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a b s t r a c t 

The use of scanning gradients can significantly reduce method-development time in reversed-phase liquid 

chromatography. However, there is no consensus on how they can best be used. In the present work we 

set out to systematically investigate various factors and to formulate guidelines. Scanning gradients are 

used to establish retention models for individual analytes. Different retention models were compared by 

computing the Akaike information criterion and the prediction accuracy. The measurement uncertainty 

was found to influence the optimum choice of model. The use of a third parameter to account for non- 

linear relationships was consistently found not to be statistically significant. The duration (slope) of the 

scanning gradients was not found to influence the accuracy of prediction. The prediction error may be 

reduced by repeating scanning experiments or – preferably – by reducing the measurement uncertainty. 

It is commonly assumed that the gradient-slope factor, i.e. the ratio between slopes of the fastest and the 

slowest scanning gradients, should be at least three. However, in the present work we found this factor 

less important than the proximity of the slope of the predicted gradient to that of the scanning gradients. 

Also, interpolation to a slope between that of the fastest and the slowest scanning gradient is preferable 

to extrapolation. For comprehensive two-dimensional liquid chromatography (LC × LC) our results suggest 

that data obtained from fast second-dimension gradients cannot be used to predict retention in much 

slower first-dimension gradients. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

High-performance liquid chromatography (HPLC) is an indis- 

ensable technique in a wide variety of fields, including food sci- 

nce, environmental chemistry, oil analysis, forensics and (bio- 

pharmaceutics. In spite of decades of research and development, 

he mechanisms of HPLC separation are still not fully understood 

1–5] . Among the large number of retention mechanisms available, 

eversed-phase liquid chromatography (RPLC) is the most-common 

eparation mode. In RPLC, analytes are mainly separated based on 

ifferences in distribution between a relatively hydrophilic (aque- 

us/organic) mobile phase and a relatively hydrophobic station- 

ry phase [6] . To facilitate elution of all analytes within an ap- 
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ropriate time window, the solvent strength of the mobile phase 

an be increased during the run by increasing the percentage 

f organic modifier in a gradient program. Despite the fact that 

any chromatographic methods rely on gradient-elution RPLC as 

n HPLC workhorse, method development can still be time con- 

uming, since gradient method development relies on adjustment 

f several method parameters including gradient slope, possible 

teps in the gradient and the initial time associated with an iso- 

ratic hold (if not zero). Especially for challenging samples, the 

arge number of parameters that can be adjusted requires exten- 

ive trial-and-error or design-of-experiment optimization, requir- 

ng extensive gradient training data. This is particularly true for 

amples of short-term interest ( e.g. impurity profiling for a phar- 

aceutical ingredient in development) or second-dimension sepa- 

ations in 2D-LC, where RPLC is also predominantly used [7] . Still, 

oo often method development involves a great number of trial- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Workflow of the method optimization using scanning gradients to obtain retention-model parameters. The workflow starts at the top right with an insufficiently- 

resolved sample, on which scanning gradients are performed. After that, the two (or more) scanning gradients are linked by peak tracking and the retention parameters are 

calculated. For the optimization, the different parameters that need to be optimized and their boundaries must be defined. The optimization program can predict outcomes 

for all combinations of the different chromatographic parameters that are varied. After that the assessment criteria must be defined and applied. The optimized separation 

can then be verified experimentally, which can either lead to an optimized method or trigger an additional iteration. 
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nd-error experiments, rendering the use of LC time-consuming 

nd costly. 

To facilitate faster method development, many groups have ex- 

lored the use of computer-aided method development through 

etention modelling [8–20] . The aim of this approach is to pre- 

ict optimal method parameters for a specific sample and a spe- 

ific chromatographic system ( i.e. stationary-phase chemistry and 

obile-phase composition) through simulation of retention times. 

etention modelling will result in faster method development [16] , 

hile it may also yield a better understanding of the influence of 

ifferent parameters, such as organic-modifier concentration and 

H, on the retention [ 15 , 21 ]. It is thus not surprising that retention

odelling has been widely applied to predict retention of solutes 

n RPLC as a function of pH, organic-modifier concentration, charge 

tate of the analyte and temperature [22–24] . Several strategies for 

etention modelling exist, but some of these require either exten- 

ive knowledge of the analytes or large quantities of input data 

 22 , 25 ]. One interesting approach, which does not require any a 

riori knowledge, is the use of scouting experiments. This strategy 

s employed in several method-optimization software tools, such 

s Drylab [26] , PEWS 2 [9] and PIOTR [ 15 , 16 ]. Here, a very limited

et of specific pre-set gradients are employed to obtain analyte 

etention times [27] . A suitable retention model, designed to de- 

cribe retention as a function of mobile-phase composition, is fit- 

ed to the experimental data. This yields the retention parameters 

or each analyte as described by the model. The model is then used 

o simulate the separation for all analytes under a large number of 

ifferent chromatographic conditions. The parameters that need to 

e varied and their boundaries must be defined. Each of the re- 

ulting simulated chromatograms is then evaluated against one or 

ore desirability criteria. The most optimal separation conditions 

an, for example, be determined using the Pareto-optimality ap- 

roach [28] . This process is described in Fig. 1 . 

Retention-model parameters can either be determined from iso- 

ratic or gradient-elution retention data (or both) [9] . Isocratic 

easurements may yield a more accurate description of the re- 

ention as a function of mobile-phase composition, but require 

ore tedious experimental work, whereas scanning gradients are 
p

2 
ess cumbersome. If the shape of the gradient can be accounted 

or, then isocratic data can be used to accurately predict gradient- 

lution retention times [ 29 , 30 ], the opposite is less true [31] . 

Scanning experiments allow LC methods to be rapidly opti- 

ized. However, to the best of our knowledge, several factors that 

ay influence the prediction accuracy in retention modelling have 

ardly been studied systematically, even though they may ulti- 

ately determine the usefulness of retention-time prediction. For 

PLC, examples of such parameters include ( i ) selection of the ap- 

ropriate retention model and the number of parameters in the 

egression model, ( ii ) the effect of the gradient slopes used ( e.g. 

hether the use of faster gradients compromises parameter accu- 

acy), ( iii ) the minimum number of different gradient slopes re- 

uired, ( iv ) the minimum difference (leading to a different ratio) 

etween these slopes, and ( v ) the number of replicate measure- 

ents for each gradient elution condition. 

In this work we have studied each of these aspects systemat- 

cally using two sets of data having different measurement preci- 

ion. For each data set by itself, each of the above-mentioned pa- 

ameters is explained and investigated. Additionally, the feasibil- 

ty and limitations of extrapolating ( i.e. predicting much slower or 

aster gradients than those used for scanning) was investigated. Fi- 

ally, the results are summarized, and guidelines are formulated 

or successful use of gradient-scanning techniques. 

. Experimental 

.1. Chemicals 

For all measurements concerning the first dataset (Set X), the 

ollowing chemicals were used. Milli-Q water (18.2 M� cm ) was 

btained from a purification system (Arium 611UV, Sartorius, Ger- 

any). Acetonitrile (ACN, LC-MS grade) and toluene (LC-MS grade) 

ere purchased from Biosolve Chemie (Dieuze, France). Formic 

cid (FA, 98%) and propylparaben (propyl 4-hydroxybenzoate, 

99%) were purchased from Fluka (Buchs, Switzerland). Ammo- 

ium formate (AF, ≥99%), cytosine ( ≥99%), sudan I ( ≥97%), pro- 

ranolol ( ≥99%), trimethoprim ( ≥99%), uracil ( ≥99.0%), tyramine 
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 ≥98%) and the peptide mixture (HPLC peptide standard mixture, 

2016) were obtained from Sigma Aldrich (Darmstadt, Germany). 

he peptides in the mixture were numbered one to five on their 

lution order in RPLC. The following dyes analysed in this study 

ere authentic dyestuffs obtained from the reference collection of 

he Cultural Heritage Agency of the Netherlands (RCE, Amsterdam, 

he Netherlands): indigotin, purpurin, emodin, rutin, martius yel- 

ow, naphthol yellow S, fast red B, picric acid, flavazine L, orange 

V. Stock solutions of all compounds were prepared at the con- 

entrations and with the solvents indicated in Supporting Material 

ection S-1, Table S-1. From these stock solutions analytical sam- 

les were prepared by combining portions of the stock solutions 

n equal ratios; the specific compounds that were combined into 

ixtures are also indicated in Table S-1. 

For the second dataset (Set Y), the following chemicals were 

sed. Milli-Q water (18.2 M� cm ) was obtained from a purifi- 

ation system (Millipore, Billerica, MA) purpurin ( ≥ 90%), propy- 

paraben ( ≥ 99%), emodin, toluene, trimethoprim, and the pep- 

ide mixture (HPLC peptide standard mixture) were obtained from 

igma Aldrich (United States). Rutin ( ≥ 94%) and cytosine were 

btained from Sigma Aldrich (China). Berberine and naphthol yel- 

ow S were both obtained from Sigma Aldrich (India). Tyramine ( ≥
8%) was obtained from Sigma Aldrich (Switzerland). Sudan I ( ≥
5%) was obtained from Sigma Aldrich (United Kingdom). Propra- 

olol ( ≥ 99%) was obtained from Sigma Aldrich (Belgium). Martius 

ellow was obtained from MP Biomedical (India). Orange IV was 

btained from Eastman Chemical Company (United States). Uracil 

 ≥ 99.85%) was obtained from US Biological. Flavazine L (Acid Yel- 

ow 11) was obtained from Matheson Coleman & Bell Chemicals. 

tock solutions of individual compounds were prepared at the con- 

entrations and with the solvents indicated in Supporting Material 

ection S-1, Table S-2. From these stock solutions analytical sam- 

les were prepared by combining portions of the stock solutions 

n equal ratios; the specific compounds that were combined into 

ixtures are also indicated in Table S-2. 

.2. Instrumental 

Experiments of Set X were performed on an Agilent 1290 se- 

ies Infinity 2D-LC system (Waldbronn, Germany) configured for 

ne-dimensional operation. The system included a binary pump 

G4220A), an autosampler (G4226A) equipped with a 20- µL injec- 

ion loop, a thermostatted column compartment (G1316C), and a 

iode-array detector (DAD, G4212A) with a sampling frequency of 

60 Hz equipped with an Agilent Max-Light Cartridge Cell (G4212- 

0 0 08, 10 mm path length, V det = 1.0 µL). The dwell volume of

he system was experimentally determined to be about 0.128 mL 

y using a linear gradient from 100% A (100% water) to 100% B 

99% water with 1% acetone) and determining the delay in gradi- 

nt at 50% of the gradient. The injector needle drew and injected 

t a speed of 10 µL �min 

−1 , with a 2 s equilibration time. The sys-

em was controlled using Agilent OpenLAB CDS Chemstation Edi- 

ion (Rev. C.01.10 [201]). In this study a Kinetex 1.7 µm C18 100 Å

0 × 2.1 mm column (Phenomenex, Torrance, CA, USA) was used. 

The experiments of Set Y were performed on a 2D-LC sys- 

em composed of modules from Agilent Technologies (Waldbronn, 

ermany) but configured for one-dimensional operation using the 

D-LC valve to introduce samples to the column, and the 2D- 

C software to control mobile phase composition and switching 

f the 2D-LC valve. This type of setup has been described pre- 

iously [ 32 , 33 ]. The system included a binary pump (G4220A) 

ith Jet Weaver V35 Mixer (p/n: G4220A-90123), an autosampler 

G4226A), a thermostatted column compartment (G1316C), and a 

iode-array detector (DAD, G4212A) with a sampling frequency of 

0 Hz equipped with an Agilent Max-Light Cartridge Cell (G4212- 

0 0 08, 10 mm path length, V = 1.0 µL). The 2D-LC valve used in
det 

3 
his case was a prototype (p/n: 5067-4236A-nano) that has fixed 

nternal loops with a volumes of about 150 nL. Samples were in- 

used directly into the valve at port #3 using a 1 mL glass syringe 

nd a Harvard Apparatus (p/n: 55-2226) syringe pump at a flow 

ate of 1 μL/min. The dwell volume of the system was about 0.081 

L. The system was controlled using Agilent OpenLAB CDS Chem- 

tation Edition (Rev. C.01.07 [465]). A Zorbax SB 5 µm C18 80 Å 

0 × 4.6 mm column (Agilent) was used. 

.3. Analytical methods 

Set X was recorded with the following method: The mobile 

hase consisted of buffer/ACN [v/v, 95/5] (Mobile phase A) and 

CN/buffer [v/v, 95/5] (Mobile phase B). The buffer was 5 mM am- 

onium formate at pH = 3 prepared by adding 0.195 g formic acid 

nd 0.0476 g ammonium formate to 1 L of water. All gradients per- 

ormed in this study started from 0 min to 0.25 min isocratic 100% 

, followed by a linear gradient to 100% B in either 1.5, 3, 3.75, 4.5,

, 7.5, 9 or 12 min. In all gradients, 100% B was maintained for 0.5

in and brought back to 100% A in 0.1 min. Mobile phase A was 

ept at 100% for 0.75 min before starting a new run. The flow rate 

as 0.5 mL �min 

−1 and the injection volume was 5 µL. The peak 

ables (S-1 to S-8) can be found in Supplementary Material section 

-1. The ten replicate measurements were recorded over a span of 

ultiple days. The buffers used as mobile phase were refreshed 

everal times over the duration of this study. 

Set Y was recorded using the following conditions: The mobile 

hase consisted of buffer (Mobile phase A) and ACN (Mobile phase 

), and the flow rate was 2.5 mL/min. The buffer was 25 mM am- 

onium formate at pH = 3.2. This was prepared by adding 5.98 g 

ormic acid (98% w/w) and 2.96 mL of ammonium hydroxide (29% 

/w) to 20 0 0.0 g of water. All gradients performed in this study 

tarted at 5% B at 0 min, followed by a linear gradient to 85% B in

ither 1, 1.5, 3, 3.75, 4.5, 6, 7.5, 9, 12 and 18 min. In all gradients,

5% B was maintained for 0.5 min and brought back to 5% B in 

.01 min. Mobile phase B was kept at 5% for 1 min before starting 

 new run. Ten replicate retention measurements were made for 

ach gradient elution condition. The entire dataset was collected 

sing a single batch of mobile phase buffer, over a period of three 

ays. 

.4. Data processing 

The in-house developed data-analysis and method-optimization 

rogram MOREPEAKS (formerly known as PIOTR [16] , University 

f Amsterdam) was used to ( i ) fit the investigated retention mod- 

ls to the experimental data, ( ii ) determine the retention parame- 

ers for each analyte from the fitted data, and ( iii ) to evaluate the

oodness-of-fit of the retention model. Microsoft Excel was used 

or further data processing. 

. Results & discussion 

.1. Design of the study 

.1.1. Compound selection 

Compounds were selected to cover a wide range of several 

hemical properties, including charge, hydrophobicity and size, to 

ncrease the applicability of the results to a broad range of applica- 

ions. To facilitate robust detection, UV-vis was chosen as detection 

ethod. Common small-molecule analytes were included, such as 

oluene, uracil and propylparaben. In addition, a number of syn- 

hetic and natural dyes were selected, which feature favorable UV- 

is absorption ranges to facilitate identification. Emodin, purpurin, 

udan I and rutin, were selected as neutral components. Martius 

ellow, naphthol yellow S, orange IV and flavazine L were included 
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ue to their (multiple) negative charges. The pharmaceutical com- 

ounds trimethoprim and propranolol were added to the set to 

nclude positively charged analytes. Metabolites, such as tyramine 

nd cytosine, were included, but these analytes eluted around the 

ead time. The column dead time was determined to be 0.262 min 

or Setup X with an standard deviation of 0.0027 min ( V 0 = 131 

L) and 0.171 min for Setup Y (determined in 50/50 ACN/buffer) 

 V 0 = 428 µL) with a standard deviation of 0.0 0 05 min, which was

alculated by analysing the hold-up time of uracil (non-retained 

nalyte). A standard mixture of peptides was added yielding a fi- 

al list of 18 compounds. The retention times of these compounds 

ere measured for eight different gradient slopes for Set X and ten 

ifferent gradient slopes for Set Y. Each measurement was repeated 

en times over the course of several days for both sets. Set X in-

luded three extra components, viz . indigotin, picric acid, fast red B 

nd two extra peptides, while Set Y included berberine. The anal- 

ses of Set Y were performed with a single batch of buffer, yield- 

ng highly repeatable retention times, whereas Set X was recorded 

ver a span of a week using multiple batches of prepared buffer. 

his yielded a dataset with highly repeatable data (Set Y), and a 

et with less-repeatable data (Set X). Where relevant, the measure- 

ent precision is shown in the figures in this paper. 

.1.2. Decision on the model 

Multiple models to describe retention in LC have been proposed 

34] . For RPLC separations the most commonly used model is a lin- 

ar relationship between the logarithm of the retention factor ( k ) 

nd the volume fraction of organic modifier ( �). This model re- 

ults in a two-parameter log-linear equation, often referred to as 

he “linear-solvent-strength” (LSS) model [35] . 

n k = ln k 0 − S LSS � (1) 

here ln k is the natural logarithm of the retention factor at a spe- 

ific modifier concentration, ln k 0 refers to the isocratic retention 

actor of a solute in pure water, � refers to the volume fraction of 

he (organic) modifier in the mobile phase, and the slope S LSS is 

elated to the interaction of the solute and the (organic) modifier. 

nother two-parameter (log-log) model was proposed by Snyder 

t al . to describe the adsorption behaviour in normal-phase liquid 

hromatography (NPLC) [36] . 

n k = ln k 1 − R ln � (2) 

In this model, the R parameter is the so-called solvation num- 

er, which represents the ratio of surface areas occupied by ad- 

orbed molecules of the strong eluent component and the analyte. 

 more extensive form of the LSS model is the quadratic model 

QM), proposed by Schoenmakers et al. , introducing a third param- 

ter [27] . 

n k = ln k 0 + S 1 ,Q � + S 2 ,Q � 

2 (3) 

In this and subsequent retention-model equations, S 1 and S 2 are 

mpirical coefficients used to describe the influence of the organic 

odifier on the retention of the analyte. Other three-parameter 

odels are also evaluated in this research, viz. the mixed-mode 

odel (MM, Eq. 4 ), which was developed for HILIC separations 

37] , and the well-known Neue-Kuss model (NK, Eq. 5 ). 

n k = ln k 0 + S 1 ,M 

� + S 2 ,M 

ln � (4) 

n k = ln k 0 + 2 ln ( 1 + S 2 ,NK � ) − � S 1 ,NK 

1 + S 2 ,NK � 

(5) 

The latter model allowed exact integration of the retention 

quation, thus simplifying retention modelling in gradient-elution 

C [ 14 , 38 ]. The above models all account only for the dependence

f retention on the organic-modifier concentration. Indeed, charged 

ompounds can also be retained through secondary interactions in 
4 
PLC, which can also depend on the organic-modifier concentra- 

ion. These secondary interactions may lead to increases in pre- 

iction errors, and for that reason the results for individual com- 

ounds are shown in Figs. 3 , 4 , 6-11 . In these models, the organic-

odifier fraction is related to the retention factor, which can be 

alculated with the retention time ( t R ) and the column dead time 

 t 0 ) when performing isocratic elution. 

 = 

t R − t 0 
t 0 

(6) 

In this calculation, the obtained retention factor can directly be 

inked to the experimental organic-modifier concentration. When 

sing gradient elution, the retention factor is described by the gen- 

ral equation of linear gradients [27] . 

1 

B 

� init + B ( t R −� ) 
∫ 

� init 

d� 

k ( � ) 
= t 0 − t init + t D 

k init 

(7) 

In this equation k (�) is the retention model, expressing the re- 

ationship between retention ( k ) and organic modifier fraction ( �). 

he slope of the gradient ( B ) is the change in � as a function of

ime ( � = � init + Bt) and � is the sum of the dwell time ( t D ), the

ead time ( t 0 ) and the programmed runtime before the start of the 

radient ( t init ), yielding isocratic elution. In this equation, k init is 

he retention factor at the organic-modifier concentration at which 

he gradient starts. If the analyte does not elute during or before 

he gradient, the retention time is described by 

1 

B 

� f inal 

∫ 
� init 

d� 

k ( � ) 
+ 

t R − � − t G 
k f inal 

= t 0 − t init + t D 
k init 

(8) 

n which t G represents the gradient time. 

One frequently used measure for model selection is the Akaike 

nformation Criterion (AIC) [39] . AIC values can be calculated upon 

tting a model to the data by considering the sum-of-squares er- 

or of the fit (SSE), the number of observations ( i.e. data points, n )

nd the number of parameters ( p ). A more-negative value reflects 

 better description of the data by the tested model. Using more 

arameters generally enables more facile fitting of the data to a 

odel, but according to Eq. 9 adding more model parameters is 

enalized by the AIC. 

IC = 2 p + n 

� 
ln 

�
2 � · SSE 

n 

�
+ 1 

� 
(9) 

In Fig. 2 A, the average AIC values are plotted for the five dif- 

erent models used to fit Set X (left bars) and Set Y (right bars), 

sing all replicate measurements obtained with eight different gra- 

ient slopes (1.5, 3, 3.75, 4.5, 6, 7.5, 9, 12). The ratios between the 

radient time and the dead time are comparable for the two sets, 

ut not identical. The range in t g / t 0 values covered is 5.9 to 46.9

or Set X and 5.9 to 105.3 for Set Y. Because the range of values is

ery similar and strongly overlapping, there is no t g / t 0 bias in our 

esults. Moreover, since we have made no attempt to predict reten- 

ion on one system using data collected on the other system ( i.e. , 

o method transfer), any differences in t g /t 0 between the datasets 

re unimportant in the context of this study. For Set X, the plot 

uggests that the LSS model describes the data best, but the Neue- 

uss and the quadratic model also yield good AIC values, despite 

sing three parameters. However, data from Set Y was best de- 

cribed by the log-log adsorption model rather than the log-linear 

SS model. This suggests that the noise in Set X may obscure the 

on-linear trend and that scanning experiments are best carried 

ut under highly repeatable conditions. The appropriateness of a 

on-linear model is consistent with prior observations described 

n the literature [ 24 , 40 , 41 ]. 

Fig. 2 A suggests that the Neue-Kuss model describes the re- 

ention relatively well when eight different gradients are used to 

stablish the model (supported by Fig. S-3, using the full set of 
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Fig. 2. Comparison of average AIC values for all studied components for the five different models using A) all replicate measurements from eight measured gradients (1.5, 

3, 3.75, 4.5, 6, 7.5, 9, 12), B) all replicate measurements from the gradients with duration of 3, 6 and 9 min. exclusively. For every pair, the first bar depicts the AIC value 

of Set X and the second bar represents Set Y. See Supplementary Material, section S-3, Tables S-9 through S-18 for a full list of all determined AIC values for all individual 

components and section S-4, Fig. S-1 for a plot of the AIC values for the complete set of gradients of Set Y. 
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ll ten gradients). However, this model results in a poor descrip- 

ion when the input data is limited to three gradient durations 

 Fig. 2 B). The latter plot shows a positive average AIC value for the

K model, which indicates a poor description of the data [42] . 

An alternative method to assess the goodness-of-fit is to check 

he accuracy of predictions made using the model. When the 

odel parameters are established using only data from three gra- 

ient programs, the retention times of the analytes for the remain- 

ng five gradient programs may in principle be predicted and used 

o validate the model. Models were constructed for each set (X 

nd Y) using the data from the scanning gradients of 3, 6, and 9 

in duration. These scanning gradients were selected based on the 

onventional wisdom that the ratio between the slopes of the two 

ost extreme scanning gradients (the gradient slope factor or GSF, 

enoted by � ) should be at least three [ 16 , 31 , 43 ]. At this point

t is good to note that the effective slope of a gradient is also re-

ated to the span of the gradient ( �� = � final − � initial ) and to the

ead time ( t 0 ), so that changes in the gradient slope may also oc- 

ur when changing the flow rate (see Eq. 10 ). 

21 = 

t G, 2 �� 1 t 0 , 1 
t G, 1 �� 2 t 0 , 2 

(10) 

The performance of the models was assessed by predicting the 

etention times for gradients of 3.75, 4.5 and 7.5 min. The results 

re shown in Fig. 3 for both datasets (X and Y). The prediction er-

ors ( �) were calculated using 

 = 

t R, pred − t R, meas 

t R, meas 

· 100% (11a) 

 = 

��t R, pred − t R, meas 

��

t R, meas 

· 100% (11b) 

here t R,pred is the predicted retention time and t R,meas is the 

ean of all considered experimental retention times of the iden- 

ical gradient. Where relevant, the following figures will indicate 

hich equation was used, and what datapoints were included. 

The Neue-Kuss (NK) model performed poorly (see the reten- 

ion plots in Supplementary Material, section S-6) when using just 

hree input gradients and, therefore, it was omitted from the fig- 

re. The results for Set X in Fig. 3 show that the two-parameter LSS

nd ADS models generally yield similar or better predictions com- 

ared to the three-parameter models. The box-and-whisker plots 

re based on 30 prediction errors ( n r = 30; 3 predicted retention 

imes in 10 replicates). Larger experimental variation results in a 

reater spread of predicted values, although the average predic- 

ion error often remains low. The narrow boxplots in the bottom 
5 
alf of Fig. 3 illustrate that a higher prediction accuracy can be 

btained from more-precise data. The adsorption model (purple) 

ields significantly lower errors than the LSS model for almost all 

nalytes. The predictions using the mixed-mode model, which was 

eveloped for HILIC [37] , and the quadratic model exhibit relatively 

arge deviations for Set Y. The robustness of fit was found to be 

etter for both two-parameter models (LSS and ADS) than for the 

hree-parameter models (QM, MM and NK; see Supplementary Ma- 

erial, section S-6), where a significant spread in prediction error 

as observed.. 

.2. Influences of scanning-gradient parameters 

.2.1. Effect of scanning speed 

The total duration of the three measured scanning gradients de- 

ermines the total time and resources required to obtain the reten- 

ion data needed to build a retention model. Retention parameters 

ere obtained for all analytes in Set X using three sets of gradi- 

nts (Series 2 – fast, Series 3 – regular, Series 4 – slow; see Fig. 4 ,

op). For Set Y an additional series (Series 1 – very fast; see Fig. 4 ,

ottom) was included. The GSF ( �) value between the slowest and 

astest gradient in each series was always approximately equal to 

. Retention times were predicted for a gradient with a duration 

ithin the range of the used gradients ( i.e. interpolation; the per- 

ormance of Series 1 was assessed by predicting the retention time 

or a 3-min gradient and Series 2, 3 and 4 with gradients of 3.75, 

.5 and 9 min, respectively). The results are shown in Fig. 4 . 

For the results shown in Fig. 4 , the prediction error was calcu- 

ated using Eq. 11a , which allowed comparison of the four series. 

he results in Fig. 4 suggest that the scanning speed ( i.e. the differ-

nt sets of scanning gradient lengths used) is insignificant relative 

o the measurement precision. In addition, the predicted retention 

imes deviate mostly less than 0.5% from the measured retention 

imes. For Set Y, almost all the prediction errors of Set Y are below 

.2%. Next to that, the prediction errors are smaller than for Set 

, even when using very steep gradients (Series 1). Consequently, 

here is no evidence to support choosing either a fast or slow set of 

canning gradients. The results suggest that relatively short scan- 

ing gradients can be used to build a reliable model. However, if 

he model can only be used for interpolation, the range of useful 

pplications for a series of short gradients may be very narrow, 

hich could be a reason to opt for a broader range of scanning 

radients. This will be addressed below in Section 3.3 . 

.2.2. Effect of number of replicate measurements 

Building a model using more replicate measurements will gen- 

rally decrease the influence of the measurement precision on the 
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Fig. 3. Comparison of the prediction errors (for gradient times of 3.75, 4.5, and 7.5 min) relative to the measured points for Set X (top) and Set Y (bottom) using retention 

parameters obtained using retention data from gradient times of 3, 6 and 9 min in the linear solvent strength (LSS, dark blue), adsorption (ADS, purple), quadratic (QM, 

orange) and mixed mode (MM, yellow) models, calculated using Eq. 11a . The box-and-whisker plots are all based on a total of 30 prediction errors, i.e. ten replicates for three 

different predicted gradients. The whiskers represent the distance from the minimum to the first quartile (0%-25%) and from the third quartile to the maximum (75%-100%) 

of each set of predictions. The box indicates the interquartile range between the first and third quartile (25%-75%), and the median (50%) is indicated by the horizontal line 

inside the box. Data are shown for a selected number of analytes. See Supplementary Material, section S-5, Fig. S-2 for the results for the remainder of the compounds in 

this study. 

Fig. 4. Comparison of prediction errors relative to the measured retention times using three (Set X, top) or four (Set Y, bottom) different sets of scanning gradients, with 

different total durations. Predictions were made with the LSS model for Set X and the ADS model for Set Y and the prediction error was calculated using Eq. 11a . See 

Supplementary Material Section S-7, Fig. S-13 for the remainder of the compounds. See text for further explanation. 
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rediction error. This raises the question how many replicates suf- 

ce ( i.e. yield an acceptable prediction error). To investigate this, 

etention times were predicted for gradient times of 4.5 and 7.5 

in as a function of the number of replicate measurements used 

 i.e. the number of sampled replicates from the total of ten mea- 

urements in this study for each gradient). In all cases, the reten- 

ion parameters were established for each compound using scan- 

ing gradients of 3, 6 and 9 min. The resulting prediction errors 

or all compounds are shown in Fig. 5 as a function of the num-

er of sampled replicates. Note that the number of points used is 
6 
uch larger for a small number of replicates, as the total pool of 

xperiments allows many more variations. 

The trends in Fig. 5 suggest a small improvement in prediction 

ccuracy for Set X ( Fig. 5 A) as more replicate measurements are 

ampled, whereas this is not the case for Set Y ( Fig. 5 B). This is

n agreement with the fact that Set X features a larger measure- 

ent precision than Set Y. The precision of Set X only becomes 

imilar to that of Set Y when seven or more replicate measure- 

ents are used. Although more replicates are usually thought to 

educe the effect of experimental variation, Fig. 5 B suggests that 
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Fig. 5. The relative prediction errors calculated using Eq. 11b for all compounds investigated in this study as a function of the number of sampled replicates from the total 

pool of experiments for Set X (A) and Set Y (B). The cross represents the mean and the points indicate outliers. 

Fig. 6. Average prediction errors relative to the measured point of the retention times of each compound for a gradient time of 4.5 and 7.5 min, using 1 to 10 replicate 

measurements of the experimental scanning gradients for Set X (top, using LSS model) and Set Y (bottom, using ADS model). Prediction errors calculated using Eq. 11b prior 

to averaging. The spread (standard deviation) of the predicted retention times is indicated by the error bar and the measurement precision is indicated in grey on the right 

of each cluster. See Supplementary Material, Section S-8, Fig. S-14 for the remainder of the compounds. 
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ith high-precision retention-time measurements a single set of 

xperiments may suffice. This is perhaps counterintuitive, but the 

odel is constructed using a total of three gradients. Apparently, 

ith high-precision measurements the model is constrained suffi- 

iently to yield a robust prediction performance. This is also in line 

ith the improved AIC values for the non-linear adsorption (ADS) 

odel for Set Y (see Fig. 2 ). 

Fig. 6 shows the prediction error as a function of the number 

f replicate measurements for each compound separately for Set X 

top) and Y (bottom). Generally, the results are in agreement with 

hose of Fig. 5 . However, for a number of compounds the influ- 

nce of the number of replicates is much more profound for Set X 

nd to a lesser extent also for Set Y. Compounds such as martius 

ellow, naphthol yellow S, rutin and trimethoprim feature a rela- 

ively low measurement precision in Set X. All of these compounds 

re charged under the mobile phase conditions, and thus their re- 

ention may be more sensitive to small changes in buffer concen- 

ration and pH. In contrast to Set Y, Set X was measured over the 

pan of days, using several batches of buffer. Therefore, chromatog- 

aphers are encouraged to take all possible measures to maximize 

he measurement precision, before recording scanning gradients. 

nother difference between Set X and Set Y was the column used, 

hich vary in the extent to which the stationary phases can inter- 

g

7 
ct with analytes through secondary interactions. This could lead 

o larger prediction errors for charged species. 

.2.3. Replicate scanning gradients or spread their duration? 

Another practically relevant question is whether the accuracy 

f the predictions can be improved by increasing the number of 

ifferent gradient times that are used, rather than repeating mea- 

urements with the same gradient time. To test this, two different 

ets of scanning gradients were considered, each using a total of 

ix scanning gradients, and thus six retention times per compound 

or fitting the model. The first set (A) consisted of three replicate 

easurements each of the 3-min and the 9-min scanning gradi- 

nts. The second set (B) comprised single measurements from six 

ifferent scanning gradients (1.5, 3, 3.75, 6, 9, 12 min duration). 

he retention times from gradients (4.5 and 7.5 min) that were not 

sed to build the model were used to test the accuracy of predic- 

ion. This process was carried out in triplicate, using three different 

ets of retention times. The absolute errors in the resulting repli- 

ates of predicted retention times were pooled, before conversion 

o relative errors and creating the plots shown in Fig. 7 . This was

erformed with the LSS model for Set X (X1, top left) and the ADS 

odel for Set Y (Y2, bottom right), indicated with the blue back- 

round. To make sure that findings were not model-dependent, the 
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Fig. 7. Prediction error relative to the measured retention time for two different sets of input scanning gradients, one created by repeating measurements and one by 

spreading measurements. Predictions performed in triplicate for 4.5-min and 7.5-min gradients, with the LSS model (X1, Y1) and the ADS model (X2, Y2) for both Set X and 

Set Y. Prediction errors are calculated using Eq. 11b . The cross represents the mean and the points indicate outlier points. See Supplementary Material, Section S-9, Fig. S-15 

for the remainder of the compounds. 
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DS model was used for Set X (X2, bottom left) and the LSS model 

or Set Y (Y1, top right). 

Fig. 7 shows that the prediction errors are similar for the set 

f two gradients performed in triplicate and the set of six differ- 

nt gradients. It is clear that using a non-optimal model (X2 and 

1) increases the prediction error, which is consistent with the re- 

ults shown in Fig. 3 . The difference in prediction error between 

ig. 7 -X1 and Fig. 7 -Y2 is due to the difference in measurement

recision between Set X and Set Y. For models depending on more 

ata ( e.g. Neue-Kuss) this conclusion may not be valid. Fig. 7 ap- 

lies to two-parameter models. When the measurement precision 

s lower, it may be beneficial to use multiple replicates (see Fig. 6 ).

or this reason, and because running fewer different methods with 

ore replicates is easier than measuring a larger number of differ- 

nt gradients just once, replicate measurements may be preferred 

ver a wider spread at the cost of a reduced interpolation range in 

 g . 

.2.4. Effect of the gradient-slope factor of the two most extreme 

canning gradients 

The gradient-slope factor between the two most extreme scan- 

ing gradients ( �, Eq. 10 ) is typically chosen around three [16] .

or example, when a 3-min scanning gradient is chosen as a start- 

ng point, the other scanning gradient that needs to be measured 

ill typically be (at least) 9 min in duration (assuming identical 

omposition span and column dead time). The origin of the � ≥ 3 

ecommendation is unclear. In this section we will investigate the 

ffect of the magnitude of the � value. Combining a 3-min scan- 

ing gradient with gradients of 1.5, 3.75, 4.5, 6, 7.5, 9, or 12 min

uration will result in � values of 0.5 (or 2), 1.25, 1.5, 2, 2.5, 3, 

nd 4, respectively. Previously ( Figs. 3 , 4 , 6 , 7 ), we used the predic-

ion accuracy for a specific gradient as a measure to assess the ef- 

ects of various parameters. However, this approach cannot be used 

o compare the influence of the � value, because a specific gradi- 

nt will sometimes be within and sometimes outside the range of 

lopes spanned by the two scanning gradients. Thus, for compari- 

on, the retention parameters ( i.e. slopes and intercepts of the re- 

ention models, ln k 0 and S values for the data of Set X described 

y the LSS model and ln k 1 and R values for the data of Set Y, de-

cribed by the ADS model) were obtained for each � value and for 

ach compound (with ten replicate measurements per �). The re- 
8 
ulting values were then compared with the benchmark values ob- 

ained for �= 3 . In Fig. 8 -X1 and 8 -X2, respectively, the ln k 0 and S

arameters are shown for data Set X and in Fig. 8 -Y1 and 8 -Y2, re-

pectively, the ln k 1 and R parameters are shown for data Set Y (all 

elative to the values obtained for � = 3). The extent of the agree- 

ent between the calculated parameters indicates a high similarity 

etween the models. 

The plots of Set X in Fig. 8 show that variations in the model 

arameters are mostly small, except for the fastest scanning gradi- 

nts (1.5 and 3 minutes, � = 0.5, dark blue points). In that case 

n k 0 and S tend to covary simultaneously. The largest variations 

re observed for charged compounds ( e.g. Fig. 8 -X2, naphthol yel- 

ow S and orange IV) and for rutin, and variations tend to increase 

ith decreasing �. In the plots for Set Y ( Fig. 8 -Y1 and 8 -Y2) simi-

ar trends are visible for martius yellow and toluene. The plots for 

et Y include two extra � values (0.33 and 6, based on 1-min and 

8-min gradients, respectively). The results from these two addi- 

ional factors follow a similar pattern. The data for � = 0.5 show a 

arger deviation from the black line than those for � = 2 and the 

ata for � = 0.33 deviate significantly from the black line ( � = 3). 

he data in Fig. 8 suggests that scanning gradients of 3 and 3.75 

in ( � = 1.25) produce retention times similar to these obtained 

rom scanning gradients of 3 and 9 min ( � = 3). To verify this, the

etention times for the 7.5-min gradient were predicted using fit- 

ing parameters obtained using various combinations of scanning 

radient data (with 10 replicates). The results are shown in Fig. 9 . 

ther approaches to establish the effect of � on the prediction er- 

or have been followed, as described in Supplementary Material, 

ection S-10, Fig. S-18-24. 

Fig. 9 shows that a value of �> 3 does not always result in the

mallest error. A value of �= 4 or �= 6, based on longer (12 or

8 min) gradients was expected to yield the most reliable results, 

ut greater prediction errors are typically observed than for �= 2 

r �= 3. This could feasibly be explained by a lower measurement 

recision in longer gradient runs, but when the measurement pre- 

ision is increased, as is the case for Set Y, the same trends are 

bserved. The detrimental effect of using long gradients is more 

evere for �= 6 than for �= 4. All these results suggest that the 

rediction accuracy depends less on the gradient-slope factor ( �) 

han on the proximity of the slope of the scanning gradients to 

hat of the predicted gradient. For example, when retention for a 
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Fig. 8. Model parameters obtained for Set X (LSS model; X1, ln k 0 ; X2, S ) and Set Y (ADS model; Y1, ln k 1 ; Y2, R ) all relative to the values obtained for � = 3 (black line). 

Data points reflect averages based on ten replicate measurements. See Supplementary Material, section S-10, Fig. S-16 for the remainder of the compounds. 

Fig. 9. Prediction error of retention relative to the measured retention times in a 7.5-min gradient calculated with various combinations of scanning gradients (indicated 

by the � values at the bottom of the figure; one gradient is always 3 min in duration) for Set X (LSS model) and Set Y (ADS model). Prediction errors are calculated using 

Eq. 11a . Results are based on ten replicate measurements. See Supplementary Material, section S-10, Fig. S-17 for the remainder of the compounds. 
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.5-min gradient is predicted, the closest scanning gradients are 

hose of 6 min ( �= 2) and 9 min ( �= 3). These conditions result in

he lowest prediction errors in Fig. 9 . Scanning gradients that dif- 

er more from the one that is to be predicted, for example longer 

radients of 12 min ( �= 4) or 18 min ( �= 6), or shorter gradients

f 4.5 min ( �= 1.5) or 3.75 min ( �= 1.25), result in increased pre-

iction errors, independent of whether interpolation or extrapola- 

ion is required. These effects are observed more clearly for Set Y, 

here the measured precision is increased. For Set X, the lowest �
alues yield the highest deviation for charged compounds, such as 

aphthol yellow S, orange IV and flavazine L. Low � values (below 
9 
) also yield poor prediction errors using the data from Set Y. The 

ain conclusion from Fig. 9 is that the proximity of the slope of 

he scanning gradients to that of the predicted gradient is a much 

ore important factor than the value of � per se . 

.3. Limits of use 

Generally, it is not advisable to extrapolate the retention model 

o predict retention times for gradients that are shorter or longer 

han those used for scanning. When applying scanning gradients 

o the development of LC × LC methods, it is interesting to inves- 
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Fig. 10. Prediction errors relative to the measured point for retention in a 1.5-min and a 12-min gradient for each compound as a function of the number of replicate 

experiments, using the reference set of scanning gradients (3, 6, and 9 min) for Set X (using the LSS model; 1,5, first frame; 12, third frame) and Set Y (using the ADS model; 

1,5, second frame; 12, fourth frame). Prediction errors are calculated using Eq. 11b . The measured precision is shown in grey to the right of each cluster. See Supplementary 

Material, section S-11, Fig. S-25 and S-26 for the remainder of the compounds. 
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igate whether retention times obtained using very short gradients 

 i.e. similar to conditions used for 2 D separations) can be used to 

redict retention times under gradient conditions where shallower 

lopes are used ( i.e. 1 D methods). For example, when using the ref- 

rence scanning gradient set ( i.e. 3, 6 and 9 min), it is thought to

e best used to predict retention times for gradients with dura- 

ions between 3 and 9 min. This conventional wisdom is tested in 

his section of the paper. Using the retention parameters obtained 

sing the reference scanning gradient set to predict retention for 

aster gradients, such as 1.5 min, is expected to yield higher pre- 

iction errors than scanning sets that embrace this scanning gra- 

ient time ( Fig. 9 ). In the top two graphs of Fig. 10 , the predic-

ion error for a 1.5-min gradient is shown for all compounds, cal- 

ulated from a model constructed using retention times obtained 

rom scanning gradients of 3, 6, and 9 min for different numbers 

f replicates (1 to 10). The prediction error for Set X remains rela- 

ively large as the number of replicates increases, irrespective of 

he measurement precision. This conclusion may be affected by 

he relatively low flow rate used for such a short gradient time. 

t higher flow rates, faster gradients are less affected by deforma- 

ion of the gradient profile [30] . Set Y was recorded with a higher

ow rate and a higher precision and, again, the prediction error 

oes not appear to decrease with an increasing number of replicate 

easurements. 

The same approach was used to predict retention times by ex- 

rapolation towards shallower gradients. Using the same reference 

radient set, the retention times of all compounds were predicted 

or the 12-min gradient as a function of the number of exper- 

ments ( Fig. 10 ). The prediction error decreases with increasing 

umber of replicate measurements for compounds with a large ex- 

erimental variation (naphthol yellow S, martius yellow) in Set X. 

he same pattern was observed for other charged compounds (see 

upplementary Material section S-11, Fig. S-25). However, for all 

he other compounds in Set X and for all compounds in Set Y the 
10 
rediction error is barely affected by the number of replicate mea- 

urements, which is consistent with our earlier conclusion regard- 

ng Set Y (see Fig. 6 ). 

The prediction errors resulting from extrapolation toward ei- 

her slower or faster ( Fig. 10 ) gradients are higher than for gra- 

ients with a slope within the range used to establish the model 

arameters ( Fig. 6 ), but extrapolation towards shallower gradients 

ields smaller errors than towards steeper gradients. Especially for 

ighly charged compounds with low experimental precision, such 

s martius yellow or naphthol yellow S, multiple replicate mea- 

urements may enhance the predictive ability of the model. In the 

upplementary Material section S-11 Fig. S-26 the same pattern is 

bserved for fast red B and picric acid. However, for compounds 

ith highly repeatable retention times the prediction error is not 

ffected by the number of replicates. 

Since gradient-scanning techniques are used for the devel- 

pment and optimization of 2D-LC methods [ 7 , 44 ], prediction 

f first-dimension retention times ( i.e. in slow gradients) from 

econd-dimension retention times ( i.e. fast gradients) is of inter- 

st. In the previous section, the retention times were predicted for 

 12-min gradient using the reference set of scanning gradients (3, 

 and 9 min). The same predictions (12-min gradient) were also 

ade using a model based on retention data from a set of faster 

radients (1.5, 3 and 4.5 minutes) from Set X. For Set Y, retention 

imes for an even slower gradient (18 min) could be predicted us- 

ng a model constructed using data from an even faster set of scan- 

ing gradients (1, 1.5 and 3.75). Fig. 11 shows that large errors of 

p to 4% result from the prediction of retention times for the slow 

radient (12-min) from the model based on fast scanning gradients 

or Set X. In a hypothetical 20-min gradient, this amount to a dif- 

erence of 48 s. For Set Y it can be seen that these errors increase

hen the difference between the lengths of the target and scan- 

ing gradients increases. In almost all cases the retention in slow 

radients is overestimated by the model. 
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Fig. 11. Prediction error relative to the measured point for the retention times of all compounds in a 12-min (top) and in an 18-min (bottom) gradient predicted from models 

constructed using two or three different sets of scanning gradients. Data based on 10 replicate measurements. Predictions are made with the LSS model for Set X and the 

ADS model for Set Y. Prediction errors are calculated using Eq. 11a . See Supplementary Material, section S-11, Fig. S-27 for the remainder of the compounds. 

Fig. 12. Combined results of all scanning-gradient parameters. The box-and-whisker plots represent the average prediction error of all the compounds for Set X (top) and 

Set Y (bottom). Predictions are made with the LSS model for Set X and the ADS model for Set Y. Prediction errors are calculated using Eq. 11a for columns with heading 

Model, Speed, GSF and 2 D to 1 D, and Eq. 11b for columns with heading Nr. of repeats, Repeat or spread, Extrapolation 1.5 and Extrapolation 12. 
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. Concluding remarks 

In this paper we describe a systematic, in-depth study into the 

pplication of retention modelling for development and optimiza- 

ion of RPLC separations. Two data sets were recorded (X and Y), 

sing the same analytes and similar instrumentation, but in dif- 

erent locations and with slightly different conditions. Set X was 

ecorded under typical LC conditions and as such may be repre- 

entative for common practice. In Set Y, conditions were chosen to 

inimize the experimental measurement variability, including the 

se of a higher flow rate (2.5 compared to 0.5 mL/min.; see ref 

32] ), and precise control over re-equilibration time following gra- 

ient elution [45] . This latter data set represents the highest preci- 
11 
ion achievable in our hands. Five different retention models were 

nvestigated. For Set X, a log-linear (or “linear solvent strength”, 

SS) model was found to provide the best fit of the data; for Set 

 a log-log (“adsorption”, ADS) model proved optimal. Generally, 

t least two scanning gradients (for a two-parameter model) that 

iffer in their (effective) slopes by at least a factor of three are 

sed [ 16 , 31 , 43 ]. Therefore, a benchmark set of three scanning gra-

ients with durations of 3, 6 and 9 min was designated in this 

tudy (from 5 to 95% or 5% to 85% of strong solvent for Set X and

et Y, respectively). Fig. 12 was constructed by condensing the ef- 

ects of the investigated parameters on the prediction accuracy of 

ll compounds studied. We come to the following conclusions from 

he resulting data. 
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� Whereas it is frequently recommended that the slopes of scan- 

ning gradients used to obtain retention data should vary by a 

factor of three or so, we do not see any evidence in our re-

sults that support this guideline. That is, similar retention pre- 

diction errors were obtained from models based on scanning 

gradients with slopes varying by a factor of three compared to 

models based on gradients with slopes varying by as little as 

1.25. We also observe that the speed ( i.e. , absolute analysis or 

gradient time) does not have a strong impact on prediction er- 

ror. On the other hand, the data show that the proximity of the 

slope of a gradient, for which retention will be predicted, to 

one of the scanning gradients, used to build the model, is far 

more determinant of retention prediction error. With decreas- 

ing proximity, it is more important that the slope of the target 

gradient lies between the slopes of the scanning gradients ( i.e. , 

interpolation is better than extrapolation, as one would expect). 

These findings have obvious implications for the design of ex- 

periments; using scanning gradients with a large variation in 

slopes is not required per se , but using a large range of slopes

enables prediction of retention for a wider array of gradients 

without extrapolating. 
� When designing experiments for the purpose of building a re- 

tention model, one has to decide how to allocate instrument 

time and choose whether to repeat measurements for a small 

number of scanning gradients, or to do fewer repeat measure- 

ments for a larger set of gradient times. Using prediction er- 

ror as a metric of model performance, the data do not show 

any general preference for sets of scanning gradients focused 

on replicate measurements (e.g., three replicate measurements 

each of two different gradients) or ones focused on using many 

different gradient times (e.g., one replicate each of six different 

gradients). However, in cases where the variability of retention 

measurements in scanning gradients is high, the predictive per- 

formance of models can be improved by making more repeat 

measurements. 
� Finally, predicting retention times for relatively slow gradients 

using a model constructed from data obtained from fast gradi- 

ents led to relatively large prediction errors. Unfortunately, this 

makes it impractical to accurately predict first-dimension re- 

tention times using models constructed from second-dimension 

retention data for use in the development and optimization of 

comprehensive two-dimensional liquid chromatography. 
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