extended Data Fig. 1b). It should be noted that for two-tailed tests, evidence for the null hypothesis becomes substantially harder to provide and requires larger sample sizes because the predictions of the null hypothesis are directly flanked by the high likelihood of finding small effect sizes in either direction under H_1.

If Bayesian inference is so simple and informative, why isn’t it used more? We speculate that one of the main reasons is pragmatic: until recently it was difficult to conduct Bayesian analyses for standard statistical scenarios. However, a number of packages are now available that make Bayesian hypothesis tests easier to perform. Here we focus on the multipurpose open-source program JASP (Jeffreys’s Amazing Statistics Program; https://jasp-stats.org), which uses an accessible graphical user interface; the R-package BayesFactor14 is a powerful alternative.

JASP, a convenient tool for Bayesian inference

In the JASP graphical user interface, developed to facilitate the adoption of Bayesian inference, analyses are selected from drop-down menus, variables are dragged and dropped into windows, and output is generated on the fly. Increasingly detailed analyses can be executed by ticking checkboxes. As a result, for many statistical scenarios, a comprehensive Bayesian (re)analysis can be performed in a matter of seconds. The examples below showcase the ways in which the output from such Bayesian analyses should be interpreted and how they allow researchers to go beyond the conclusions from the classical frequentist P values. On the Open Science Forum (https://osf.io/md9kp/), we provide csv files associated with the examples presented below, as well as R code to replicate the BF values for power users to apply such analyses to a large number of units (for example, to classify hundreds of neurons recorded using calcium imaging into those responding and those not responding to a particular stimulus) and a video illustrating how to use JASP.

Example of a two-sample t-test

To illustrate the Bayesian t-test, we use an example inspired by ref. 15, in which we hypothesized that the anterior cingulate cortex (ACC) is critical for ‘emotional contagion’ in rats and that debilitating the ACC by locally injecting muscimol should thus reduce...
emotional contagion compared to injecting saline. The injected animal observed a conspecific receive electroshocks (ShockObs), and its freezing was measured as an index of emotional contagion (Fig. 4). There was a non-social control condition in which the injected animal was exposed to a shock-conditioned tone (CS playback). To illustrate how to analyze this kind of design using Bayesian statistics, we generated two synthetic data sets (see additional materials on OSF [https://osf.io/md9kp/) for muscimol1.csv and muscimol2.csv) that illustrate two slightly different scenarios. We use simulated data rather than the actual data from the paper to guide the reader through alternative scenarios and to allow the reader to modify the data and test the effect this has on the analysis (see additional materials on OSF [https://osf.io/md9kp/) for the script GenerateMuscimolData.R used to generate the data).

Video 1 (see additional materials at https://osf.io/md9kp/) shows how to setup the analyses in JASP to examine the data of Muscimol1.csv. Our main analyses of interest are two independent sample t-tests on the freezing measures that compare H_0: saline $>$ muscimol against H_0: saline $=$ muscimol separately for the ShockObs and CS conditions. To assess the specificity of the effect, we will use an ANOVA (see below). We use a one-tailed alternative hypothesis because deactivating the ACC should reduce (not enhance) freezing in the muscimol condition and hence lead to higher freezing in the saline condition. The frequentist approach can also be performed in JASP by selecting ’Independent Samples T-Test’. Thus, this single package enables scientists to combine frequentist and Bayesian approaches on the same data set.

The frequentist approach shows that for ShockObs, muscimol reduced freezing significantly ($t_{(38)} = 3.961, P < 0.001$), i.e., the observed difference in freezing is unlikely under H_0. For CS, the result is nonsignificant ($t_{(38)} = −0.519, P = 0.7$), which could signal evidence for absence or absence of evidence. To adjudicate between these alternative interpretations, we perform the ’Bayesian Independent Samples T-Test’. Here too we select ShockObs and CS as dependent variables, group as the Grouping Variable, and the one-tailed group1>group2 analysis (after selecting saline as group1 and muscimol as group2 in the data viewer as shown in Video1).

The results are shown in Fig. 5.

In the input panel on the left, we select $B_{F_{01}}$ as the output, i.e., $p(data | H_1) / p(data | H_0)$, with a one-tailed hypothesis of group1[saline] $>$ group2[muscimol]. The results table on the right summarizes the main outcome. For ShockObs, $B_{F_{01}} = 162.282$, indicating that the data are 162 times more likely under H_1 than under H_0. The data thus provides what is considered extremely strong evidence for our hypothesized reduction in socially triggered freezing following ACC deactivation. For CS, $B_{F_{01}} = 0.223$. This value is below 1/3 and, according to the classification scheme by Jeffreys9,16, our data thus provide moderate evidence for H_0, i.e., that ACC deactivation does not lead to a reduction of non-socially triggered freezing. Switching to option $B_{F_{01}}$ in the lefthand panel inverts the Bayes factor: now $B_{F_{01}}$ for CS equals 4.494 (1/0.223), meaning that the data are 4.5 times more likely under H_0 than under H_1.

For the muscimol2 data, the frequentist t-test again reveals a significant reduction in ShockObs ($t_{(38)} = 3.8, P < 0.001$) and a non-significant result for CS ($t_{(38)} = 1.2, P = 0.11$). The Bayesian analysis confirms that the data provide extremely strong evidence for a reduction of freezing for ShockObs ($B_{F_{01}} = 120$). However, this time, for CS, $B_{F_{01}} = 0.97$. This result indicates an absence of evidence (in contrast to muscimol1, which showed moderate evidence of absence).

Example of an ANOVA

We can also examine whether muscimol had a greater effect on ShockObs than on CS by assessing evidence for an interaction between group (saline vs muscimol) and condition (ShockObs vs CS)7,19. In a frequentist approach, we can conduct this analysis using the JASP ’Repeated Measures ANOVA’ (rmANOVA) menu option. The results show significant main effects of condition ($F_{1,38} = 14.6, P < 0.001$) and group ($F_{3,38} = 5.4, P = 0.026$) and a significant condition × group interaction ($F_{4,38} = 14.3, P < 0.001$). We can also include this analysis within the ’Bayesian Repeated Measures ANOVA’ menu option (Fig. 6), the functionality of which is based on the BayesFactor R package7.

The Bayesian approach to the rmANOVA is to compare the predictive performance of models with and without each of the factors and interactions. Conceptually, it starts from a null model that predicts data based on a constant for each subject without considering any experimental factors. It computes the likelihood L_{null} of that null model, i.e., the probability of the observed data D under this null model. It then also calculates the likelihood L_{model} of a model additionally including an effect of group. If the Bayes factor calculated as L_{model}/L_{null} is > 1, there is evidence for the effect of group. If BF < 1, i.e., the null model outperforms the more complex group model, there is evidence for the absence of an effect of group. If BF ≈ 1 we have absence of evidence. This Bayes factor can be interpreted using the same bounds discussed in Fig. 2 and Extended Data Fig. 1.

Complex models always fit data at least as well as simpler models. How can a simpler model thus ever outperform a more complex model in the Bayesian sense? The answer is simple: a Bayes factor model comparison does not compare the fit of models for a specific parameter value (i.e., the maximum likelihood) but the predictive performance of models across all plausible parameter values (i.e., average likelihood)7–22. If we consider the models $D = subject$ $+$ $β$ $×$ group (i.e., the group model) and $D = subject$ (i.e., the null model), the average likelihood of the data under the models is the weighted average of the probability of the data D under the full range of plausible values assigned to $β$ in the parameter prior: $L = \int P(D|β)P(β)dβ$. Hence, the null model’s L is calculated entirely at $β = 0$, whereas the group model’s L considers $β < 0$, but averaged with the predictions from all other plausible values. The effect of this integration over $β$ can be appreciated in Extended Data Fig. 2. Essentially, because the null model concentrates all its predictions on $β = 0$, small differences across the two groups are more likely under this null model, providing evidence for absence.

Figure 6 applies this logic to our data. The top table in the output panel indicates all the models that are being considered and compared. This includes the abovementioned null model with subject constants only, a model that adds the effect of condition, one adding only group, one adding both main effects and one also including...
the interaction. The \(P(M) \) column indicates the prior probabilities of these various rival models, which are set equal so as not to influence the outcome of the test. Note that this model prior probability reflects how likely you are to believe each model to be true and is different from the parameter prior distribution that characterizes each model (Box 1). Next, we see how likely each model is after

\begin{align*}
\text{Evidence for } H_+ &: \text{anecdotal} \\
\text{Evidence for } H_0 &: \text{anecdotal}
\end{align*}

\begin{align*}
\text{Evidence for } H_+ &: \text{anecdotal} \\
\text{Evidence for } H_0 &: \text{anecdotal}
\end{align*}
having seen our data, $P(M|\text{data})$. This shows that the full model with the interaction (condition + group + condition \times group) is by far the most likely ($P(M|\text{data}) = 0.983$). The following columns indicate the relative likelihood of each model compared with the average of all other models (B_{incl}) or compared with the best or worst model (B_{null}). For instance, B_{null} for the null model is $P(M|\text{data})$ for the null model divided by the average of the $P(M|\text{data})$ over all other models. For B_{null}, the calculation depends on what is chosen in the menu ‘Order’. Selecting ‘Compare to best model’, as we did in Fig. 6, shows the models with the best model on top, and all other B_{null} values can be read as describing how likely that model is compared to the best model. If one selects ‘Compare to null model’, the null model is shown first, and all other B_{null} values express likelihood relative to that null model. Switching to B_{null} then inverts the BF and expresses how much better the best model is than each of the other models. The error column estimates the margin of error in the BF computation.

The analysis showed that amongst the tested models, the full model is the most likely in the light of our data, but which of its components improved its predictive performance? To explore this question systematically, select the ‘Effects’ option, which generates the ‘Analysis of Effects’ table (Fig. 6). This analysis uses the $P(M|\text{data})$ column of the model comparison above to quantify the contribution of each component. When selecting the default option ‘across all models’, for each component, the B_{null} (last column) is calculated as $p(\text{models with that factor | data}) / p(\text{models without that factor | data})$. For condition for instance, B_{null} is the average $P(M|\text{data})$ for all models with condition (i.e., condition, condition + group, and condition + group + condition \times group) divided by that of all models without condition (i.e., null model and group). Selecting ‘across matched models’ restricts the comparison to models that only differ in the presence or absence of a particular component, and for condition, B_{null} is then the average $P(M|\text{data})$ for condition and condition + group divided by the average $P(M|\text{data})$ of their matched models, i.e., models identical except for the absence of condition, namely the null and group models. In this calculation, the interaction model is not included in the nominator, because it lacks a matched model group + condition \times group. We recommend the ‘matched model option’ as it provides a more conservative estimate of each factor’s contribution.

This effects table then allows us to draw inferences about the contribution of each factor and interaction in the spirit of a traditional ANOVA. B_{null} for condition (similarly to the main effect of condition) is 37.5, indicating that the models including the factor conditions are much (37.5 times) more likely than those not including it. The B_{null} for group (main effect of group) is 1.7, showing that models with group are marginally more likely than those without that main effect, but the evidence is too weak to be conclusive. B_{null} for the interaction is 96, meaning that the full model with the interaction is 96 times more likely than that without. This effect of interaction provides extremely strong evidence that deactivating the ACC has a much stronger impact on ShockObs than on the CS condition. However, performing the same analysis on muscimol2, where evidence that muscimol reduced freezing in the CS condition was inconclusive ($B_{\text{null}} = 0.97$), provides no evidence for an interaction ($B_{\text{null}} = 1.16$, i.e., absence of evidence). Thus, in muscimol2, we remain uncertain whether deactivating the ACC impairs freezing in the CS condition (because the t-test B_{null} is inconclusive) and whether deactivating the ACC has a stronger effect on ShockObs than CS. Had we found a $B_{\text{null}} < 1/3$, we would have had evidence of absence: that muscimol has the same effect on ShockObs and CS.

Default priors provide an objective anchor

As shown in Fig. 2, to calculate a Bayes factor we have to specify H_i such that its predictive adequacy can be assessed. We are generally uncertain about the true value of the parameters (such as effect size), and most neuroscientists would be reticent to pin down their expectations to a single value. In the Bayesian framework, this uncertainty is reflected in the use of a prior distribution across the parameter values instead of a single value. Defining this prior distribution introduces an element of subjectivity, one that scientists fear jeopardizes the objectivity and generalizability of their inferences (for example, ref. 24, but see ref. 25). There is however a simple two-step solution: first, use a default prior that is designed to fulfill general statistical desiderata26; then, check how robust your inference is against modified changes in the prior.
larger effect sizes. For ANOVA, the parameters are also assumed to be more influenced by the prior, whereas for larger sample sizes, the estimate will approach the sample value. This property is desirable in the way it counteracts the systematic overestimation of effect sizes in frequentist approaches with low power. For CS (right), evidence favors H_0 also robustly across all but the narrowest prior distributions. In both cases, such robustness is reassuring and warrants confident conclusions. In contrast, when conclusions vary dramatically across a range of reasonable prior distributions, caution may be in order. Note that when the scale parameter is zero, H_0 reduces to H_a and the Bayes factor equals 1 regardless of the data; this explains why all robustness lines will converge to 1 for the narrowest prior distributions.

Selecting the option ‘Prior and posterior and additional info’ outputs the results shown in Fig. 3b for our one-tailed hypothesis. Under H_0, the prior and posterior distributions are shown as dotted and blue lines, respectively. This posterior shows the effect size distribution after updating the prior based on the data (Box 1 and Box 2). The posterior median and credible interval summarize the Bayesian estimate of the effect if H_0 holds (median $\delta = 1.109, 95\%$ credibility interval: [0.406, 1.810]). This effect size estimate is not simply the Cohen’s d observed in the sample (which equals 1.24) but a combination of prior distribution and data (Box 1). The Cauchy prior distribution assumes that small effect sizes are more likely than large effect sizes; this knowledge exerts a small pull toward zero on the sample estimates—a reasonable and conservative approach—leading to the Bayesian point estimate of $\delta = 1.1$ (using the median and assuming H_0 is true). For small sample sizes, the estimate will be more influenced by the prior, whereas for larger sample sizes, the estimate will approach the sample value d. This property is desirable in the way it counteracts the systematic overestimation of effect sizes in frequentist approaches with low power. For CS (right), the posterior is folded at zero because of our one-tailed hypothesis, which implies that negative effect sizes are impossible. For parameter estimation of d, we recommend adopting a two-tailed hypothesis by clicking on ‘Group1#Group2’; this leads to estimates that are more suitable to report as effect size estimates (second row). Note that for the muscimol column, the posterior distribution for effect size is mostly unaffected by whether a two-sided or a one-sided prior distribution is used; in contrast, the Bayes factor against the null hypothesis is about twice as high for the one-sided analysis as for the two-sided analysis (i.e., $BF_{10} = 162$ and $BF_{01} = 81$).

For the t-test and ANOVA, there is broad consensus on certain parameter priors being appropriate under most circumstances. We recommend using these default parameter priors to increase the objectivity of the analyses and to provide a common frame of reference that ensures the direct comparability of Bayes factors from different experiments. Indeed, these defaults are implemented in JASP (and in the BayesFactor package in R for those that prefer a command line environment). Above, we performed all our inferences without considering prior distributions. However, it is informative to consider these parameter priors in more detail.

For the t-test, the default prior is the Cauchy distribution with a scale parameter of $r = \sqrt{2}/2 \approx 0.707$ as shown in Figs. 2 and 5. A Cauchy distribution resembles a Gaussian distribution but has fatter tails. The prior specifies the a priori plausibility of each effect size, and the default specifies that half the effect sizes are within the scale parameter, i.e., ±0.707, with smaller effect sizes more likely than larger effect sizes. For ANOVA, the parameters are also assumed to follow a Cauchy prior distribution, but their scale depends on the type of factor one explores (fixed effects $r = 0.5$, random effects $r = 1$, and covariates $r = 0.354$; see ref. 20 for details).

To examine the effect of changing the width of that prior distribution in our t-test example, it suffices to select the option ‘Bayes factor robustness check’ to generate the plots of Fig. 3a. The default width of the prior distribution for t-tests is the above mentioned Cauchy with scale 0.707 (ref. 19); the prior that is used can be displayed (and changed) by pulling down the ‘Prior’ option on the bottom-left (Fig. 5). The robustness graph on the top of Fig. 3a shows how BF_{10} changes as a function of the prior scale or width, with the scale set in the menu ‘Prior’ shown as the ‘user prior’ at the gray circle. Wider priors (wide, black circle; ultrawide, empty circles), assume that larger effects are more likely than the default prior. We consider wider priors to be less informed because if one has no expectation about effect size, all effect sizes should be considered equally likely a priori, and the prior would be infinitely wide.

Fig. 6 | Screenshot of the Bayesian repeated measures ANOVA of muscimol1. Data can be found at https://osf.io/md9kp/, including a muscimol1.jasp file that can be loaded to replicate the analysis within JASP or to view the results of the analysis within OSF.
Pragmatic neuroscientists may be convinced to start conducting Bayesian analyses—and Bayes factor hypothesis tests in particular—only when the practical advantages of doing so are sufficiently evident. Below is a select overview of such practical advantages:

1. **Bayesian hypothesis testing enables researchers to discriminate evidence of absence from absence of evidence.**

 Non-significant *P* values are notoriously ambiguous. Indeed, a *P* value of 0.25 may indicate that the experiment was underpowered (‘absence of evidence’) or that the data support the null hypothesis (‘evidence of absence’).

2. **Bayesian results are relatively straightforward to interpret and communicate.**

 Compared to frequentist conclusions, Bayesian conclusions are remarkably intuitive. While *P* < 0.01 is not 5 times as convincing as *P* < 0.05, BF10 = 6 really does mean twice the evidence compared to BF10 = 3. When neuroscientists make positive claims (for example, that the ACC is necessary for vicarious freezing), reviewers and readers may find it convincing if these claims are accompanied by an assessment of the statistical evidence, that is, an assessment of the extent to which *H*1 outpredicted *H*0.

3. **Bayes factor hypothesis testing encourages researchers to quantify evidence on a continuous scale.**

 The advantage of retaining a continuous representation of evidence was stressed by Rozeboom33: “The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were decisions one makes. But a hypothesis is not something, like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of believing or disbelieving which, if rational, is not a matter of choice but determined solely by how likely it is, given the evidence, that the hypothesis is true.”

4. **For most statistical scenarios, Bayes factor hypothesis testing is now relatively easy.**

 Until recently, carrying out a Bayesian analysis for a standard statistical test required mathematical expertise and knowledge of probabilistic programming. This alone would be enough to deter many pragmatic neuroscientists who just wish to conduct a quick Bayesian *t*-test. However, recent R packages14, Shiny apps34 and graphical user interface (GUI)-based software packages such as JASP43 now provide comprehensive Bayesian analyses that can be conducted with a minimum of effort.

5. **Bayesian inference allows researchers to monitor the results as the data accumulate.**

 As illustrated in Box 1 and Supplementary Fig. 1, the Bayesian predict–update cycle of learning continues indefinitely. In an experimental setting, neuroscientists may decide to terminate data collection when the result is deemed compelling or when they have run out of time, money or patience10–12. This means that experiments can be flexibly shortened or lengthened according to the evidence that has already been collected. If error control guarantees are put in place, such flexibility can reduce the required sample size by as much as 50%13–15.

6. **Bayes factor hypothesis testing allows researchers to include prior knowledge for a more diagnostic test.**

 Although the default prior parameter distributions allow for a robust reference analysis10, these distributions can be adjusted in light of relevant background information. This background information acts to sharpen the predictions from the models, making them easier to discriminate. For instance, prior distributions for effect size may respect the direction of the prediction, or even its location9.

Box 2 | Six advantages of a Bayesian analysis for pragmatic neuroscientists

often numerically close to the frequentist confidence interval, the intervals are conceptually different; see ref. 27) in addition to the BF to provide complementary information. For instance, for ShockObs, the BF10 reveals strong evidence for the presence of an effect, but it does not indicate the strength of the effect. This is because the same effect size δ will lead to different BF values at different sample sizes (Extended Data Fig. 1b). The 95% CI provides us with information about this effect size, namely that the effect for ShockObs is probably very large (as suggested by the median δ = 1.1) and that we can be quite confident that it exceeds δ = 0.4 (lower bound of the 95% CI). If one looks for effects of clinical relevance, knowing that a manipulation has an effect in a group of 1,000 patients (as revealed by the BF) is often less interesting than knowing how strong the effect is likely to be (as revealed by the CI). A 95% CI that does not include δ = 0 is a further indication for the presence of an effect. For CS, the BF10 provides evidence for the absence of an effect. In such cases, it is perhaps not relevant to consider the 95% CI, because the CI only makes sense under *H*1. However, the bounds of the CI specify that if even *H*1 were true (despite the observed data being 4 times more likely under *H*0), the effect size is unlikely to exceed 0.4 (upper bound of the CI), and is likely to be very small (median = –0.12). This informs the kind of group size that would be needed to systematically study such an effect. A 95% CI that includes δ = 0 is in line with the notion that the data reflect the absence of an effect; however, unlike the BF, the CI alone cannot distinguish absence of evidence from evidence for absence. If scientists prefer to see the CI in the original units of measurement (for example, number of days of illness saved by a medication) the bounds should be multiplied by the population s.d., σ.

For the ANOVA, extracting credible intervals of effect sizes in JASP is a work in progress34. In the meantime, post hoc Bayesian *t*-tests could be performed to obtain Bayesian CI for specific contrasts of interest, or the effect size (for example, δt) of the corresponding frequentist ANOVA could be reported.

The effect of the directionality of *H*0 on the BF and posterior distribution is important. In frequentist statistics, one-tailed hypothesis testing is sometimes frowned upon; if one focuses on the risk of false positives, a more-conservative two-tailed statistics is arguably preferable, and the only difference is typically that *P* values double. With Bayesian statistics, the focus shifts to giving a robust reference analysis38, these distributions can be adjusted in light of relevant background information. This background information acts to sharpen the predictions from the models, making them easier to discriminate. For instance, prior distributions for effect size may respect the direction of the prediction, or even its location10.

"The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were decisions one makes. But a hypothesis is not something, like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of believing or disbelieving which, if rational, is not a matter of choice but determined solely by how likely it is, given the evidence, that the hypothesis is true."
Finally, it is important to consider that some scenarios do call for user-defined priors (see ref. 24 for a more extensive discussion of how to create informed priors). For instance, to test a claim that a candidate drug has an effect size $\delta > 0.8$ one would need to specify custom priors with $H_0: \delta < 0.8$ vs $H_1: \delta > 0.8$ and compare their likelihoods.

Accumulation of evidence

While designing experiments, we are typically uncertain about the effect sizes to expect. Determining the number of subjects or participants we need to provide sufficient power a priori is then difficult. By selecting the option ‘Sequential Analysis’ we can see how the BF changes as one considers an increasing number of data points in our Bayesian t-test examples (Figs. 3c and 5). For muscmio1, we observe a clear upward trend to ShockObs in favor of H_1 and a downward trend to CS playback in favor of H_0. Such consistent trends provide confidence in the effect a posteriori. Importantly, this analysis can be performed during data collection, effectively replacing a predefined sample size by a principled data collection plan: for example, collect a minimum of $n = 20$ animals (10 per group) at first, and then keep adding new animals to the saline and muscimol group until the BF$_{60}$ crosses a predetermined critical value (for example, BF$_{60} > 6$ or BF$_{60} < 1/6$) or until a preset maximum of animals (for example, $n = 40$) has been reached (Supplementary Notes). In our example, we would have stopped at $n = 20$ animals in the ShockObs condition and continued until $n = 40$ animals in the CS condition, thus saving $n = 20$ animals to reach the same conclusions. Such an approach is unacceptable in NHST (Supplementary Note and Supplementary Figure 1). This is because Bayesian statistics can provide evidence for H_0, H_1, whereas NHST can only provide evidence against H_0. Hence, testing until a significant result is found in NHST will per definition always find evidence against H_0.

For muscmio2, the BF$_{60}$ values show no steep and consistent trend toward providing evidence in favor of either hypothesis (Fig. 3c, bottom right). This is typical of small effect sizes. For $n > 20$, the BF shows a mild upwards trend, and extending this trend shows that hundreds of animals would probably have to be added for the analysis to provide evidence for the presence of an effect (BF$_{60} > 3$). This $n > 100$ projection is in line with the outcome of a traditional power analysis for $\delta = 0.4$, which is the effect size we used to generate the simulated data in muscmio2.

Reporting both frequentist and Bayesian results

One concern for aspiring Bayesian neuroscientists is that reviewers in neuroscience journals may be unfamiliar with Bayes factors and may be more impressed by $P < 0.01$ than by BF$_{60} = 10.3$. Our pragmatic recommendation is to consistently report both the frequentist and Bayesian statistics (for example, $t_{(58)} = 3.961$, $P < 0.001$, BF$_{60} = 162$, with median posterior $\delta = 1.1$, 95% CI $= [0.4, 1.8]$). Where evidence for H_0 is presented, one can report a P value with a standard frequentist test and add the BF$_{60}$ to provide additional quantification. Where there is no evidence for H_1, reporting BF$_{60}$ is an attractive way to adjudicate between absence of evidence and evidence of absence.

This hybrid approach is a powerful opportunity to reap the best of both statistical approaches. In borderline cases where frequentist and Bayesian approaches do not quite concur (for example, $P = 0.04$ suggesting a significant effect, but BF$_{60} = 2.3$ suggesting only anecdotal evidence), we still recommend reporting both and discussing the divergence as showing that obtaining more data will be important to strengthen the evidence. Additionally, reporting the CI on the effect size is important. Extended Data Fig. 3 provides examples of wording appropriate to report the kind of analyses we discussed above.

Concluding comments

Bayesian inference offers unique practical advantages for neuroscience (Box 2). Bayes factors provide a continuous and symmetric measure of statistical evidence. The Bayes factor can support H_1 as much as it can support H_0. There is a bias toward publishing significant results, and we have become increasingly aware of the negative impact that the resulting P value hacking has on the progress and replicability of science. Bayesian statistics provide a principled tool for reducing this bias by allowing us to provide equally compelling evidence for the absence and the presence of an effect.

We have presented examples of neuroscience scenarios in which Bayesian statistics are simple to adopt. Some applications will require more development. For example, neuroimaging requires statistical testing over thousands of voxels and, therefore, correction for multiple comparisons, and frameworks for the latter are still in their infancy for the Bayes factor. Also, the Bayesian t-test and ANOVA we leveraged here assume normally distributed data, but neuroscience datasets can have highly non-normal distributions. Non-parametric Bayesian tests so far only exist for certain applications (for example, some t-tests and regressions have a tick-mark for non-parametric approaches in JASP, and R code exists for a number of additional cases23), but remain in development for others (for example, ANOVA).

Neuroscientists have been slow to take up Bayesian statistics, presumably out of a perception that Bayesian hypothesis testing is difficult to perform and interpret. With the emergence of new software and accessible packages, performing Bayesian equivalents of the most prevalent tests has become easy. Supplementing frequentist approaches with Bayesian analyses will lead to richer data interpretations that allow more informative conclusions. Null findings become interpretable and more easily publishable. We finally have a principled tool to shed light on the hitherto dark side of our scientific enterprise: evidence of absence.

Data availability

All data and code can be downloaded at https://osf.io/md9kp/.

Received: 11 December 2019; Accepted: 21 May 2020; Published online: 29 June 2020

References

Acknowledgements
C.K. is funded by NWO VICI grant 453-15-009; V.G. is funded by ERC grant 758703 and NWO VIDI grant 452-14-015; E.J.W. is funded by NWO VICI grant 453-16-003. We thank F. Bartos for help with Fig. 2.

Author contributions
All authors conceived the project together and contributed to the writing of the manuscript. E.J.W. coordinates the development of JASP.

Competing interests
E.J.W. declares that he coordinates the development of the open-source software package JASP (https://jasp-stats.org), a non-commercial, publicly-funded effort to make Bayesian statistics accessible to a broader group of researchers and students. C.K. and V.G. declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41593-020-0660-4.

Correspondence
should be addressed to C.K.

Peer review information Nature Neuroscience thanks Denise Cai, Zhe Dong, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended Data Fig. 1 | The relationship between BF, p, and effect sizes values. a, This log-log plot shows the BF\(_p\) values corresponding to familiar critical \(p\) values for a one-tailed one-sample t-test at different sample sizes (\(n\)). The curves show the BF\(_p\) values obtained in a Bayesian t-test based on the critical t-value that provides \(P=0.05\) (yellow), \(P=0.01\) (green), \(P=0.005\) (black) and \(P=0.001\) (black). The yellow dashed horizontal line indicates the BF\(_p\)=3 bound for moderate evidence considered by Jeffreys\(^9\) to be similar to \(P=0.05\), the green one the BF\(_p\)=10 for strong evidence considered similar to \(P=0.01\). The two black dashed lines mark BF\(_p\)=1, i.e. the line of no evidence, and BF\(_p\)=1/3, the bound for moderate evidence of absence. The background gradient reminds the reader that the BF reference values of 3 and 10 should not be considered hard bounds. Instead the BF should be interpreted as a continuous value, with values diverging more from 1 supporting stronger conclusions. This panel makes two points. First, there is no simple equivalence between \(p\) and BF that holds over all sample sizes. This is because in a frequentist t-test, the observed effect size (\(d\)) sufficient to generate a specific \(p\) value decreases with \(\sqrt{n}\) more rapidly than for the BF. As a result, at large \(n\), very small effect sizes generate ‘significant’ t-test: at \(n=1000\), the critical t-value for a one-tailed \(P=0.05\) is 1.65, corresponding to \(d=1.65/\sqrt{n}=0.05\). For the BF, such a minuscule effect is 4 times more likely under \(H_0\) than \(H_1\) (BF\(_{10}\)=0.26). Hence, for small sample sizes \(p\) and BF support similar conclusions (e.g., \(P=0.05\) at \(n=4\) corresponds to BF\(_p\)>3, supporting the same conclusion of evidence for an effect), but for large sample sizes the frequentist and Bayesian conclusions can diverge in the presence of very small effect sizes (e.g., \(P=0.05\) at \(n=1000\) corresponds to BF\(_p\)<1/3, see Jeffreys, H. Some Tests of Significance, Treated by the Theory of Probability. Proc. Cambridge Philos. Soc. 31, 203–222 (1935)). Considering confidence or credible intervals of the effect size in addition to \(p\) or BF values helps interpret such cases. Second, the fact that the dashed lines are above the curve of the same color for all \(n>4\) shows that BF\(_{10}\)=3 and BF\(_{10}\)=10 indeed protect against Type I errors in a frequentist sense at least at \(P=0.05\) or \(P=0.01\), respectively. In other words, if BF\(_p\)>3, \(p<0.05\), and if BF\(_p\)>10, \(p<0.01\), but how much lower than 0.05 or 0.01 the exact \(P\) value is, depends on \(n\). b, BF\(_p\) (left) and \(p\) (right) values as a function of measured effect- and sample-sizes. These panels illustrate the measured effect sizes necessary to provide evidence for an effect at different sample sizes in a one-sample one-tailed t-test using the BF vs. traditional \(p\) values. Each curve connects the results at different sample sizes for the specified value of \(d\). The logarithmic BF and \(p\) scales are aligned so as to place BF=3 next to \(P=0.05\), and BF=10 next to \(P=0.01\).
Extended Data Fig. 2 | Evidence for or against a factor in a Bayesian ANOVA. A Bayesian ANOVA is a form of model comparison. This figure illustrates how the Bayes factor can provide evidence for a simpler model by concentrating its predictions on a single parameter value. This example ANOVA determines whether or not the data D depend on the value of the factor Group by comparing the Null Model $D=0^{*}\text{Group}$ (left) against the Group Model $D=\beta^{*}\text{Group}$, with a Cauchy prior on β (right). The top row illustrates the prior probability attributed to the different values of β under the two competing models. Note how both models include $\beta=0$ as a possibility, but given that the probability values must integrate to 1 over the entire β space, for the Null Model $p(\beta=0)=1$ while for the Group Model, the probability is distributed across all plausible alternative values. The middle row shows the predicted t-values based on these priors, where t represents the difference between the data from the two groups as in Fig. 2. Note how these predictions are more peaked for the Null compared to the Group model. The bottom row compares the predicted probability of finding particular t-values under the two models, and shows how values close to zero (i.e., small or no difference between the groups) are predicted more often by the Null compared to the Group Model, while the opposite is true for large t-values. If conducting the experiment reveals a measured t-values close to zero, the Bayes Factor for including the factor Group would be substantially below 1, providing evidence for the absence of an effect of Group, while the inverse would be true for high t-values.
<table>
<thead>
<tr>
<th>Section</th>
<th>Example Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Differences across the muscimol and saline groups were analysed using the Bayesian Independent Samples T-Test as implemented in JASP vXXX using default effect size priors (Cauchy scale 0.707). Results are reported using the one-tailed Bayes factor BF_{+0} that represents $p(data</td>
</tr>
</tbody>
</table>

Results

Muscimol1

We found extremely strong evidence for a reduction of freezing in the Muscimol compared to the Saline group for ShockObs ($t_{(38)}=3.961$, $p<0.001$, $BF_{+0}=162.282$, with median posterior $\delta = 1.11$, 95%CI=[0.42, 1.795]) and moderate evidence for the absence of a reduction for the CS ($t_{(38)}=-0.519$, $p=0.7$, $BF_{+0}=0.223$, with median posterior $\delta =-0.133$, 95%CI=[-0.712, 0.414]).

Discussion

Our data supports the notion that the ACC is involved in socially triggered freezing and that the ACC is not involved in freezing triggered by a CS.

Muscimol2

We found extremely strong evidence for a reduction of freezing in the Muscimol compared to the Saline group for ShockObs ($t_{(38)}=3.8$, $p<0.001$, $BF_{+0}=120$, with median posterior $\delta =1.07$, 95%CI=[0.427, 1.765]). For the CS condition, results were inconclusive ($t_{(38)}=1.2$, $p=0.11$, $BF_{+0}=0.98$, with median posterior $\delta =0.31$, 95%CI=[-0.23, 0.90]), which suggests that the data are equally likely under H_0 and H_1.

Discussion

Although it remains unclear whether or not muscimol injection to the ACC reduces freezing following CS playback, if there is an effect, it is relatively small. In contrast, our data strongly support our hypothesis that muscimol reduces freezing during the ShockObs condition, and the effect size appears to be large.

<table>
<thead>
<tr>
<th>Section</th>
<th>Example Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Bayesian ANOVAs were conducted using JASP with default priors, and effects are reported as the Bayes factor for the inclusion of a particular effect, calculated as the ratio between the likelihood of the data given the model with vs the next simpler model without that effect.</td>
</tr>
</tbody>
</table>

Results

Muscimol1

A repeated measures ANOVA revealed strong evidence for the presence of an interaction of Group*Cond ($F_{(1,38)}=14.3$, $p<0.001$, $BF_{incl}=239$).

Discussion

Our data further provides strong evidence for the specificity of the involvement of the ACC, in that the effect of Muscimol injection in the ACC was substantially stronger during ShockObs than CS playback.

Muscimol2

A repeated measures ANOVA revealed inconclusive evidence regarding the presence of an interaction of Group*Cond ($F_{(1,38)}=3.4$, $p=0.072$, $BF_{incl}=1.16$).

Discussion

It remains unclear whether muscimol injection to the ACC reduces freezing following CS playback and it remains unclear whether muscimol reduces freezing less in the CS than the ShockObs condition.

Extended Data Fig. 3 | Examples of how to report results.