
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A Python interface to the Dutch Atmospheric Large-Eddy Simulation

van den Oord, G.; Jansson, F.; Pelupessy, I.; Chertova, M.; Grönqvist, J.H.; Siebesma, P.;
Crommelin, D.
DOI
10.1016/j.softx.2020.100608
Publication date
2020
Document Version
Final published version
Published in
SoftwareX
License
CC BY

Link to publication

Citation for published version (APA):
van den Oord, G., Jansson, F., Pelupessy, I., Chertova, M., Grönqvist, J. H., Siebesma, P., &
Crommelin, D. (2020). A Python interface to the Dutch Atmospheric Large-Eddy Simulation.
SoftwareX, 12, [100608]. https://doi.org/10.1016/j.softx.2020.100608

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jan 2022

https://doi.org/10.1016/j.softx.2020.100608
https://dare.uva.nl/personal/pure/en/publications/a-python-interface-to-the-dutch-atmospheric-largeeddy-simulation(47a8ab44-1766-4041-9be0-264807d26bcd).html
https://doi.org/10.1016/j.softx.2020.100608

SoftwareX 12 (2020) 100608

p
s
t

h
2
l

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

A Python interface to the Dutch Atmospheric Large-Eddy Simulation
Gijs van den Oord a,∗, Fredrik Jansson b, Inti Pelupessy a, Maria Chertova a,
Johanna H. Grönqvist c, Pier Siebesma d,e, Daan Crommelin b,f

a Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, The Netherlands
b Centrum Wiskunde & Informatica, Science Park 123, 1098XG Amsterdam, The Netherlands
c Physics, Faculty of Science and Engineering, Åbo Akademi University, Porthansgatan 3, 20500 Turku, Finland
d Center for Civil Engineering and Geosciences, Delft University of Applied Sciences, Stevinweg 1, 2628CN Delft, The Netherlands
e Koninklijk Nederlands Meteorologisch Instituut, Utrechtseweg 297, 3731 GA De Bilt, The Netherlands
f Korteweg–de Vries Institute for Mathematics, University of Amsterdam, Science Park 105–107, 1098XG Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 13 September 2019
Received in revised form 31 August 2020
Accepted 6 October 2020

Keywords:
Large-eddy simulation
Atmospheric sciences

a b s t r a c t

We present a Python interface for the Dutch Atmospheric Large Eddy Simulation (DALES), an existing
Fortran code for high-resolution, turbulence-resolving simulation of atmospheric physics. The interface
is based on an infrastructure for remote and parallel function calls and makes it possible to use and
control the DALES weather simulations from a Python context. The interface is designed within the
OMUSE framework, and allows the user to set up and control the simulation, apply perturbations and
forcings, collect and analyse data in real time without exposing the user to the details of setting up
and running the parallel Fortran DALES code. Another significant possibility is coupling the DALES
simulation to other models, for example larger scale numerical weather prediction (NWP) models that
can supply realistic lateral boundary conditions. Finally, the Python interface to DALES can serve as
an educational tool for exploring weather dynamics, which we demonstrate with an example Jupyter
notebook.
© 2020Netherlands eScience Center. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

Code metadata

Code metadata description Please fill in this column
Current code version 1.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_279
Legal Code License Apache v2.0
Code versioning system used git
Software code languages, tools, and services used Fortran 90, Python 3, Singularity, NetCDF4, NumPy, mpi4py, AMUSE,

OMUSE, f90nml
Compilation requirements, operating environments & dependencies Linux, MPI, gcc-gfortran, make, cmake, python3-wheel
If available Link to developer documentation/manual https://omuse.readthedocs.io/en/latest/
Support email for questions g.vandenoord@esciencecenter.nl

1. Motivation and significance

Since the advent of numerical weather prediction, many com-
utational models have emerged within the realm of atmospheric
ciences. This has resulted in a broad landscape of models, each of
hem based on approximations and assumptions that are tailored

∗ Corresponding author.
E-mail address: g.vandenoord@esciencecenter.nl (G.v.d. Oord).

to a typical resolved scale to keep the computational cost within
limits. Where general circulation models reproduce large-scale
dynamics within resolutions of 10 to 100 km, a large-eddy simu-
lation (LES) is aimed at resolving convective cloud processes and
turbulence in the atmosphere, for which a resolution of the order
of tens of metres is required; these models therefore typically also
assume a limited area domain and vertical extent. The interaction
of the small-scale LES with the large scale dynamics has to be
provided from an external source, often by specifying forcing
ttps://doi.org/10.1016/j.softx.2020.100608
352-7110/© 2020 Netherlands eScience Center. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
icenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100608
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100608&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_279
https://omuse.readthedocs.io/en/latest/
mailto:g.vandenoord@esciencecenter.nl
mailto:g.vandenoord@esciencecenter.nl
https://doi.org/10.1016/j.softx.2020.100608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

G.v.d. Oord, F. Jansson, I. Pelupessy et al. SoftwareX 12 (2020) 100608

p
t
f

S
a
m
w
m
p
P
t
h
O
p

a
i
d
w
t
(
f
t

v
a
w
f
t
m
D
a
i
p
e
a
9
m
t

2

2

r
i
a
p
a
f
c
s
a
a
v
a
r

s
m
i
b
o

a

rofiles for the prognostic variables and boundary conditions at
he surface. In practice, these parameters have to be present in
iles that are being read during the simulation.

Our Python interface to the Dutch Atmospheric Large Eddy
imulation (DALES) [1] enables applying these external forcings
nd boundary conditions in a programmatic way, so that the
odel can be manipulated during its time stepping. Together
ith the interface for retrieving the state of the model, this
akes it possible to couple DALES to an external agent. One such
roven use case [2], and our initial reason for constructing the
ython interface to DALES, is the so-called superparameteriza-
ion [3] of the global model OpenIFS [4]. In this scheme, multiple
igh-resolution DALES instances are coupled to grid columns of
penIFS, and are used to explicitly simulate cloud and convection
rocesses which are otherwise parametrized in the global model.
However, the applications we envision for the interface layer

re much broader than this, since the Python interface to DALES
s potentially useful in any application that aims to either (i)
rive one or more DALES models with time-dependent forcings
here one has full control over the time interpolation without
he need to write long and tedious input text files for DALES,
ii) couple DALES instances to other models (with Python inter-
aces) or (iii) extract specialized diagnostics from DALES, without
ime-consuming post-processing or modifying the source code.

Finally, we point out that our Python interface to DALES pro-
ides an interactive experience which is valuable for educational
nd exploratory uses of DALES for weather simulations. The soft-
are, although being an MPI-parallel Fortran code, can be run

rom within a user-friendly Python notebook environment thanks
o the underlying OMUSE framework [5–7] which provides com-
unication between the Python interface and the computational
ALES code. The Python-wrapped DALES model is thus exposed
s a stateful, single-threaded Python object and access to its state
s seamless despite the distribution of the state over multiple
rocessors. We do stress however that our software does not
xpose the physical processes and partial tendencies of DALES
s separate Python ’building blocks’ such as one finds in [8,
]; rather we provide a lightweight wrapper around the entire
odel, which perhaps in a future effort may be decomposed at

he process level.

. Software description

.1. The DALES model

DALES simulates the atmosphere on scales fine enough to
esolve cloud and turbulence processes. It does so by numer-
cally solving the conservation laws of momentum, mass, heat
nd humidity on a rectilinear three-dimensional grid assuming
eriodic boundary conditions along the horizontal axes, and uses
Fast Fourier Transform to solve the air pressure fluctuations

rom the Poisson equation. DALES uses second or higher order
entral difference schemes to model advection and models the
ubgrid-scale stresses and residuals with eddy viscosities, which
re computed either from the turbulence kinetic energy or with
Smagorinsky closure (see e.g. [10]). DALES accounts for all rele-
ant physical processes needed for realistic simulations of cloudy
tmospheric conditions, such as thermodynamics, microphysics,
adiation and surface–atmosphere interactions.

The program applies an adaptive third-order Runge–Kutta
cheme for time stepping. The code is parallelized using the
essage passing interface (MPI) where the domain is partitioned

n either vertical slabs or rectangular columns. DALES also can
e forced externally by nudging its mean state towards profiles
btained from observations or another large-scale model.
The Fortran code of DALES is structured in a straightforward

nd comprehensive way, where all fields are stored globally in a

dedicated module and the top-level time stepping loop consists of
a sequence of physics routines modelling the processes described
above. This makes the code suitable to expose as a simple library
with initialization, time stepping, and data access routines.

2.2. Software architecture

Our Python interface to DALES is built using the Python frame-
work OMUSE. It represents DALES with a Python class named
Dales, enabling interaction with a user or with other Python
wrapped models. The interface and the structure of its connec-
tions is illustrated in Fig. 1, with the highest-level class Dales
shown in pink.

OMUSE enables remote procedure calls in Python to programs
written in Fortran or C (or any other language with MPI or sockets
bindings). The OMUSE framework also provides a number of
services to make the deployment of the code as convenient as
possible, such as automatic unit conversions, encapsulation of
models in object-oriented data objects, an internal state model for
wrapped components and proper error handling. These features
are all implemented in the Python layer between user code and
the model program, and it is up to the developer of a wrapped
component to properly configure his Python class to use such
services.1 The OMUSE package contains a collection of prede-
fined Python interfaces to various oceanographic and atmospheric
models, giving them consistent interfaces which enables coupling
them together or comparing them with each other. The software
we present in this paper adds atmospheric modelling to the
repertoire of OMUSE, and is now part of the official OMUSE dis-
tribution.

The Python definitions of the remote DALES functions are
gathered in a Python class named DalesInterface. Together
with the higher-level functions in the class Dales, these form
our Python interface to DALES. The interface functions in the class
DalesInterface each have a Fortran counterpart in the mod-
ule dales_interface. These functions call the DALES original
source code routines to handle initialization, getting and setting
variable values, and time stepping.

Also the DALES code itself required an additional set of rou-
tines in order to be interfaced from Python. The original DALES
model was written as a stand-alone program, which performs a
simulation according to settings read from a configuration file. To
instead control DALES programmatically, we added the possibility
to address DALES as a library, with functions for initialization,
time stepping, retrieving prognostic fields, applying external forc-
ings etc. This functionality is gathered in the new Fortran module
daleslib.f90, which is included within the DALES source code
package. This library version of DALES can also be used indepen-
dently of OMUSE or Python interfaces, since its functions can be
called directly from Fortran. The second modification that has
been made is the option to pass an MPI communicator handle
to the DALES MPI initialization routine; this is necessary for the
integration in OMUSE where the MPI_COMM_WORLD is reserved
for communication with the master script and models internally
use sub-communicators.

When compiling, the DALES source code, the Fortran part of
the OMUSE interface and communication functions generated by
the OMUSE framework are combined to form a binary called
dales_worker. When a new Dales object is created in Python,
OMUSE launches the requested number of dales_worker pro-
cesses by making use of MPI_COMM_SPAWN. The worker processes
consist of an event loop polling for instructions from the user

1 For example, by assigning the correct units of DALES data in the OMUSE
wrapper, we allow the framework to automatically convert fields to units
requested by the user code.
2

G.v.d. Oord, F. Jansson, I. Pelupessy et al. SoftwareX 12 (2020) 100608

f
t
t

c
r
i
g

l
t
p
a
c

c
f
o
i
m
c
A
P
i
r

m
o
d
r
a

f
o
c
f
(
a
o
o
t

Fig. 1. Overview of the DALES Python interface. The classes Dales and DalesInterface define the Python interface. Through OMUSE, these call the Fortran
unctions in dales_interface. The dales_interface module and the DALES source code are compiled together into a binary called dales_worker, denoted by
he green lines. Multiple dales_worker processes can be launched for a parallel simulation, where each process itself can be (MPI and/or OpenMP) parallel. Here
hree are shown.

ode. The function calls on the Dales object in Python are se-
ialized by OMUSE over MPI, and mapped to Fortran routine calls
n the remote worker processes. These function calls are used to
et and set variable values and to time step the model.
The advantage of this remote procedure design over e.g. a

ibrary wrapper with e.g. cython [11] or f2py [12] is that it hides
he MPI-parallel nature of Dales from the driver script. The
hilosophy of the interface is to allow users to treat Dales as
black box in Python rather than expose all complexity of the
ode such as parallelization and individual physical processes.
As a consequence of how OMUSE is structured, the Python pro-

ess does not operate in the same memory space as DALES. This
eature has the advantage that multiple independent instances
f DALES can be run simultaneously, even though the DALES
nternal state is stored as a set of global arrays. Furthermore,
odel instances or model subdomains can run on a different
luster nodes in an HPC environment, communicating over MPI.
n obvious drawback is that all data requested through the
ython interface will pass through the communication channel,
mpacting performance if the full 3D grid of data is frequently
equested.

In many cases, for example in the superparameterization setup
entioned above, the model coupling is formulated in terms
f horizontal averages. For this purpose, the interface provides
edicated functions to request horizontally averaged quantities,
esulting in reduced communication volumes compared to aver-
ging the fields on the Python side.
Another performance optimization is provided by the OMUSE

ramework in the form of non-blocking (asynchronous) versions
f the function calls, including the data transfer methods. These
an be used to circumvent the Python global interpreter lock and
or example to let several model instances time step concurrently
see Appendix B) or exchange data with one model instance while
nother is performing computations. This feature is essential to
btain a good performance in algorithms running e.g. ensembles
f expensive models or to mitigate the costs of data transfers to
he master script in multi-model setups.

2.3. Software functionalities

Running a DALES atmospheric simulation using our Python
interface involves setting up the model, evolving it over time, and
reading or writing the current state of the simulation.

After creating the top-level Dales Python object, the user can
set model resolution, physical time-independent parameters and
initial profiles as attributes to the Dales object. The names and
the grouping of the time-independent model parameters follows
the structure of the DALES configuration Fortran namelist [13].

The input and output variables in the Dales Python object,
listed in Table A.2, are organized in grids, grouping them accord-
ing to their role in the model and number of dimensions (see
Table A.1).

The Dales Python object guides the user to call its methods in
a sequence that makes physical sense. For example, it is necessary
to define the vertical discretization before any vertical forcing
profiles can be imposed, and it is also forbidden to change static
properties such as the advection scheme after the model has
started time-stepping.

To minimize installation effort, we have created a Singular-
ity [14] recipe for a CentOS-based container with DALES, OMUSE
and Jupyter [15].

3. Example: DALES simulation of a warm air bubble

As an example of using the Python interface to DALES, we
show how to set up and run a simple bubble experiment. In the
experiment, the development of a bubble of warm air is studied
over time. The resulting image sequence is shown in Fig. 2, where
the warmer air is initialized as a sphere near the ground, and then
rises upwards with a mushroom-cloud-like appearance.

import numpy
import matplotlib.pyplot as plt
from omuse.community.dales.interface import Dales

from omuse.units import units

3

G.v.d. Oord, F. Jansson, I. Pelupessy et al. SoftwareX 12 (2020) 100608

s
t
t

#
d

#

#

d
d
d
d
d

d

d

d
d
d

d
d

Fig. 2. Warm bubble experiment: vertical cross sections of the air temperature. The initial perturbation is a spherically symmetric shape at ground level. The time
eries shows the warm air rising, and forming vortices familiar from mushroom clouds as the rise is faster in the middle of the column. This simulation, which
akes less than a minute, is performed with the Python script shown in the text. The temperature shown is the liquid water potential temperature — which is the
emperature quantity DALES uses internally.

create Dales object
=Dales(workdir=’daleswork’, channel_type=’sockets’,
number_of_workers=1)
add redirection=’none’ to see the model log messages

Set parameters: domain size and resolution, advection
scheme

.parameters_DOMAIN.itot = 32 # number of grid cells in x

.parameters_DOMAIN.jtot = 32 # number of grid cells in y

.parameters_DOMAIN.xsize = 6400 | units.m

.parameters_DOMAIN.ysize = 6400 | units.m

.parameters_DYNAMICS.iadv_mom = 6 # 6th order advection
for momentum

.parameters_DYNAMICS.iadv_thl = 5 # 5th order advection
for temperature

.parameters_RUN.krand = 0 # initial state randomization
off

.parameters_RUN.ladaptive = True

.parameters_RUN.courant = 0.5

.parameters_RUN.peclet = 0.1

.parameters_PHYSICS.lcoriol = False

.parameters_PHYSICS.igrw_damp = 3

initialize all velocities to 0 and a low spec. humidity
d.fields[:,:,:].U = 0 | units.m / units.s
d.fields[:,:,:].V = 0 | units.m / units.s
d.fields[:,:,:].W = 0 | units.m / units.s
d.fields[:,:,:].QT = 0.001 | units.kg / units.kg

add perturbation in temperature - Gaussian bubble at
(cx,cy,cz), radius r

cx,cy,cz,r = 3200|units.m, 3200|units.m, 500|units.m,
500|units.m

d.fields[:,:,:].THL += (0.5 | units.K) * numpy.exp(
-((d.fields.x-cx)**2 + (d.fields.y-cy)**2
+ (d.fields.z-cz)**2)/(2*r**2))

times = numpy.linspace(0, 44, 12) | units.minute # times
for snapshots

fig, axes = plt.subplots(3, 4, sharex=True, sharey=True)
extent = (0, d.fields.y[0,-1,0].value_in(units.m),

0, d.fields.z[0,0,-1].value_in(units.m))
for t,ax in zip(times, axes.flatten()):

print(’Evolving to’, t)
d.evolve_model(t)
thl = d.fields[:,:,:].THL
wthl = d.fields[:,:,:].W * thl
kwtmax = numpy.unravel_index(numpy.argmax(numpy.

abs(wthl)), wthl.shape)[2]
4

G.v.d. Oord, F. Jansson, I. Pelupessy et al. SoftwareX 12 (2020) 100608

l
p
w
w
s
u
r

s
t
t
e

i
u
d
a
t

e
i
w
s
O
D

i
e
e
i
c
N
g

f
b
p
h
s
p
s
b
F
e
n

t
s
n
t
c

zwtmax = d.profiles.z[kwtmax]
print("Height of the maximal heat flux is at", zwtmax)
im = ax.imshow(thl[16,:,:].value_in(units.K).

transpose(), extent=extent,
origin=’lower’, vmin=292.5, vmax=292.75)
ax.text(.1, .1, str(t.in_(units.minute)),

color=’w’, transform=ax.transAxes)
plt.show()

4. Impact

As the Python language has become the dominant scripting
anguage in scientific computing and data analysis, running ex-
eriments and accessing the model state from within Python
ill prove to be a valuable asset to users of high-resolution
eather models, in the present case, users of the DALES software
pecifically. Our Python interface supports procedures like setting
p a high-resolution weather simulation, as well as nudging it in
eal time towards observed atmospheric profiles.

Usually these profiles originate from observations or large-
cale weather model output, and using the Python interface saves
he user from the tedious job of writing the DALES input files in
he appropriate format. In this sense, the Python interface enables
xperimentation and rapid prototyping with the model.
The Python interface also provides a front-end to DALES that

s suitable for educational purposes. The possibility to manip-
late DALES interactively within a Jupyter notebook helps stu-
ents gain insight in topics like the thermodynamics of clouds,
tmospheric convection, surface processes and boundary layer
urbulence.

The most significant added value of a library interface, how-
ver, is in coupling with other models. By encapsulating DALES
n the OMUSE framework, there is a clear path to integration
ith other environmental software. One example of this is the
uperparameterization of the global weather and climate model
penIFS, mentioned in Section 1, where multiple high-resolution
ALES instances are coupled to grid columns of the global model.
The advantage of the coupling strategy of OMUSE versus more

mplicit and less intrusive approaches like OASIS [16] is the
xpressive nature of the control script setup. The equations gov-
rning the coupling and time integration scheme can be eas-
ly read and modified in the Python code because the objects
ontain recognizable methods, and the data transfers occur via
umPy [17] arrays with familiar names, as opposed to more
eneric frameworks like the model coupling toolkit of Ref. [18].
As the interface enables one to extract tailored diagnostics

rom DALES, it may be used to offer high-resolution atmospheric
oundary conditions to other environmental models. For exam-
le, the precipitation fluxes in DALES can be coupled to fine-scale
ydrological models for flood risk assessment in future climate
cenarios. The DALES surface fields and fluxes can also be cou-
led to advanced surface dynamics models to study realistic
urface–cloud feedback processes, and the momentum fluxes can
e coupled to wind stresses in coastal hydrodynamics models.
urthermore, the passive tracers in DALES can be coupled to
xternal atmospheric chemistry or air quality models, without the
eed to integrate them into the DALES Fortran source code.
Finally, the Python interface to DALES opens up the possibility

o integrate DALES into other complex workflows, such as down-
caling external forcings and extracting dedicated diagnostics as
eeded in the forecasting of renewable energy yields, or the
raining of machine learning algorithms onto DALES output to
onstruct fast surrogate models.

5. Conclusions

We have constructed Fortran and Python interfaces to the
DALES program for interactive high-resolution weather mod-
elling. The interface allows the user to retrieve data from DALES
and manipulate the model dynamically from a scripting front-
end. This functionality increases the usability of DALES signifi-
cantly, and allows the code to be coupled to other earth system
models. One such proven use case is the superparameterization
of the global weather model OpenIFS, where multiple DALES
instances are coupled to grid columns of the global weather
model. Furthermore, the interface facilitates the use of the model
for educational purposes, or in more complex workflows. The
interface is object-oriented, contains familiar methods to access
the model state, and allows creating multiple DALES instances,
with full control over the occupation of the available hardware
resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was supported by the Netherlands eScience Center
(NLeSC) under grant no. 027.015.G03.

Appendix A. Table of model variables

See Tables A.1 and A.2.

Appendix B. Asynchronous requests to DALES example

In this section we illustrate the asynchronous requests func-
tionality with a very basic example time stepping two DALES
instances concurrently. To establish this, one should create a re-
quests pool and call the ‘asynchronous’ versions of
evolve_model method.

from amuse.rfi.async_request import AsyncRequestPool
In this code, we assume two instances of the Dales

Python class,
dales1 and dales2, have been created and initialized
pool = AsyncRequestsPool()
nexttime = dales1.get_model_time() + 300 | units.s
req1 = dales1.evolve_model.asynchronous(nexttime)
pool.add_request(req1)
req2 = dales2.evolve_model.asynchronous(nexttime)
pool.add_request(req2)
req3 = dales2.get_profile_THL.asynchronous()
pool.add_request(req3)
pool.waitall() # Wait until all asynchronous calls are
finished

thlprof = req3.result()

In the code above, the θℓ profile retrieval is executed asyn-
chronously w.r.t. the master script too, but the pool ensures it is
issued only after the evolve of dales2 has been finished.
5

G.v.d. Oord, F. Jansson, I. Pelupessy et al. SoftwareX 12 (2020) 100608
Table A.1
Organization of data grids in the DALES Python API. The operator ⟨. . . ⟩xy denotes horizontal averaging of volume fields.

Grid name Description Read/write Variables

fields 3D prognostic variables w u, v, w, θℓ , qt
fields 3D general variables r u, v, w, θℓ , qt , qℓ , qi , qr , qsat ,

√
e , T , π , F↑ , ↓

S , L , C↑ , ↓

S , L , Fdir , Fdif
profiles Horizontally averaged fields r ⟨u⟩xy , ⟨v⟩xy , ⟨w⟩xy , ⟨θℓ⟩xy , ⟨qt ⟩xy , ⟨qℓ⟩xy , ⟨qr ⟩xy , ⟨

√
e⟩xy , ⟨T ⟩xy , p, ρ, A

forcing_profiles Forcing profiles w ⟨u⟩xy , ⟨v⟩xy , ⟨θℓ⟩xy , ⟨qt ⟩xy
nudging_profiles Nudging profiles w ⟨u⟩xy , ⟨v⟩xy , ⟨θℓ⟩xy , ⟨qt ⟩xy
scalars Uniform fields rw ps , ⟨zm⟩xy , ⟨zh⟩xy , ⟨w θ⟩xy , ⟨w q⟩xy
surface_fields Horizontal fields r lwp, twp, rwp, u∗ , zm , zh , Tskin , qskin , Qs , Ql , Λ, w qt , w θℓ

Table A.2
List of DALES variables exposed in the Python wrapper.
Symbol Unit Dimensions Attribute Variable description

u, v, w m/s xyz U, V, W East-, north- and upward air velocity
θℓ K xyz THL Liquid water potential temperature
qt kg/kg xyz QT Total specific humidity
√
e m/s xyz E12 Turbulence kinetic energy

T K xyz T Air temperature
qℓ , qi , qr kg/kg xyz QL, QL_ice, QR Liquid, ice and rain water content
lwp, twp, rwp kg/m2 xy LWP, TWP, RWP Liquid, total and rain water paths
qsat kg/kg xyz Qsat Saturation humidity
π m2/s2 xyz pi Modified air pressure
ρ kg/m2 z rho Air density
p Pa z P Hydrostatic air pressure
A m2/m2 z A Cloud fraction profile
F↑ , ↓

S , L W/m2 xyz r{s,l}w{u,d} Up- and downwelling short- and longwave radiative fluxes
C↑ , ↓

S , L W/m2 xyz r{s,l}w{u,d}cs Clear-sky up- and downwelling short- and longwave radiative fluxes
Fdir , Fdif W/m2 xyz rswdir, rswdif Downwelling shortwave direct and diffuse radiative fluxes
Tskin K xy tskin Skin temperature
qskin kg/kg xy qskin Skin humidity
wθℓ mK/s xy wt Surface θℓ flux
wqt m/s xy wq Surface specific humidity flux
Qs , Ql W/m2 xy H, LE Sensible and latent heat fluxes
Λ m xy obl Obukhov length
u∗ m/s xy ustar Friction velocity
zm , zh m xy z0m, z0h Roughness lengths for momentum and heat

References

[1] Heus T, van Heerwaarden CC, Jonker HJJ, Pier Siebesma A, Axelsen S,
van den Dries K, Geoffroy O, Moene AF, Pino D, de Roode SR, Vilà-
Guerau de Arellano J. Formulation of the dutch atmospheric large-eddy
simulation (DALES) and overview of its applications. Geosci Model Dev
2010;3(2):415–44. http://dx.doi.org/10.5194/gmd-3-415-2010.

[2] Jansson F, van den Oord G, Pelupessy I, Grönqvist JH, Siebesma AP,
Crommelin D. Regional superparameterization in a global circulation model
using large eddy simulations. J Adv Model Earth Syst http://dx.doi.org/10.
1029/2018MS001600.

[3] Grabowski WW. Coupling cloud processes with the large-scale dynamics
using the cloud-resolving convection parameterization (CRCP). J Atmos Sci
2001;58(9):978–97. http://dx.doi.org/10.1175/1520-0469(2001)058<0978:
CCPWTL>2.0.CO;2.

[4] Carver G, et al. The ECMWF OpenIFS numerical weather prediction model
release cycle 40r1: description and use cases. 2018, in preparation to be
submitted to GMD.

[5] Zwart SFP, McMillan SL, van Elteren A, Pelupessy FI, de Vries N. Multi-
physics simulations using a hierarchical interchangeable software interface.
Comput Phys Comm 2013;184(3):456–68. http://dx.doi.org/10.1016/j.cpc.
2012.09.024.

[6] Pelupessy I, van Werkhoven B, van Elteren A, Viebahn J, Candy A, Portegies
Zwart S, Dijkstra H. The oceanographic multipurpose software environment
(OMUSE v1.0). Geosci Model Dev 2017;10(8):3167–87. http://dx.doi.org/10.
5194/gmd-10-3167-2017.

[7] Pelupessy I, Portegies Zwart S, van Elteren A, Dijkstra H, Jansson F,
Crommelin D, Siebesma P, van Werkhoven B, van den Oord G. Creating
a reusable cross-disciplinary multi-scale and multi-physics framework:
From AMUSE to OMUSE and beyond. In: Rodrigues JMF, Cardoso PJS,
Monteiro J, Lam R, Krzhizhanovskaya VV, Lees MH, Dongarra JJ, Sloot PM,
editors. Computational Science – ICCS 2019. Cham: Springer International
Publishing; 2019, p. 379–92.

[8] Monteiro JM, McGibbon J, Caballero R. Sympl (v. 0.4.0) and climt (v. 0.15.3)
– towards a flexible framework for building model hierarchies in Python.
Geosci Model Dev 2018;11(9):3781–94. http://dx.doi.org/10.5194/gmd-11-
3781-2018.

[9] Rose B. CLIMLAB: a Python toolkit for interactive, process-oriented climate
modeling. J Open Sour Softw 2018;3(24):659. http://dx.doi.org/10.21105/
joss.00659.

[10] Schmidt H, Schumann U. Coherent structure of the convective boundary
layer derived from large-eddy simulations. J Fluid Mech 1989;200:511–62.

[11] Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython:
The best of both worlds. Comput Sci Eng 2011;13(2):31–9.

[12] Peterson P. F2py: a tool for connecting fortran and python programs. Int
J Comput Sci Eng 2009;4(4):296–305.

[13] Heus T, van Heerwaarden C, van der Dussen J, Ouwersloot H. Overview of
all namoptions in DALES. 2019, Accessed: 2019-07-25 https://github.com/
dalesteam/dales/blob/master/utils/doc/input/Namoptions.pdf.

[14] Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for
mobility of compute. Plos One 2017;12(5):1–20. http://dx.doi.org/10.1371/
journal.pone.0177459.

[15] Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J,
Kelley K, Hamrick J, Grout J, Corlay S, et al. Jupyter notebooks—a publishing
format for reproducible computational workflows. In: Positioning and
Power in Academic Publishing: Players, Agents and Agendas: Proceedings
of the 20th International Conference on Electronic Publishing. IOS Press;
2016, p. 87.

[16] Valcke S. The OASIS3 coupler: a European climate modelling community
software. Geosci Model Dev 2013;6(2):373–88. http://dx.doi.org/10.5194/
gmd-6-373-2013.

[17] Dubois PF, Hinsen K, Hugunin J. Numerical python. Comput Phys
1996;10(3):262–7. http://dx.doi.org/10.1063/1.4822400.

[18] Larson J, Jacob R, Ong E. The model coupling toolkit: A new for-
tran90 toolkit for building multiphysics parallel coupled models. Int J
High Perform Comput Appl 2005;19(3):277–92. http://dx.doi.org/10.1177/
1094342005056115.
6

http://dx.doi.org/10.5194/gmd-3-415-2010
http://dx.doi.org/10.1029/2018MS001600
http://dx.doi.org/10.1029/2018MS001600
http://dx.doi.org/10.1029/2018MS001600
http://dx.doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb4
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb4
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb4
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb4
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb4
http://dx.doi.org/10.1016/j.cpc.2012.09.024
http://dx.doi.org/10.1016/j.cpc.2012.09.024
http://dx.doi.org/10.1016/j.cpc.2012.09.024
http://dx.doi.org/10.5194/gmd-10-3167-2017
http://dx.doi.org/10.5194/gmd-10-3167-2017
http://dx.doi.org/10.5194/gmd-10-3167-2017
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb7
http://dx.doi.org/10.5194/gmd-11-3781-2018
http://dx.doi.org/10.5194/gmd-11-3781-2018
http://dx.doi.org/10.5194/gmd-11-3781-2018
http://dx.doi.org/10.21105/joss.00659
http://dx.doi.org/10.21105/joss.00659
http://dx.doi.org/10.21105/joss.00659
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb10
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb10
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb10
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb11
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb11
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb11
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb12
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb12
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb12
https://github.com/dalesteam/dales/blob/master/utils/doc/input/Namoptions.pdf
https://github.com/dalesteam/dales/blob/master/utils/doc/input/Namoptions.pdf
https://github.com/dalesteam/dales/blob/master/utils/doc/input/Namoptions.pdf
http://dx.doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.1371/journal.pone.0177459
http://dx.doi.org/10.1371/journal.pone.0177459
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://refhub.elsevier.com/S2352-7110(20)30321-6/sb15
http://dx.doi.org/10.5194/gmd-6-373-2013
http://dx.doi.org/10.5194/gmd-6-373-2013
http://dx.doi.org/10.5194/gmd-6-373-2013
http://dx.doi.org/10.1063/1.4822400
http://dx.doi.org/10.1177/1094342005056115
http://dx.doi.org/10.1177/1094342005056115
http://dx.doi.org/10.1177/1094342005056115

	A Python interface to the Dutch Atmospheric Large-Eddy Simulation
	Motivation and significance
	Software description
	The DALES model
	Software architecture
	Software functionalities

	Example: DALES simulation of a warm air bubble
	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A. Table of model variables
	Appendix B. Asynchronous Requests to DALES Example
	References

