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H I G H L I G H T S    

• Neurorehabilitation from addiction should be considered from a systems-perspective.  

• System-oriented neurorehabilitation is contrasted with a “broken brain” perspective.  

• System-oriented neurorehabilitation includes high-level concepts related to context and motivation.  

• System-oriented neurorehabilitation emphasizes the dynamic nature of the addicted mind and brain.  

A R T I C L E  I N F O   
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A B S T R A C T   

The dominant biomedical perspective on addictions has been that they are chronic brain diseases. While we 
acknowledge that the brains of people with addictions differ from those without, we argue that the “broken 
brain” model of addiction has important limitations. We propose that a systems-level perspective more effec-
tively captures the integrated architecture of the embodied and situated human mind and brain in relation to the 
development of addictions. This more dynamic conceptualization places addiction in the broader context of the 
addicted brain that drives behavior, where the addicted brain is the substrate of the addicted mind, that in turn is 
situated in a physical and socio-cultural environment. From this perspective, neurorehabilitation should shift 
from a “broken-brain” to a systems theoretical framework, which includes high-level concepts related to the 
physical and social environment, motivation, self-image, and the meaning of alternative activities, which in turn 
will dynamically influence subsequent brain adaptations. We call this integrated approach system-oriented neu-
rorehabilitation. We illustrate our proposal by showing the link between addiction and the architecture of the 
embodied brain, including a systems-level perspective on classical conditioning, which has been successfully 
translated into neurorehabilitation. Central to this example is the notion that the human brain makes predictions 
on future states as well as expected (or counterfactual) errors, in the context of its goals. We advocate system- 
oriented neurorehabilitation of addiction where the patients' goals are central in targeted, personalized as-
sessment and intervention.   

1. Introduction 

During the past two decades, the dominant biomedical model of 
substance use disorders or addictions has been that of chronic brain 
disease (Leshner, 1997; Volkow, Koob, & McLellan, 2016). From this 
perspective, now often referred to as the brain disease model of ad-
diction (BDMA, Hall, Carter, & Forlini, 2015; Heather et al., 2018), a 

vulnerable brain may get “hijacked” by addictive drugs (Nesse & 
Berridge, 1997). Various neuroadaptations are thought to make beha-
vior increasingly less voluntary and more compulsive, especially when 
cues indicate the presence of an opportunity to engage in addiction- 
related behavior. One proposed underlying mechanism concerns in-
creased dopamine-mediated “wanting”, the neural substrate of sub-
jective craving (Berridge & Robinson, 2003, 2016; Robinson & Berridge, 
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1993), combined with reduced frontal cortical control over the effects 
of the impulses driving addictive behavior (Goldstein & Volkow, 2011; 
Jentsch & Taylor, 1999). Second, it has been argued that cue-induced 
responding may become habitual in a strong sense (compulsive), where 
a stimulus is enough to elicit the response, even in the absence of 
(expected) reinforcement or when the cue has been associated with 
punishment (Everitt & Robbins, 2005, 2016). Third, over time, addic-
tive behaviors typically lead to mounting negative affect and associated 
negative reinforcement driven behavior to alleviate it (Koob & Le Moal, 
2008). Dependent on the various pharmacological pathways activated 
by the substances involved, the dominant mechanisms may differ 
(Badiani, Belin, Epstein, Calu, & Shaham, 2011). Irrespective of this 
variability, the overall perspective is that the brain has chronically 
changed as a consequence of the addictive behavior (to what extent this 
is also the case in non-substance addictions is subject to debate), which 
has led to the loss of voluntary control, or “loss of free will” (Volkow, 
2015). According to this perspective, there is no road back to controlled 
use or recovery (in line with ideas from Alcoholics Anonymous or 12 
steps programs, Segal, 2017), and neurorehabilitation can only be 
partially effective (as the brain disease is chronic). The main reason is 
that the addicted or post-addiction brain would remain hypersensitive 
to conditioned cues signaling opportunities to engage in addictive be-
havior, unless the brain could be permanently cured, for example by 
new medications. Yet, medication development in psychiatry is in a 
crisis due to the lack of understanding of the pathophysiological me-
chanisms underlying chronic brain disease (Hall et al., 2015; cf.,  
Hyman, 2013). Other brain-oriented interventions have been proposed, 
such as varieties of neurostimulation (Gorelick, Zangen, & George, 
2014) with as of yet unclear impact. 

During the past decade, the BDMA has been criticized for various 
reasons, including its inability to accommodate sudden recovery, even 
after severe addiction (Lewis, 2015; Longo & Lewis, 2018), epidemio-
logical data pointing to recovery as the most frequent long-term out-
come of addiction (Baumeister, 2017; Heyman, 2010), the limitations 
of generalizing from animal models to human pathology (de Wit, 
Epstein, & Preston, 2018; Field & Kersbergen, 2020), and the neglect of 
psychological and social factors in both the development of addiction 
and in its recovery (Hart, 2013; Heather et al., 2018). In terms of 
clinical and social implications, the BDMA has been advanced as ben-
eficial for patients because it counters the moral perspective (the ad-
dicted individual is responsible for their self-destructive choices), but 
the BDMA may also negatively impact confidence in a positive outcome 
(self-efficacy) in both therapists and patients (Barnett, Hall, Fry, Dilkes- 
Frayne, & Carter, 2018), and may increase stigma, as a recent meta- 
analysis indicated (Loughman & Haslam, 2018). 

In the present paper, we propose an alternative model to the BDMA, 
which on the one hand acknowledges that there are neuroadaptations 
in addiction, but on the other hand emphasizes the dynamic and in-
tegrated nature of the human mind and brain. From this systems-per-
spective, the neural level is merely one of the multiple layers of orga-
nization that defines human behavior, including addictive behaviors. 
This more dynamic multi-scale conceptualization, questions the validity 
and utility of the chronic brain disease concept. Instead, we propose to 
place addictive behaviors in the broader context of the addicted brain 
that drives behavior, which is the substrate of an addicted mind si-
tuated in a physical and socio-cultural environment. From this per-
spective, targeted psycho-social, cognitive, and behavioral rehabilita-
tion can mitigate addiction, which in turn will dynamically influence 
subsequent brain adaptations (Lewis, 2015). We call this integrated 
approach system-oriented neurorehabilitation. 

From the present perspective, the treatment of addiction requires 
research into effective personalized interventions aimed at system-or-
iented neurorehabilitation. Importantly, this includes high-level con-
cepts and interventions related to the physical and social environment, 
motivation, self-image, and the meaning of alternative activities. These 
will, in turn, drive changes at the neuronal level, such as the 

desensitization to addiction-associated cues and behaviors. To illustrate 
the system-oriented neurorehabilitation approach, we build on the 
Distributed Adaptive Control (DAC) theory, which conceptualizes mind 
and brain as complementary properties of a multi-layered architecture 
that controls action (Verschure, 2016). We illustrate how such a system- 
level and embodied action-oriented perspective can guide new devel-
opments in the rehabilitation of addiction. 

2. Addiction and choice 

The dominant account of human behavior during the past 50 years, 
has been that behavior is purposeful: people generally choose to do 
things of which they expect positive outcomes and refrain from doing 
things from which they expect negative outcomes, hence their behavior 
can be described as reasoned, rational or goal-driven (Ajzen & 
Kruglanski, 2019; Kruglanski & Szumowska, 2020; Tolman, 1966). 
However, addictive behaviors are hard to understand from this per-
spective, as they show features of irrationality: can people willfully act 
against their own goals? (the classical problem of Akrasia, see Heather, 
2017; Wiers, Van Gaal, & Le Pelley, 2020). First, it is important to note 
that many behaviors can serve multiple goals (Kruglanski & 
Szumowska, 2020). For example, having dinner not only serves the goal 
to obtain food, but also social goals, which may make dietary restraints 
less relevant in a festive context (Stroebe, Van Koningsbruggen, Papies, 
& Aarts, 2017). Second, the main perspective from which behavior 
serves goals is egocentric: in many cases where other people would 
judge a behavior as irrational and self-destructive, the behavior may 
actually be purposive, because it serves a salient goal for the actor (see  
Kopetz & Orehek, 2015). 

In psychology, one class of models developed to explain seemingly 
irrational behaviors concerns dual process models (e.g., Gawronski & 
Bodenhausen, 2006; Kahneman, 2003; Strack & Deutsch, 2004), which 
have also been developed for addictions (e.g., Bechara, 2005; Wiers 
et al., 2007). According to these models, a stimulus can automatically 
trigger an inclination to act (due to reward-learning and/or habit for-
mation, mediated by an impulsive or associative system), which can be 
overcome by a reflective and deliberate or rule-based system provided 
that there is enough capacity (and motivation) to do so. However, 
theoretical problems have been identified with these models, including 
the motivational homunculus problem (how does the reflective system 
know which impulses to inhibit? Gladwin, Figner, Crone, & Wiers, 
2011). Moreover, the neural substrate of dual process models is ill-de-
fined (Keren & Schul, 2009). For these and other reasons (see Hommel 
& Wiers, 2017; Melnikoff & Bargh, 2018), many theorists moved to a 
position where the central problem in addiction is biased choice rather 
than loss of choice (Field et al., 2020; Gladwin et al., 2011; Hogarth, 
2020; Wiers & Gladwin, 2016; Wiers, Van Dessel, & Köpetz, 2020; 
Wiers, Van Gaal et al., 2020). Note that from this perspective, the role 
of brain areas traditionally associated with inhibition may receive a 
different interpretation, namely biasing the integration of information 
supporting specific choices towards valuing long-term rather than 
short-term gains (Berkman, Hutcherson, Livingston, Kahn, & Inzlicht, 
2017; Field et al., 2020; Gladwin et al., 2011). Note further that in 
(computational) neuroscience, model-free (MF) and model-based (MB) 
processes have been distinguished (Daw, Niv, & Dayan, 2005), where 
MF mechanisms have been treated as producing automatic stimu-
lus–response habits, contrasting with MB strategies generating goal- 
directed choices based on a model of the world which generates pre-
dictions on outcomes. However, similar conceptual problems have been 
identified with this distinction (see Hommel, 2019, and Section 3 
below). 

Although we agree that neuroadaptations in addiction may influ-
ence the decision making process (indeed, biased decision-making is 
central in our account), we would argue that a total loss of choice, as 
suggested by BDMA, may only happen in extreme cases resulting from 
severe collateral damage as in severe Korsakov syndrome (Fenton & 
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Wiers, 2017). Note that many if not most people suffering from ad-
dictions recover without formal treatment and the notion that most 
people relapse has been argued to be a misperception based on studying 
only clinical samples (Baumeister, 2017). Importantly, researchers are 
beginning to correct for this bias, by also considering natural trajec-
tories into and out of addictions (for example in a new large German 
research consortium, Heinz et al., 2020). It has been argued that ex-
cessive habit-formation would make addictive behavior compulsive 
(Everitt & Robbins, 2005, 2016), which would result in addiction-cues 
eliciting drug use even in the awareness of negative outcomes. First, it 
should be noted that the evidence for this account has primarily come 
from animal studies in experimental paradigms where choice is limited 
(Hogarth, 2020). Strikingly, recent studies show that when social al-
ternatives are present (i.e., social interactions with other rats), drug 
choice is largely abandoned (Venniro et al., 2018). Second, evidence for 
habitual behavior, in the strong sense that it has become immune for 
negative consequences in humans is limited (De Houwer, 2019; 
Hogarth, 2020; Kruglanski & Szumowska, 2020). Of course, this does 
not mean that behavior cannot be habitual in a more colloquial sense of 
frequent and well-rehearsed, which may lead to slips-of-action, but 
these are typically repaired in line with original goal-pursuit 
(Kruglanski & Szumowska, 2020). Similarly, neuroadaptations fol-
lowing a reward make cues signaling the potential reward attractive 
(Berridge & Robinson, 2016; Robinson & Berridge, 1993), but this does 
not mean that the behavior becomes totally cue-driven and inflexible, 
merely that one behavioral option (the addictive behavior) becomes 
more attractive and probable, once primed in the sense of biased choice 
competition. Finally, there is evidence both from animal and human 
research that stress and negative affect may promote addictive beha-
viors, but the evidence supports the case for biased choice in favor of 
the addictive behavior rather than totally inflexible compulsive habi-
tual behaviors (review: Hogarth, 2020). 

The current evidence supports an account where biased goal-di-
rected choice is central in addictive behaviors and sources of bias can 
include neuroadaptations as a consequence of experience and learning 
history. These may be further fueled in addictive behaviors by vulner-
ability factors (e.g., genetics, early life stress), and in case of substance 
addictions, by effects of the substances on these more general learning 
mechanisms. For example, many drugs have effects on the mesolimbic 
dopamine system which may strengthen the motivational significance 
of associated cues (Berridge & Robinson, 2016). In terms of neurocog-
nitive processing, this may lead to an enhanced attentional salience of 
drug related cues (Berridge & Robinson, 2016; Franken, 2003), as has 
been found for reward-cues in general (Le Pelley, Pearson, Griffiths, & 
Beesley, 2015; Watson, Pearson, Wiers, & Le Pelley, 2019) as well as for 
drug associated cues (Anderson, 2016; Wiers, Van Dessel et al., 2020; 
Wiers, Van Gaal et al., 2020). Initial attentional capture by reward cues 
may be very difficult to control, for example, male volunteers could not 
prevent looking at nudes, even when they would be highly rewarded 
when successful (Most, Smith, Cooter, Levy, & Zald, 2007), and the 
same may be the case in addiction (Childress et al., 2008; Ingjaldsson, 
Thayer, & Laberg, 2003). However, subsequent responses can be 
trained, with positive effects on treatment outcomes, even in severely 
addicted people, as work on attentional bias modification and approach 
bias modification in addicted patients has demonstrated (outlined fur-
ther in Section 4). For example, in the first small RCT of attentional 
training in alcohol-dependent patients, no effect of training was found 
for attentional engagement (200 ms), but the later response (500 ms) 
was successfully modified, which was related to later relapse 
(Schoenmakers et al., 2010). Hence, from this perspective, drug use 
remains volitional, throughout different stages of addiction, but the 
volitional choice process becomes biased. This can be modelled, for 
example, with drift–diffusion models (Field et al., 2020; Lin, Saunders, 
Friese, Evans, & Inzlicht, 2020; Wiers, Van Gaal et al., 2020). In these 
models, experience with addictive behaviors (in interaction with vul-
nerability factors), affect the decision-making space, for example, by 

lowering the boundary value to be reached for a decision and by in-
creasing the drift rate (see Fig. 1). Hence, there is still volitional choice 
in addiction, but the underlying motivational processes have been af-
fected, favoring the choice to continue the addictive behavior, once 
triggered by conditioned cues. Note that this bias can be experienced as 
subjective craving, but this is not necessarily the case (Baumeister, 
2017; May, Kavanagh, & Andrade, 2015). These neuroadaptations 
could only be described as a chronic brain disease if the addiction (and 
its collateral damage such as in Korsakov syndrome), would make it 
impossible to overcome this initial action tendency once triggered, 
which is rarely, if ever, the case, and if this would not revert after 
prolonged abstinence (see Heather et al., 2018; and see for promising 
results regarding neurorehabilitation in Korsakov, Loijen et al., 2018). 

3. The brain as integrated prediction Machine: Distributed 
adaptive control 

The review of the literature shows that the field of addiction re-
search is facing a number of apparent dilemmas. These can be brought 
back to dichotomies between compulsive addictive behaviors (varieties 
of the BDMA) on the one hand, and examples of spontaneous recovery 
(Heyman, 2010) and responsiveness to small motivational interventions 
(Miller, 2000), on the other hand. These dilemmas may sometimes be 
the result from over-focusing on single mechanism-oriented inter-
pretations. Here we advance the view that these putative appositions 
can be overcome when we place them in the context of the system as a 
whole. We will develop this perspective by taking a system-level ar-
chitecture-oriented view. 

An increasingly influential perspective on the brain is that it is a 
hierarchically organized adaptive prediction system (Friston, 2009; 
Massaro, 1997; Verschure & Althaus, 2003; Verschure & Pfeifer, 1992). 
This view changes our understanding of human decision making be-
cause it allows us to consider behavioral control as resulting from an 
integrated multi-layered hierarchical architecture (Verschure, 2018). 
While the highest cognitive level, including propositional reasoning and 

Fig. 1. Decision-making as modelled in drift-diffusion models. In this schematic 
picture, there is a choice between an addictive behavior (A) and an alternative 
behavior (B). A is triggered, for example by a conditioned cue, which “pulls” the 
decision-making toward the threshold of A (once the threshold is passed, an 
action is initiated). If long-term goals favor B, the decision-making can still be 
down-regulated toward choice B. The process of becoming addicted, from this 
model, can change the drift rate (steeper curve toward decision A) and/or lower 
the decision-threshold. Note that in the example, the chronic brain disease 
would mean that the decision threshold for A is already reached before 
downregulation in view of long-term goals can begin, and that this would not 
change after prolonged abstinence. Fortunately, evidence favors a model in 
which decision-making is biased, but not in this strong sense. 
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Fig. 2. A highly abstracted representation of the Distributed Adaptive Control (DAC) theory showing its main processes (boxes) and dominant information flows 
(arrows). DAC is organised along four layers (Soma, Reactive, Adaptive and Contextual) and three columns (World, Self, Action). Across these layers three functional 
columns of organisation exist: exosensing, the sensation and perception of the external world (left, blue); endosensing, detecting and signalling states derived from the 
physically instantiated self (middle, green), and action which establishes the interface between self and the world action (right, yellow). The arrows show the primary 
flow of information, mapping exo- and endosensing into action, defining a continuous loop of interaction with the world. Soma designates the body and its sensors, 
organs and actuators. It defines the needs, or Self Essential Functions (SEF), the organism must satisfy to survive. The Reactive Layer (RL) comprises dedicated Core 
Behaviour Systems (CBS) each implementing predefined sensorimotor mappings serving the SEFs. To allow for action selection, task switching and conflict re-
solution, all BSs are in turn regulated via an allostatic controller that sets their internal homeostatic dynamics relative to overall system demands and opportunities. 
The Adaptive Layer (AL) acquires representations of the states of the world and the agent and shapes action constrained by the value functions derived from the 
allostatic control of the RL. Learning by the AL minimises perceptual and behavioural prediction error, building a model free action generation system. The 
Contextual Layer (CL) further expands the time horizon in which the agent can operate, realising model-based policies, through the use of sequential short and long- 
term memory systems (STM and LTM respectively). STM acquires conjunctive sensorimotor representations that are generated by the AL as the agent acts in the 
world. STM sequences are retained as goal-oriented models in LTM when positive value is encountered, as defined by the RL and AL. The contribution of these stored 
LTM policies to goal-oriented decision-making depends on four factors: perceptual evidence, memory chaining, valence and the expected cost of reaching a given goal 
state (Verschure & Althaus, 2003). The content of working memory (WM) is defined by the memory dynamics that represents DAC’s four-factor decision-making 
model. The autobiographical memory system allows the restructuring of memory around the unifying notion of Self which DAC proposes is essential to engage with 
the social world serving a “other like self” social perception model. See text for further explanation. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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deliberation, remains essential, it may in specific cases be limited in 
overriding action tendencies triggered by lower-level mechanisms, re-
sulting in biased decision-making. This view is congruent with models 
of psychopathology that posit that in human decision making, goal- 
directed reasoning is guiding, but that in (severe) psychopathology, this 
may be compromised (e.g., Moors, Boddez, & De Houwer, 2017). 

To elaborate the changing perspective on mind and brain and to 
advance an alternative for the BDMA, we turn to a specific example that 
combines the view of the predictive brain with that of embodied cog-
nition: the DAC theory of mind and brain (see Fig. 2). In DAC the mind/ 
brain is modelled as a multi-level control system that maintains a multi- 
stable equilibrium between the embodied agent and its partially pre-
dictable and a priori unknown environment through action. Action 
results from optimizing the core objective functions of why (motiva-
tion), what (objects), where (space), when (time) and who (intention of 
other agents) (Verschure, 2012, 2018). A distinguishing feature of the 
DAC architecture is that each layer is an integral part of a larger system. 
For instance, the activation of a reflex at the level of the reactive layer 
carries critical information on the interaction between the agent and 
the world. In addition to triggering reflexive behavior, it also generates 
feedforward control signals for subsequent layers, that in turn drive 
action, epistemic needs, and conflict resolution. In this way the DAC 
architecture can bootstrap its knowledge structures and derived plans 
for action from simple priors. Thus, rather than operating with a fixed 
configuration, DAC proposes that the brain as a control system con-
tinuously re-configures its functional organization, engaging different 
layers of control to satisfy varying demands. Through this dynamic 
reconfiguration, a range of trade-offs are addressed such as that be-
tween robustness and complexity, speed and stability or exploration 
and exploitation. The DAC architecture thus follows the general evo-
lutionary principle of being constructed from “constraints that decon-
strain” (Doyle & Csete, 2011; Kirschner & Gerhart, 2008). For instance, 
dopamine affords reward-based learning, which deconstrains the po-
tential task space of the agent, but in turn can be coopted by drugs of 
abuse which constrains choice, resulting in biased choice. By commit-
ting to distinct priors (constraints), the DAC architecture approximates 
the requirement of general intelligence, where anything can become a 
task (Newell, 1994). In addition, operations at higher layers of the ar-
chitecture are progressively performed on virtualized states of the en-
vironment whereas the reactive layer responds to analog signals 
transduced directly from it (e.g., an Unconditioned Stimulus, US). At 
the cognitive control level of the contextual layer inferences are made 
over probability distributions of internally represented states, derived 
from internal models which bias action selection (Verschure, 2016). 

The adaptive and contextual layers of DAC explain key features of 
classical and operant conditioning, respectively. This provides a direct 
link to our understanding of important aspects of addiction and its 
underlying biased choice. The adaptive layer as a model of classical 
conditioning acquires the state space of the environment through in-
teraction, deploying a prediction-based local learning rule (Verschure, 
Voegtlin, & Douglas, 2003). This learning model directly captures the 
law of associative competition of classical conditioning (Rescorla & 
Wagner, 1972): animals only learn when events violate their expecta-
tions. More specifically, DAC implements the two-phase model of 
classical conditioning proposed initially by Konorski (Miller & 
Konorski, 1928), where classical conditioning is seen as comprising a 
fast perceptual and slow procedural learning stage. This division has 
been mapped to the amygdala, basal forebrain, and sensory cortices and 
the cerebellum, respectively (Medina, Christopher Repa, Mauk, & 
LeDoux, 2002). Where the former process identifies and represents the 
Conditioned Stimulus (CS, “what”). The latter shapes the amplitude- 
time properties of the predefined Unconditioned Response (UR), con-
structing the Conditioned Response (CR, “how”), driven by explicit 
peripherally triggered error signals that depend on the US (“when”,  
Lavond, Kim, & Thompson, 1993). A series of robot-based models of the 
DAC two-phase model of classical conditioning have shown how the 

physiologically observed changes in cortical representations of the CS 
are required in order to effectively drive the procedural learning by the 
cerebellum (Inderbitzin, Herreros-alonso, & Verschure, 2010; Giovanni  
Maffei, Santos-Pata, Marcos, Sánchez-Fibla, & Verschure, 2015). These 
models also revealed a new contextual component to error-driven 
motor learning. Ever since Pavlov, the acquired CS/CR association was 
believed to replace the innate US/UR, an idea still dominant in motor 
learning, defined by the classical feedback error learning model 
(Kawato, Furukawa, & Suzuki, 1987). However, in a series of robot- 
based experiments, it was shown that the overall response was a com-
pound comprising both the CR and UR even after reaching asymptotic 
levels of learning (Herreros & Verschure, 2013; Herreros, Maffei, 
Brandi, Sanchez-Fibla, & Verschure, 2013). Hence, rather than repla-
cing the peripheral error-driven UR, the CS generates an acquired 
predictive error signal, that is shifted in time or counterfactual error, that 
drives the reactive layer feedback system linking the US to the UR, 
reshaping its amplitude time course informed by forward models 
(Maffei, Herreros, Sanchez-Fibla, Friston, & Verschure, 2017). This 
explanation accounts for several anatomical and physiological results, 
including the observation that during eyeblink conditioning, physiolo-
gical traces of error signals were found both preceding and co-occurring 
with the US once learning reached asymptotic levels (Ten Brinke et al., 
2015). Interestingly, a direct recurrent pathway exists between the 
frontal cortex and the cerebellum in the mammalian brain. Cerebellar 
signals are projected to the forebrain via the thalamus, while the 
forebrain in turn interfaces to the inferior olive climbing fiber inputs via 
the mesodiencephalic junction (De Zeeuw, Hoebeek, & Schonewille, 
2008). This substrate allows information from advanced task models 
and cognitive control, represented in the frontal cortex, to be projected 
onto the error processing structures targeting cerebellar circuits, in-
ferior olive, modulating procedural learning. 

A recent study in chronic cannabis users explicitly tested the role of 
counterfactual error, and demonstrated the clinical relevance of this 
interaction between adaptive and contextual control where a distinct 
disruption between rule-based deliberative cognitive control and pro-
cedural learning was revealed (Herreros et al., 2019). In the context of 
the DAC framework, this suggests that in cannabis users, rule-based 
counterfactual error signals are less effective in modulating the cere-
bellum, leading to enhanced procedural learning at the expense of di-
minished rule-based cognitive control. We note that this imbalance 
between cognitive control and procedural learning is also coupled 
through the environment and is critically linked to the relationship 
between processes of error monitoring and overt performance. The 
concept of counterfactual error as used in this example points to the 
multi-level nature of internal and external feedback loops that must be 
considered when diagnosing and treating the effects of addiction. In-
deed, suboptimal error-monitoring has also been related to (cocaine) 
addiction (e.g., Bolla et al., 2004; Moeller et al., 2016). 

The DAC architecture is providing a concrete model for the biased 
decision-making interpretation of addiction. Specifically, the contextual 
layer of DAC has shown to be Bayesian optimal in decision making tasks 
based on the organization of action selection around the four factors of 
perceptual evidence, memory bias, value and goals (Verschure & 
Althaus, 2003). Neuropathology and drug use can alter the relative 
contribution of these four factors to action selection, reshaping the 
trade-off boundaries, the control architecture optimizes. In other words, 
as opposed to ascribing irrational behavior to an addict, the decision- 
making process of the contextual layer would operate following the 
normal principles of Bayesian optimality and integration, but the goal 
and value systems have changed in their specification of objectives and 
utility, respectively. Hence, from the perspective of the agent, choice 
behavior may be fully rational during addiction (Kopetz & Orehek, 
2015). This will only change when goals and values change, which can 
be achieved spontaneously (for example after an impactful experience) 
or aided by motivational interviewing (Miller, 2000). The four factor 
decision-making model of DAC also provides a further refinement to the 
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standard drift diffusion models of decision making and the dominant 
role the latter attribute to perceptual evidence. Indeed, the elegant 
explanation drift diffusion models provide of macaque performance and 
neurophysiology becomes invalid in case tasks become more complex 
as in case of countermanding where the subject had to withhold an 
initiated action upon receiving a stop signal (Marcos et al., 2013). A 
computational model has shown that a key factor underlying the 
competitive neurodynamics driving decision making is performance 
monitoring (ibid). In particular, biased choice is dynamically regulated 
by the active monitoring of performance by the agent itself where de-
cision thresholds and gains depend on errors and success. Changes in 
monitoring, rather than perceptual evidence, better accounts for biased 
choice as observed in addiction. 

The DAC architecture also provides a different perspective on the 
relationship between deliberation and habit-driven behaviors. As noted 
above, in neuroscience, this dichotomy is currently cast in terms of the 
distinction between model-free and model-based (MF-MB) solutions to 
the problem of choice (Daw et al., 2005). These solutions each stand at 
different extremes of the robustness versus flexibility trade-of and are 
consistent with the dilemma of habit versus choice we encountered in 
the addiction literature, an example of a dichotomous interpretation of 
adaptive behavior (Hommel, 2019). Notably, the original proponents of 
this proposal are either backtracking from the MF-MB distinction and 
posit a single model-based stage (Daw, 2018) or question the validity of 
model-free interpretations of simple associative learning (Dayan & 
Berridge, 2014). In the latter case, the key observation is that a value 
reversal of a CS (i.e. saltiness of a lever), is either aversive or appetitive 
depending on the internal motivational state of the animal, and indeed 
is shown to change after salt deprivation. The observation that drive 
states modulate the value of a stimulus echoes classical models of 
conditioning (Hull, 1952). In the MF-MB distinction, the latter can only 
be achieved by falling back on performing computations on a model of 
states and outcomes, which contradicts earlier definitions in which 
classical conditioning was defined as MF. Yet, a multilayer predictive 
architecture like DAC shows how this dilemma can be resolved. The 
Adaptive Layer represents MF associations between states and out-
comes, but these conjunctive representations in turn become the pri-
mitives for the MB Contextual Layer which combines them into ex-
panded goal-associated sequences that in turn are weighted regarding 
their utility given the current drive state (Duff, Sanchez Fibla, & 
Verschure, 2011; Verschure & Althaus, 2003). Whether the system re-
lies more on MF or MB mechanisms now depends on the specific task 
constraints, on the layer of control invoked and the internal motiva-
tional state of the agent which transforms associated value into utility. 
Hence, the MF and MB apposition is illusory in the sense that they are 
functional realizations of an integrated and dynamic embodied control 
system which is resolving distinct trade-offs. 

4. Neurorehabilitation 

The goal of rehabilitation in addiction is two-fold. First, the addic-
tion itself has to be addressed and overcome, reducing the probability 
of relapse. A second goal can be to address amelioration of the func-
tional deficits incurred by the addiction and its negative effects on the 
quality of life and health. The challenge of effective rehabilitation in 
addiction is to enhance the impact of treatment, based on a standard set 
of principles underlying diagnostics and intervention. We can add to 
these foundational challenges the more pragmatic one of finding solu-
tions that facilitate scaling to large numbers of patients, including, 
ideally, those at home, as the large majority of people suffering from 
addictions are not treated (Alonso et al., 2004). To answer these chal-
lenges in the domain of addiction, we can also build on results obtained 
with the system-oriented neurorehabilitation approach developed 
within the context of the DAC theory. We first address the current state 
of affairs in addiction neurorehabilitation and then return to system- 
oriented neurorehabilitation. 

Current (neuro)cognitive training or neurorehabilitation efforts in 
addiction can be categorized into two broad classes: training of (sub-
optimal) general functions, such as working memory (WM), and re- 
training of abnormally strong cognitive-motivational processes (“cog-
nitive biases”) triggered by addiction-related cues, known as cognitive 
bias modification or CBM (Wiers, 2018). Regarding the first class of 
neurorehabilitation, there is evidence that training can improve the 
targeted general function (typically WM), and generalization to other 
relevant functions has been reported, such as delay discounting (Bickel, 
Yi, Landes, Hill, & Baxter, 2011), and future episodic thinking (Snider 
et al., 2018). However, there is little evidence that general cognitive 
training helps people to control their addictive behaviors better (re-
duced drinking in one subgroup, Houben, Wiers, & Jansen, 2011; no 
evidence: Bickel et al., 2011; Snider et al., 2018; Wanmaker et al., 
2018). These negative results do not make this type of training useless 
in a clinical context: for example, the enhanced ability for future epi-
sodic thinking can be beneficial when addressed in a therapeutic setting 
for making post-addiction plans more concrete. Furthermore, feedback 
about progress in these functions can in turn be motivating to work 
towards recovery (Bates, Buckman, & Nguyen, 2013). Note that this 
literature usually assumes that suboptimal cognitive functions are the 
result of the addiction (“broken brain”). However, evidence for this 
assumption is typically lacking: often there are no baseline measures 
from before the addiction (Schulte et al., 2014), and relatively weak 
cognitive control is one of the most consistent predictors of later ad-
diction (Nigg, 2000). As a consequence, while improvement can be 
expected and can be motivating, it is questionable whether “normal” 
performance should be a norm in the specification of intervention 
outcomes, another variant of the “true” recovery assumption. More-
over, the absence of normative performance does not imply a chronic 
brain disease when another etiological factor could be at play. Re-
garding the effects of binge drinking in youth, a recent systematic re-
view and meta-analysis reported mostly small effects on different neu-
ropsychological outcome measures, with low to very low certainty 
(Lees et al., 2019). Further, a recent mega-analysis on the effects of 
substance use on behavioral inhibition also reported very limited effects 
(Liu et al., 2019). The absence of evidence does not mean that there are 
no detrimental effects of early substance use on brain development, but 
we would argue that these modest findings should be understood as a 
factor which is likely to bias future (drug-related) decision-making ra-
ther than an indicator of a developing chronic brain disease. 

In the second type of cognitive training, CBM, different cognitive 
biases can be targeted: biases in attention, action tendencies, and 
memory (Wiers, Gladwin, Hofmann, Salemink, & Ridderinkhof, 2013). 
All of these biases are triggered by contextual stimuli that are related to 
the addiction (e.g., a location, object, time of day). The basic idea be-
hind CBM is that these stimuli trigger appetitive reactions (capture 
attention, trigger memories of pleasant effects and action tendencies to 
approach the cue) and that these reactions can be systematically re- 
trained. When evaluating the evidence supporting CBM, it is crucial to 
distinguish between proof-of-principle studies and randomized con-
trolled trials (RCTs, Sheeran, Klein, & Rothman, 2017; Wiers, Boffo, & 
Field, 2018), which one meta-analysis failed to do (Cristea, Kok, & 
Cuijpers, 2016). In proof-of-principle studies, a cognitive bias is ma-
nipulated (sometimes temporarily increased) in non-addicted subjects 
with the goal to test its hypothetical causal effect on behavior. In 
contrast, in clinical RCTs participants consist of patients or volunteers 
who wish to change their addictive behaviors (Wiers et al., 2018). 
Proof-of-principle studies typically report short-lived effects, in case the 
bias is successfully manipulated (Allom, Mullan, & Hagger, 2016; Wiers 
et al., 2018). Clinical RCTs have shown a small but consistent additive 
effect on long-term treatment outcomes when combined with standard 
treatment. For instance, in alcohol use disorders, relapse one year after 
treatment discharge was found to decrease by approximately 10% 
across multiple large RCTs (Eberl et al., 2013; Rinck, Wiers, Becker, & 
Lindenmeyer, 2018; Wiers, Eberl, Rinck, Becker, & Lindenmeyer, 
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2011). This demonstrates that although choice is biased in addiction, 
targeted training may help to neutralize this bias. A recent compre-
hensive Bayesian meta-analysis, exclusively including clinical studies, 
has confirmed a small effect on bias and abstinence, while calling for 
more studies (Boffo et al., 2019). This effect may be enhanced by op-
timizing timing: a small study found strong effects of CBM when de-
livered during detox (Manning et al., 2016). Further, CBM-training may 
be enhanced from the theoretical perspective of effects on automatic 
inferences rather than associations (Wiers, Van Dessel et al., 2020). For 
example, adding consequences to actions could increase the goal-di-
rected nature of training and thereby increase its effectiveness (Van 
Dessel, Hughes, & De Houwer, 2019). Further, alternative actions can 
be personalized, especially for other addictions where no generic al-
ternative is present (such as non-alcoholic drinks in AUD) (Kopetz, 
MacPherson, Mitchell, Houston-Ludlam, & Wiers, 2017). In line with a 
systems-based approach to neurorehabilitation, these new varieties of 
CBM address different (personalized) aspects of the situated agent: 
environmental risk-situations, personally relevant alternative choices 
and their effects on different (personally relevant) outcomes (Wiers, 
Van Dessel et al., 2020, Wiers, Van Gaal et al., 2020). However, all 
these suggestions await further clinical testing in well-designed RCTs. 

Starting from the consideration that an adequate theory of mind and 
brain should provide traction in clinical applications, core principles of 
the DAC theory have been translated to the treatment of motor, affective 
and cognitive deficits in several neuro-pathologies. Key features include 
the organization of training around integrated tasks and goals, as pro-
posed by the contextual layer, to include ecologically realistic sensor-
imotor contingencies, as defined by the adaptive layer, to individualize 
task difficulty optimizing effort, fatigue, and motivation as defined by the 
reactive layer. In addition, all training scenarios are presented in virtual 
reality (VR), in a first-person embodied perspective, following the DAC 
predicates of embodiment and situatedness of the somatic layer. Thus, in 
this approach the recovering brain is asked to take ownership of a virtual 
body with which to perform tasks in a virtual environment. In general, 
DAC proposes that the most effective way to retrain a recovering brain is 
by projecting it in an embodied form into a task-space with well-defined 
sensorimotor contingencies, goals and feedback. 

The application of DAC-based clinical interventions (Rehabilitation 
Gaming System, RGS), can be used for system-oriented neurorehabil-
itation. For example, functional rehabilitation after stroke, a pathology 
often considered one of the most unambiguous examples of a “broken 
brain”, has been successfully improved with system-oriented neuror-
ehabilitation. As an example we can consider the popular intervention 
of constraint induced movement therapy, where the use of the paretic 
arm is promoted through the immobilization of the healthy one (Taub, 
Uswatte, & Pidikiti, 1999). Recent meta-analyses have questioned its 
effectivity as compared to standard treatment (Kwakkel et al., 2016; 
Kwakkel, Veerbeek, van Wegen, & Wolf, 2015). Based on the DAC-de-
rived counterfactual error hypothesis, an alternative was proposed 
where visual error feedback in VR was reduced through intention- 
compatible enhancement of reaching actions. This intervention restored 
symmetric arm use in a group of chronic stroke patients in a single 
session with 100 enhanced trials (Ballester et al., 2015). This is one 
example of the translation of the principles of DAC-derived system-or-
iented neurorehabilitation, for which large-scale clinical trials have 
now shown its effectivity (meta-analysis: Rubio et al., 2019). 

Building on these examples, we foresee a convergence of principles 
of diagnostics and training across different neuropathologies that place 
deficits and their ramifications in the context of the complex linking of 
the different levels of organization of humans from their genetic and 
neuronal substrate to their psychological organization and behavioral 
expression including their specific socio-cultural embedding. As a 
concrete example we can consider the commonalities between the 
principles underlying CBM and intentional compatible movement en-
hancement based on counterfactual error deployed in RGS. In both 
cases, these interventions link to the fundamental learning paradigm of 

classical conditioning as modelled by DAC. The counterfactual error 
hypothesis predicts that addicted patients will face changes to their 
error monitoring and processing, and a resulting modulation of choice 
behavior as demonstrated by the aforementioned study on cannabis 
users (Herreros et al., 2019). In the stroke rehabilitation example, this 
principle was used to modulate the controllability of the paretic limb, 
and CBM for addiction can further elaborate this principle towards the 
processing of sensory cues and error monitoring. In addition, by ela-
borating these principles underlying pathological behavior, an addi-
tional therapeutic channel is created that will allow patients to develop 
the meta-cognition needed to willfully address the challenges they face 
as a result of their addiction. Hence, the question is not which of two 
processes exclusively dominates performance (as in dual-process and 
MF-Mb models), but rather how the relative contributions of multiple 
factors to the choice generation process are modulated by a multi-scale 
embodied control architecture in the face a specific trade-offs, and how 
this can be influenced in treatment and neurorehabilitation. 

5. Conclusions 

Addictions are among the most frequent and costly of all mental and 
brain disorders (Effertz & Mann, 2013). There is no doubt that drugs of 
abuse and long-term addictions have an impact on the brain. However, 
we argue that these effects should be understood and treated from a 
systems-perspective, in line with the multi-layered hierarchical orga-
nization of the (human) brain, in which goals and meaning are essential 
at the highest contextual level, with direct and indirect impact at lower 
levels of organization. This implies that the human mind/brain, ad-
dicted or not, should be considered as a goal-directed dynamic complex 
system, and its idiosyncratic but rational goal-directedness should guide 
neurorehabilitation. This perspective differs from the dominant per-
spective of the chronic brain disease model of addiction and its asso-
ciated interventions aimed at repairing the broken-brain. System-or-
iented neurorehabilitation takes a dynamic and adaptive hierarchical 
embodied and situated brain as its starting point. It helps patients to 
recover by systematic training, addressing multiple levels of under-
standing, experience, and control. System-oriented neurorehabilitation 
starts with goals to change (contextual level), the history of experience 
(adaptive level), which defines individualized and personally relevant 
training, addressing multiple levels of control (addressing the adaptive 
and reactive levels). This approach has already shown impact in the 
treatment of stroke and related problems, early results in cannabis di-
agnostics and provides a framework in which to elaborate novel ap-
proaches such as CBM that can be used to further develop neuroreh-
abilitation for addictions in an efficient and scalable form. Indeed, the 
example of counterfactual error processing derived from the DAC fra-
mework has shown relevance across domains of neuropathology, in-
cluding addictions. In this way, advances in clinical applications and 
our fundamental understanding of mind and brain will progress in a 
complementary and synchronized effort. 
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