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The next generation of supercomputers will break the exascale barrier. Soon we will have systems capable
of at least one quintillion (billion billion) floating-point operations per second (1018 FLOPS). Tremendous
amounts of work have been invested into identifying and overcoming the challenges of the exascale era. In
this work, we present an overview of these efforts and provide insight into the important trends, develop-
ments, and exciting research opportunities in exascale computing. We use a three-stage approach in which we
(1) discuss various exascale landmark studies, (2) use data-driven techniques to analyze the large collection
of related literature, and (3) discuss eight research areas in depth based on influential articles. Overall, we
observe that great advancements have been made in tackling the two primary exascale challenges: energy
efficiency and fault tolerance. However, as we look forward, we still foresee two major concerns: the lack of
suitable programming tools and the growing gap between processor performance and data bandwidth (i.e.,
memory, storage, networks). Although we will certainly reach exascale soon, without additional research,
these issues could potentially limit the applicability of exascale computing.
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1 INTRODUCTION

The massive computational power of supercomputers plays a major role in the advancement of
many scientific disciplines. The performance of these systems, measured in floating-point opera-

tions per second (FLOPS), has increased substantially over the last decades. Since the early 1990s,
the TOP500 [4] has kept track of the fastest supercomputers in the world based on the LINPACK
benchmark [56]. The TOP500 reveals exponential growth from several gigaflops (109 FLOPS) in
1993 to hundreds of petaflops (1015 FLOPS) in 2018. The high-performance computing (HPC) com-
munity is working towards the next major milestone: a computer system capable of at least one
exaflop (1018 FLOPS). The race towards these exascale systems is reaching its conclusion: The
United States announced the exascale supercomputer Aurora to be operational by end of 2021 [9]
and the 1.5 exaflops supercomputer Frontier a year later [2], the European Union aims to build an
exascale system in 2022/2023 [7], and China is targeting 2020 for the Tianhe-3 [1].

However, over the past decade, it has frequently been acknowledged that building and pro-
gramming such systems would be highly challenging [54, 66, 75, 103, 115, 126, 151]. Tremendous
amounts of research have been invested into overcoming the challenges of exascale computing.

With this work, we aim to acquire a better understanding of these research efforts by analyzing
the major trends. The topic of exascale computing is broad and touches upon nearly all aspects
of HPC, each worth a literature survey of their own. Therefore, we do not aim for an exhaustive

review of all available literature, but instead, provide a high-level overview of the entire exascale
computing landscape. We devised a three-stage methodology that incorporates data-driven tech-
niques alongside manual analysis.

� In Section 2, we discuss various landmark studies on the challenges and opportunities of ex-
ascale computing. These studies originate from both academic (i.e., peer-reviewed journals)
as well as non-academic (e.g., white papers and industry roadmaps) sources. The studies
represent the view on exascale computing by different communities at different moments,
and allow us to sketch a timeline.

� In Section 3, based on these landmark studies, we formulate a search query and gather
exascale related literature. We use data-driven methods to analyze this large collection of
publications by considering aspects such as influential articles, authors, and publication
venues. Additionally, we use natural language processing techniques to identify important
research topics in a semi-automated way.

� In Section 4, we define eight research themes based on the identified topics: fault tolerance,
energy/power, data storage/analytics, network interconnects, computer architectures, par-
allel programming, system software, and scientific applications. For each theme, we discuss
publications selected from the search results and perform and in-depth analysis by analyz-
ing important trends and progress over the last decade.

Section 5 discusses limitations of our study and Section 6 concludes our work. With this sur-
vey, both novice and experienced researchers and engineers gain insight into the ongoing trends,
important developments and exciting research opportunities in exascale research.

2 LANDMARK STUDIES

In this section, we discuss various studies that have been published over the last decade on the chal-
lenges and opportunities of exascale computing. Table 1 lists the studies that have been selected
for this analysis. They were chosen based on their citation count, while also considering variety
in year of publication, authors, and scope. These studies are representative for the prevalent ideas,
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Table 1. Landmark Exascale Studies Discussed in This Work

Title Year Authors

Technology Challenges in Achieving Exascale Systems [103] 2008 US DARPA
Major Computer Science Challenges at Exascale [75] 2009 Geist & Lucas
IESP Roadmap [54] 2011 Dongarra et al.
Top Ten Exascale Research Challenges [115] 2014 ASCAC
EESI2 Vision & Recommendations [66] 2015 EESI consortium
Exascale Computing and Big Data [151] 2015 Reed & Dongarra
The Exascale Computing Project [126] 2016 Messina

opinions, and visions on exascale computing. We discuss these contributions in chronological or-
der and end with a discussion of our findings.

2.1 Technology Challenges in Achieving Exascale Systems (2008)

In 2008, the first HPC system in the TOP500 [4] reached petascale performance: Roadrunner at
Los Alamos National Laboratory. Shortly after, US DARPA (Defense Advanced Research Projects

Agency) presented the results of the Exascale Working Group [103]. The objective of this study
was to understand the trends in computing technology at the time and to determine whether it
was possible to increase the capability of computing systems by 1000× before 2015. The study
group recognizes four major technology challenges in reaching exascale performance for which
the technology trends at the time were insufficient.

Energy and Power. The study group believes that power consumption is the most pervasive
challenge of the four. They establish 20MW as a reasonable power limit for exascale systems, but
trends at the time show that exascale systems in 2015 would be significantly off from this target.

Concurrency and Locality. The group points out that explicit parallelism might be the only so-
lution to increase overall system performance, since single core performance will stagnate due to
clock rates flattening out. Exascale systems might offer billion-way concurrency with thousands of
cores per node. Software needs consideration to exploit this thousand-fold increase in concurrency.

Memory and Storage. The study foresees a lack of available storage technologies that offer suf-
ficient capacity and access rate for exascale applications, while staying within the power budget.
This concerns all levels of the hierarchy: main memory, scratch storage, file storage, and archives.

Resilience. The study predicts that exascale systems will experience faults and errors more fre-
quently than petascale systems. Various reasons are given, including the huge number of compo-
nents (millions of memory chips and disks), very high clock rates (to maximize bandwidth), and
ultra-low voltages (to minimize power consumption). Fault tolerance will become crucial since
critical system failures could occur several times per day.

2.2 Major Computer Science Challenges at Exascale (2009)

Besides technological challenges, there are also computer science issues on topics such as software
engineering and data management. In 2009, Geist and Lucas [75] presented an article that summa-
rizes several studies and workshops (in 2007/2008) on the computer science problems that the com-
munity faces when moving to exascale. These challenges are organized according to four aspects:

Challenges due to Scale and Complexity of Computer Architectures. Computer architectures are
expected to become more complex: massive parallelism, inadequate memory performance (capac-
ity, bandwidth, and latency), more specialized circuits, and increasing amounts of heterogeneity.
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Developing software for these systems is challenging and the traditional programming method
(MPI plus sequential programming language) will become less productive.

Challenges due to Complexity of Applications. As computational capabilities increase, so does
the complexity and resolution of scientific simulations. There are many challenges in adapting
existing programs or developing new applications for future architectures. Existing programs often
consist of millions of lines of code that have been written over long periods of time by hundreds of
scientists/engineers. Adapting such applications to different architectures is not straightforward.

Challenges due to Increased Data. Exascale applications are likely to consume and produce mas-
sive amounts of data and there are several issues related to managing these large datasets. First,
there are technical problems in efficiently storing and retrieving data. Second, there are data man-
agement problems, such as how to transfer large datasets between different compute clusters or
between software components. Third, turning raw data into scientific discoveries requires the abil-
ity to search, visualize, explore, and summarize these large datasets.

Software Sustainability. Reaching exascale computing requires building a software ecosystem,
training scientists on how to use new tools, and raising existing software to production quality.

2.3 IESP Roadmap (2011)

At the beginning of 2009, a large international consortium of researchers initiated the International

Exascale Software Project (IESP) [8, 54]. The IESP recognized that significant amounts of effort
have been invested into software during the petascale era. However, they argue that “a great deal
of productivity has also been lost because of lack of planning, coordination, and key integration
of technologies” [54, p. 1]. The purpose of the IESP was two-fold: (1) “developing a plan for a
common, high-quality computational environment for petascale/exascale systems” [54, p. 6] and
(2) “catalyzing, coordinating and sustaining the effort of the international open-source software
community to create that environment as quickly as possible” [54, p. 6]. In 2011, the IESP presented
their technology roadmap [54] and they proposed a possible software stack for exascale systems.
The project ended in 2012, but IESP’s mission was continued by the Big Data and Extreme-Scale

computing (BDEC) project [5, 13] focusing on the convergence of exascale computing and Big Data.

2.4 Top Ten Exascale Research Challenges (2014)

In 2014, the US ASCAC (Advanced Scientific Computing Advisory Committee) published the re-
port [115] of the subcommittee that was directed by the US DOE (Department of Energy) to com-
pile “a list of no more than ten technical approaches (hardware and software) that will enable the
development of a system that achieves the Department’s exascale goals” [115, p. 80].

The study group found that “the U.S. has the technical foundation to create exascale sys-
tems” [115, p. 66], but “an evolutionary approach to achieving exascale would not be adequate”
[115, p. 66]. Additionally, they argue that the U.S. should increase investments in HPC, since they
may otherwise fall behind the international competition. The top ten challenges are as follows:

� Energy Efficiency: Develop energy-efficient technology to reach the goal of 20MW.
� Interconnect Technology: Improve vertical (intra-node) and horizontal (inter-node) data

movement in terms of energy-efficiency and performance.
� Memory technology: Integrate novel memory technologies (e.g., PCRAM, NOR Flash,

ReRAM, memristor) to improve capacity, bandwidth, resilience, and energy-efficiency.
� Scalable Systems Software: Increase the scalability, energy-awareness, and resilience of sys-

tem software (e.g., operating systems, runtime systems, monitor systems).
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� Programming Systems: Develop new programming methods that enable expressing fine-
grained concurrency, locality, and resilience.

� Data Management: Develop software that is capable of handling massive amounts of data.
This concerns both offensive I/O (e.g., data analysis) and defensive I/O (e.g., fault tolerance).

� Exascale Algorithms: Redesign algorithms to improve their scalability (e.g., reduce commu-
nication, avoid synchronization).

� Algorithms for Discovery, Design, and Decision: Research should focus not only on “one-off
heroic simulations” [115, p. 48], but also on ensembles of many small runs (e.g., common
for uncertainty quantization or parameter optimization).

� Resilience and Correctness: Computations should be correct, reproducible, and verifiable
even in the face of software and hardware errors.

� Scientific Productivity: Scientists should have tools to productively utilize exascale systems
(e.g., develop programs, run applications, prepare input, collect output, analyze results).

These ten challenges are mostly a mixture of the previously recognized technological challenges
(US DARPA) [103] and computer science challenges (Geist and Lucas) [75]. Overall, these chal-
lenges are broad and touch upon nearly all aspects of HPC, indicating that exascale is disruptive.

2.5 EESI2 Vision & Recommendations (2015)

In 2015, the experts of the EESI (European Exascale Software Initiative) presented their vision and
recommendations on development of efficient exascale applications [66]. They consider exascale
computing as “not only a ‘bigger HPC’” [66, p. 3], but also as a new era that requires disruptive
scalable solutions. Additionally, they believe exascale computing and Big Data to be closely as-
sociated since HPC requires processing large-scale data from scientific instruments and scientific
simulations. They argue that Europe has strengths in certain areas (e.g., applications, scalable algo-
rithms, and software couplers), but is weak in other domains (e.g., languages, programming tools).
They consider it urgent for the European Commission to fund large holistic projects on topics
from three pillars:

� Tools and Programming Models: Novel programming models, heterogeneity management,
software engineering methods, resilience, validations, and uncertainty quantification.

� Ultra-Scalable Algorithms: Scalable algorithms that reduce communication, avoid synchro-
nization, and exploit parallelism in the time domain (in addition to the spatial domain).

� Data-Centric Approaches: Flexible and efficient software couplers, in-situ data processing,
and declarative processing frameworks for data analytics.

2.6 Exascale Computing and Big Data (2015)

In 2015, Reed and Dongarra [151] presented their thoughts on the unification of exascale (“high-
end computing”) and Big Data (“high-end data analytics”). They observe that the tools and cul-
tures of these two communities differ significantly and bringing them closer together would
be beneficial. They acknowledge the technical challenges recognized by others, including US
DARPA [103] and ASCAC [115], but consider “research and development of next-generation al-
gorithms, software, and applications [to be] as crucial as investment in semiconductor devices
and hardware” [151, p. 68] since “historically the research community has underinvested in these
areas” [151, p. 68].

2.7 The Exascale Computing Project (2016)

In 2016, the Exascale Computing Project (ECP) [126] was launched: a seven year project by the
U.S. Department of Energy (DOE) to coordinate the effort to achieve exascale computing in the
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Fig. 1. Timeline showing landmark studies (top row) and #1 from TOP500 [4] (bottom row).

U.S. The project is a collaboration between six US-based computing laboratories and is funded by
the U.S. National Nuclear Security Administration and the US DOE Office of Science. The project
is organized into four focus areas: “application development”, “software technology”, “hardware
technology”, and “exascale systems”. Additionally, the project includes training of scientists on
software engineering and programming tools. Overall, the project emphasizes “co-design and in-
tegration of activities to ensure that the result is a robust exascale ecosystem” [126, p. 65].

2.8 Discussion

Figure 1 shows a timeline incorporating the discussed studies together with data from the
TOP500 [4]. The figure clearly shows that growth has stagnated as we are reaching exascale: per-
formance increased by �33× between 2008 and 2013, but only by �3.6× between 2013 and 2018.

Two primary challenges are acknowledged by nearly all of the above studies: energy consump-

tion and fault tolerance. For the energy challenge, US DARPA set 20MW as a reasonable power
budget [103] and most of the subsequent studies acknowledge this ambitious goal. For the fault
tolerance challenge, all studies agree that handling hardware and software faults becomes increas-
ingly more important as the scale of supercomputers continues to increase. These two challenges
were foreseen in 2008 and many subsequent studies echo these concerns. Both topics will be dis-
cussed further in Section 4.

Various other challenges are mentioned, many of which can be attributed to one of two classes:
challenges due to an increase in complexity of software or challenges due to an increase in volume of

data. The first class addresses matters such as scientific applications, programming models, con-
currency, heterogeneity, software sustainability, systems software, and software tools. Scalability
needs to be incorporated across the entire software stack to create exascale-ready platforms. The
second class concerns the fact that exascale systems deal with massive amounts of data. This has
a major impact on hardware (e.g., memory, storage, networks) as well as on software (e.g., data
management, visualization, scientific discovery). Some challenges are on the intersection between
the two classes, such as algorithms that can increase scalability by exploiting parallelism in the
time-domain (i.e., increase software complexity) or reducing communication (i.e., decrease data
movement).

We observe two notable trends among these reports. The first trend is the rise of Big Data and
the gap between large-scale data analytics (i.e., Big Data) and large-scale scientific computing
(i.e., HPC). These two ecosystems appear to be disconnected and bridging this gap is a challenge
acknowledged in recent studies such as “Exascale Computing and Big Data” [151], but also by
the BDEC project and the EESI2 recommendations. The second trend is the acknowledgment that
reaching exascale performance requires, besides solving technical roadblocks in software and hard-
ware, to also work on the “social” problems in preparing the community for exascale computing.
The IESP roadmap [54] emphasizes that much productivity was lost during the petascale-era due
to lack of a cohesive group. The IESP [54] and the ECP [126] both emphasize collaboration among
many different parties and focus on building a larger ecosystem surrounding exascale computing.
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Fig. 2. Flow diagram of article selection.

3 DATA-DRIVEN LITERATURE ANALYSIS

We perform a literature analysis to gain insight into the extensive peer-reviewed literature on
exascale computing. In this section, we explain the method and results of our data-driven literature
analysis. Section 4 presents the results of our qualitative literature analysis.

3.1 Methodology

Scopus [3] was used to get literature on exascale computing. Scopus is a citation database covering
over 22,800 peer-review sources (e.g., journals, books, conference proceedings) from more than 500
publishers (including well-known publishers such as IEEE, ACM, Elsevier, Springer, and Wiley).
The software tool that was used to perform the analysis is available online [91].

3.1.1 Search �ery. The following search query was performed and yielded 2,017 search re-
sults.1 Throughout this document, we use the terms search result, article, publication, and document

interchangeably.

The query requests publications that mention the term exascale or extreme-scale in the ti-
tle, abstract, or author-specified keywords. The word exascale is an unambiguous term that is
widely used and there appears to be no conflicting usages of the term. The term extreme scale is
a strongly related term that gained popularity in recent years. Since solely the term extreme scale
is heavily ambiguous (yielding 30,832 results), we refined this query by appending the term
comput* (e.g., computing, computer, computers) or system* (e.g., system, systems). Note that Scopus
ignores punctuation (e.g., exa-scale and exa scale are considered equivalent).

The search results are further refined using the following method (Figure 2). The Scopus doc-
ument type must be conference proceeding, article, review, or book, thus excluding miscellaneous
types defined by Scopus such as erratum, editorial, and press releases. Additionally, non-English
documents are also excluded.

We are aware that an occurrence of the literal term exascale or extreme-scale does not nec-
essarily imply that the entire document is dedicated to this topic, since the term could be used
to provide context or background information. However, for this study, we deliberately make the
assumption that any mention of these terms indicate that the authors are aware of the challenges
in exascale computing and consider their contribution to play some role for future computing
systems, thus making it an interesting candidate for this literature analysis.

Besides exascale, we experimented with three additional queries: ultrascale, exaflop, and
exabyte. Results for ultrascale were limited and it appears to be a rare term. Results for exabyte
were mostly out of scope and present a different line of research focusing on long-term storage
systems. Few results for exaflop were related, but only 46 results were not covered by our query.

1The data was downloaded from Scopus API on 23 August 2019 via http://api.elsevier.com and http://scopus.com.
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3.1.2 Metadata Analysis. Scopus provides rich metadata for the search results, including the
document’s title, abstract, DOI, authors, affiliations, publication date, and publication venue. This
data is used to analyze the number of publications per year, per institute, per country, per conti-
nent, and per journal/conference.

To determine the institute, we use the author affiliation data reported by Scopus. These institutes
were manually checked to consolidate different spellings (e.g., “Jülich Supercomputing Centre”,
“Juelich Research Centre”, “Forschungszentrum Jülich” are mapped to “Jülich Research Centre”).

To determine geographical regions, we use the country of the affiliations as reported by Scopus.
For our analysis, we say a document belongs to a certain country if at least one author reports an af-
filiation in that country. One publication with multiple authors could belong to multiple countries.

To determine the publication venues, we use the source title attribute reported by Scopus. The
source titles have been manually rewritten to canonical names (e.g., “16th ACM Symposium on

Principles and Practice of Parallel Programming” is mapped to “PPoPP”). We omit workshops from
the list of publication venues since Scopus often reports the name of the hosting conference (e.g.,
“Workshops at International Conference on Parallel Processing (ICPP)”) instead of the official work-
shop title (e.g., “Workshop on Runtime and Operating Systems for Supercomputers (ROSS)”). Work-
shops are independently organized so including these results would be misleading. Overall, 19%
of the search results originates from workshop proceedings.

3.1.3 Network Analysis. Network analysis helps to identify the contributions of influential pub-
lications and authors in the exascale landscape. To determine influential publications, we construct
a citation network from the results: nodes represent documents and directed edges indicate cita-
tions between documents. To determine influential authors, we construct a co-author network:
nodes correspond to institutes and edges indicate that two institutes have published at least one
document together. Edges are weighted by the number of shared publications.

3.1.4 Text Analysis. To identify the most relevant research topics, we employ a method from
natural language processing (NLP) known as unsupervised topic modeling [10] to extract abstract
“topics” from texts. The model was trained on the article’s title/abstract since they provide a
concise summary of the article’s contributions. Training topic models on academic abstracts is
a proven method that has demonstrated its effectiveness in various domains, including informa-
tion systems [165], software engineering [123], agriculture [101], bio-medicine [28], and fisheries
science [169].

For this work, we selected the unsupervised topic modeling method based on non-negative ma-

trix factorization (NMF) [161, 183]. We have chosen this method since it requires no critical pa-
rameters, has an intuitive interpretation, and has previously been used for various text-mining
applications [19, 142, 180]. NMF detected topics automatically based on the correlations between
word frequencies. For example, the words “programming,” “code,” “compiler,” “parallel,” “perfor-

mance,” and “software” are likely to occur together and thus are strongly correlated.
NMF processes the titles/abstracts into one word-frequency vector per document (see Appen-

dix A for details). It then takes the set of word count vectors and constructs two non-negative
normalized matrices: U and V (Figure 3). Each row of U represents the topic distribution for one
document with elements indicating the degrees of which topics are applicable to document. Each
row of V represents the word distribution for one topic with elements indicating the degrees of
which terms are applicable to the topic.

NMF requires the desired number of topics k as its input parameter. The appropriate value for
k depends on the dataset at hand and the desired level of detail [161]. To determine the optimal
number, we experimented with different values (k = 5, 10, 25, 35, 40, 50) and, for each k , evaluated
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Fig. 3. Topic modeling detects topic-word distribution and document-topic distribution.

Fig. 4. Number of publications per year. Fig. 5. Number of publications per continent.

the semantic quality of the detected topics by hand. We use k = 25 because we found fewer topics
(e.g., k = 10) resulted in composite topics and more topics (e.g., k = 50) led to duplicates.

To gain insight into how these topics are “spread out” over the domain, we visualize the re-
sults using the method proposed by Choo et al. [38] based on t-SNE [174] (t-Distributed Stochastic

Neighbor Embedding). This method embeds the documents into two-dimensional space such that
the distance between documents inversely corresponds to their lexical similarity.

3.2 Results

In this section, we present the results of our data-driven literature analysis. The search was per-
formed on 23 August 2019 and yielded 2,017 results. Of these results, 91% was discovered by the
exascale query and 12% by the extreme-scale query. The term exascale is thus more popular
than extreme scale and there is some overlap (only 3%) between the queries.

Figure 4 shows the number of documents per year for both queries. The earliest document
originates from 2007, after which the number of articles increased, exceeding 100 articles in 2011
and 200 articles in 2014. Note that, at the time of writing, not all literature for 2019 is available yet.

Figure 5 shows the number of documents per continent based on author affiliation. The results
indicate that the United States is the primary driver in exascale research, followed by Europe and
Asia. Overall, affiliations from the U.S. are involved in 63% of the documents, Europe in 36%, and
Asia in 14%. Many collaborations exist: nearly 10% of the publications is a collaboration between
the U.S. and Europe (i.e., at least one affiliation from each continent), 3.7% for the U.S. and Asia,
and 2.6% for Europe and Asia. The data per country is available in Appendix B (Figure B.3). For
Europe, the top five countries are Germany (11%), United Kingdom (8%), France (8%), Spain (6%),
and Switzerland (4%). For Asia, the top three consists of Japan (4%), China (4%), and India (2%).

To understand the role of the different institutes in exascale literature, we shift our focus to
author affiliations. Figure 6 shows the number of documents per affiliation as reported by Scopus
(top 25, extended results in Figure B.1 of Appendix B). The figure shows that the national laborato-
ries in the United States play an important role in exascale research, with the top three consisting
of Oak Ridge National Lab., Argonne National Lab., and Sandia National Lab. in New Mexico. For
Europe, the top three is INRIA, Jülich Research Center, and IBM Research Zurich.

3.2.1 Metadata Analysis. Finally, we shift our attention to publication venues. Overall, 51% of
the documents originates from conference proceedings, 26% from journals, 19% from workshops,
and 5% from other sources (e.g., books, reports). See Figure 7 for the top publication venues (top 25,
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Fig. 6. Number of publications based on author

affiliations (top 25). Color indicates continent

(Figure 5).

Fig. 7. Number of publications per publication

venue (top 25). Workshops are omitted from figure,

see text.

extended results in Figure B.2 of Appendix B). As mentioned in the methodology, we omit work-
shop names from this figure since Scopus inconsistently reports the name of the hosting conference
instead of the workshop name. The figure shows that both conferences and journals are impor-
tant. The top three conferences are ACM/IEEE Supercomputing (SC), IEEE Cluster, and IEEE IPDPS

(International Parallel and Distributed Processing Symposium). The top three journals are IJHPCA

(International Journal of High Performance Computing Applications), SFI (Supercomputing Frontiers

and Innovations), and TPDPS (IEEE Transactions on Parallel and Distributed Systems). Overall, exas-
cale research is spread out over many venues.

3.2.2 Network Analysis. Figure 8 shows the citation network: nodes represent documents and
edges are citations. An interactive version is available.2 The visualization shows that the network
contains a small number of “core” publications and a large number of “peripheral” publications.
Appendix B (Table B.1) lists the complete top 10 publications according to the number of citations.
Three of these publications were already discussed as landmark studies in Section 2. Surprisingly,
six out of the ten publications are on the topic of fault tolerance. The remaining four papers are
on diverse topics: software challenges, technology challenges, big data, and power constraints.

The collaboration network for the top 50 institutes is available in Appendix B (Figure B.3). The
figure shows that the network is highly interconnected with many collaborations between dif-
ferent institutes. Additionally, national laboratories and supercomputing centers appear to play
a central role in the network and they are often strongly connected to various universities and
research institutes. Examples of strongly connected laboratory-university pairs are Barcelona Su-

percomputing Center� Polytechnical University of Catalonia; Riken� University of Tokyo; Sandia

Lab. New Mexico� University of New Mexico; and Argonne Lab.� University of Chicago.

3.2.3 Text Analysis. Figure 9 visualizes the output of topic modeling. Each topic is assigned
a letter (A-Y) and the words having the highest weights are shown. A table of the results is in
Appendix B (Table B.2).

2Interactive network visualization available at https://exascale-survey.github.io/assets/citation.html.
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Fig. 8. Citation network. Nodes are publications and edges represent citations. Node size and color indi-

cate number of citations. Numbers indicate top 10 publications (see Table B.1). Interactive view available in

Footnote 2.

Fig. 9. Visualization of topic model using word clouds. Each word cloud represents one detected topic where

the size of words indicates the relevance of each word to that particular topic (i.e., weights in matrix U).
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