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We report a search for Higgs bosons that are produced via vector boson fusion and subsequently 
decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass 
of O(1) TeV and O(100) GeV missing transverse momentum. The analysis uses 36.1 fb−1 of pp collision 
data at 

√
s = 13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed 

events are consistent with the background estimation. Assuming a 125 GeV scalar particle with Standard 
Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible 
particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal 
models to set bounds on the wimp–nucleon scattering cross section. We also consider invisible decays of 
additional scalar bosons with masses up to 3 TeV for which the upper limits on the cross section times 
branching fraction are in the range of 0.3–1.7 pb.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We present a search for the decays of the Higgs boson [1,2], 
produced via the vector boson fusion (VBF) process [3,4], into 
invisible particles (χχ̄ ) with an anomalous and sizable O(10)%
branching fraction. The hypothesis under consideration [5–16] is 
that the Higgs boson might decay into a pair of weakly interacting 
massive particles (wimp) [17,18], which may explain the nature of 
dark matter (see Ref. [19] and the references therein). The search 
carried out for the 125 GeV Higgs boson is repeated for hypothet-
ical scalars with masses up to 3 TeV. The search is independent 
on the decay of the mediator because the final state particles are 
invisible to the detector, while it is dependent on its Emiss

T distri-
bution (defined below) because that quantity is reflective of the 
mediator’s pT distribution.

The data sample corresponds to an integrated luminosity of 
36.1 fb−1 of proton-proton (pp) collisions at 

√
s = 13 TeV recorded 

by the ATLAS detector at the LHC in 2015 and 2016. The ex-
perimental signature of the VBF production process is a pair of 
energetic quark jets with a wide gap in pseudorapidity (η) cor-
responding to the O(1) TeV value of the invariant mass (m jj ) of 
the highest-pT jets in the event.1 The signature for the decay pro-

� E-mail address: atlas .publications @cern .ch.
1 ATLAS uses a right-handed coordinate system with its origin at the nominal 

interaction point in the center of the detector and the z-axis along the beam di-
rection. The x-axis points from the interaction point to the center of the LHC ring; 
the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse 
plane, where φ is the azimuthal angle around the z-axis. The pseudorapidity is de-
fined as η = − ln(tan (θ/2)), where θ is the polar angle.

cess is the O(100) GeV value of the missing transverse momentum (
Emiss

T

)
that corresponds to the Higgs boson pT. The VBF topology 

offers a powerful rejection of the strongly produced2 backgrounds 
due to single vector boson plus two jets, and the multijet back-
ground produced from QCD processes. In this analysis, the Higgs 
production via the gluon fusion mechanism is subdominant to VBF 
and is considered as part of the signal.

Direct searches for invisible Higgs decays look for an excess of 
events over Standard Model expectations. The absence of an excess 
is interpreted as an upper limit on the branching fraction of invis-
ible decays (Binv) assuming the Standard Model production cross 
section [20] of the 125 GeV Higgs boson. Other published results 
have targeted a variety of production mechanisms—gluon fusion, 
VBF, W or Z associated production [21–25]—to set upper limits on 
Binv. The best limits are from the statistical combination of search 
results for which ATLAS reports an observed (expected) limit of 
0.26 (0.17) [26] and CMS reports 0.26 (0.20) [27] at 95% confi-
dence level (CL). For these combinations the single input with the 
highest expected sensitivity is VBF, the channel pursued here. For 
the VBF channel using Run-1 data, ATLAS reports 0.28 (0.31) [28]
and CMS reports 0.43 (0.31) [29]. In a more recent update of the 
VBF channel using Run-2 data, ATLAS reports 0.37 (0.28) [this pa-
per] CMS reports 0.33 (0.25) [27].

Global fits to the measurements of visible decay channels of 
the Higgs boson place indirect constraints on the beyond-the-SM 

2 For the W and Z background processes in this paper, electroweak (EW) refers 
to diagrams that are of O(α4

ew
) or greater, while strong refers to diagrams that are 

of O(α2
s
) or greater accompanied by O(α2

ew
).
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decay branching fraction Bbsm . The Bbsm is the sum of Binv that 
represents invisible decays and Bundet that represents the channels 
that are undetected, i.e., those that are not included in the follow-
ing combination. For Bbsm using Run-1 data, ATLAS reports 0.49
(0.48) [30] and CMS reports 0.57 (0.52) [31] with similar but not 
identical assumptions. A combination of ATLAS and CMS results 
using Run-1 data gives 0.34 (0.39) [32]. In a more recent update 
using Run-2 data, CMS reports an observed limit on Bundet of 0.38
[33]. As noted in Ref. [28], there is complementarity between the 
direct search for invisible Higgs decays and the indirect constraints 
from the global fits.

In this analysis, several changes and improvements are made 
with respect to the previous ATLAS paper on this topic [28]. The 
trigger and hadronic objects are defined considering the simul-
taneous pp collisions in the same and nearby bunch crossings 
(pileup) (Section 2). The leading backgrounds are simulated using 
state-of-the-art QCD predictions (Section 3). The event selections 
are changed to retain a good sensitivity despite the higher pileup. 
The analysis extracts the signal yield using a binned likelihood fit 
to the m jj spectrum in 3 bins to increase the signal sensitivity 
(Section 4). The estimation of the important and dominant back-
ground for the Z →νν process (denoted Zνν ) relies only on the 
Zee and Zμμ control samples, and is not affected by theoretical un-
certainties of the W -to-Z extrapolation (Section 5). The systematic 
uncertainties are evaluated separately for each m jj bin (Section 6). 
The search is repeated for other scalars with masses up to 3 TeV, 
which can easily be reinterpreted for models not considered in this 
Letter (Section 7). Several aspects of the analysis have not changed 
compared to the ATLAS Run-1 analysis—e.g., subdetector descrip-
tions, transfer factor method, Higgs portal models—and details of 
these may be found in Ref. [28].

2. Detector, trigger, and analysis objects

ATLAS is a multipurpose particle physics detector with a 
forward–backward symmetric cylindrical geometry consisting of a 
tracking system, electromagnetic and hadronic calorimeters, and a 
muon system [34].

The trigger to record events in the sample containing the VBF 
signal candidates used a two-level Emiss

T algorithm with thresholds 
adjusted throughout the data-taking period to cope with varying 
levels of pileup [35,36]. The level-1 system used coarse-granularity 
analog sums of the energy deposits in the calorimeter towers to 
require Emiss

T > 50 GeV. The second-level high level trigger sys-
tem [37] used jets that are reconstructed from calibrated clusters 
of cell energies [38] and requires Emiss

T > 70–110 GeV depending 
on the luminosity and the pileup level. The trigger efficiency [39]
for signal events is 98% for Emiss

T > 180 GeV when comparing the 
trigger selection with the offline Emiss

T definition that contains ad-
ditional corrections.

The triggers to record the control samples for background stud-
ies used lepton and jet algorithms [40]. The samples with leptonic 
W and Z decays were collected with a single-electron or -muon 
trigger with pT > 24 GeV (26 GeV) and an isolation requirement in 
2015 (towards the end of 2016). The sample of multijet events was 
collected using a set of low-threshold single-jet triggers with large 
prescale values to keep the event rate relatively low.

For each event, a vertex is reconstructed from two or more 
associated tracks (t) with pT > 400 MeV. If multiple vertices are 
present, we consider the one with the largest 

∑
t(pT,t)

2 as the 
primary vertex of our candidates.

Leptons (	= e, μ) are identified to help characterize events 
with leptonic final states from decays of vector bosons. Since the 
signal process contains no leptons, such events are used for the 
background estimation, which is described in Section 5. Electrons 

(muons) must have pT > 7 GeV, |η| < 2.47 (2.5), and satisfy an iso-
lation requirement. Electrons are reconstructed by matching clus-
tered energy deposits in the electromagnetic calorimeter to tracks 
from the inner detector [41,42] and muons by matching inner de-
tector and muon spectrometer tracks [43]. For electrons (muons) 
with a pT value of at least 30 GeV (20-100 GeV), the reconstruction 
efficiency 80% (96%) with a rejection factor of around 500 (600). 
All leptons must originate from the primary vertex.

Jets are reconstructed from topological clusters in the calorime-
ters using the anti-kt algorithm [44] with a radius parameter 
R = 0.4. Jets must have pT > 20 GeV and |η| < 4.5. The subset of 
jets with pT < 60 GeV and |η| < 2.4 are jet vertex tagged (jvt) [45]
to suppress pileup effects, using tracking and vertexing. The jvt is 
92% efficient for the jets in the signal process from the primary in-
teraction with a rejection factor of around 100 for pileup jets with 
pT value in the range of 20-50 GeV [45].

Cleaning requirements help suppress non-collision backgrounds 
[46]. Fake jets due to noisy cells are removed by requiring a good 
fit to the expected pulse shape for each constituent calorimeter 
cell. Fake jets induced by beam-halo interactions with the LHC col-
limators are removed by requirements on their energy distribution 
and the fraction of their constituent tracks that originate from the 
primary vertex.

In events with identified leptons, an overlap removal procedure 
is applied to resolve the ambiguities in cases where a jet is also 
identified in the same η-φ area, which could occur in situations 
such as having a heavy-flavor hadron decay within a jet [47]. The 
lepton–jet overlap in 
R distance3 is resolved sequentially as fol-
lows. If an electron is near a jet with 
R < 0.2, the jet is removed 
to avoid the double counting of electron energy deposits. If a re-
maining jet is near an electron with 0.2 ≤ 
R < 0.4, the electron 
is removed. If a muon is near a jet with 
R < 0.4 and the jet 
is associated with at least (less than) three charged tracks with 
pT > 500 MeV, the muon (jet) is removed.

The Emiss
T variable is the magnitude of the negative vector sum 

of the transverse momenta, − 
∑

i �pT,i , where i represents both 
the “hard objects” and the “soft term.” The hard objects consist 
of leptons and jets, which are individually reconstructed and cal-
ibrated; the list excludes pileup jets, which are removed by a jvt

requirement. The soft term is formed from inner detector tracks 
not associated with the hard objects, but matched to the primary 
vertex. In the search region, the Emiss

T produced by the Higgs decay 
is balanced in the transverse plane by the dijet system.

The jvt procedure is intended to remove pileup jets, but can 
cause large fake Emiss

T if it removes a high-pT jet from the hard 
scatter, e.g., a jet from a pT-balanced three-jet event. In order 
to reduce this, a correlated quantity Hmiss

T —defined as | ∑ j �pT, j|, 
where j represents all jets without the jvt requirement—is re-
quired to be Hmiss

T > 150 GeV. In the three-jet example, Hmiss
T

would be near zero.
The Emiss

T significance (Smet) is used only in events with 
one identified electron in the final state and is defined as 
Emiss

T /
√

pT, j1 +pT, j2 +pT,e , where the pT quantities are for leading 
jet ( j1), subleading jet ( j2), and electron, respectively. The use of 
this quantity to reduce the contamination from jets misidentified 
as electrons is discussed in Section 5.

3. Event simulation

Monte Carlo simulation (MC) consists of an event generation 
followed by detector simulation [48] using geant4 [49]. Simulated 
events were corrected for the small differences between data and 

3 The distance variable is defined as 
R =√
(
η)2 + (
φ)2.
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MC in the trigger, the lepton identification efficiency, and the jet 
energy scale and resolution using dedicated data samples.

For the signal process, the VBF events were generated at next-
to-leading order (NLO) in QCD using powheg-box2 [50]; inclusive 
NLO electroweak corrections were applied using hawk [51]. The 
generated events were interfaced with pythia8 [52] for hadroniza-
tion and showering, using the aznlo tune [53] and the nnpdf3.0 
NNLO PDF set [54]. The gluon fusion events were generated using
powheg-nnlops [55] with the pdf4lhc15 PDF set [56] interfaced to 
a fast detector simulation [57–59]. The cross section for ggF (VBF) 
was computed at N3LO (NNLO) in QCD and NLO (NLO) in elec-
troweak. The showering simulation followed the same procedure 
as for the VBF sample. For both the VBF and gluon fusion events, 
the H → Z Z∗ → 4ν process is included in the sample as invisible 
decays of the Higgs boson. Additional scalars with masses up to 
3 TeV were simulated as described above for VBF signal process, 
assuming a full width of 4 MeV.

The W and Z events were generated using sherpa2.2.1 [60] with
comix [61] and openloops [62] matrix-element generators, and 
merged with sherpa parton shower [63] using the me+ps@nlo pre-
scription [64]. The nnpdf3.0 NNLO PDF set was used. In terms of 
the order of the various processes, the strong production was cal-
culated at NLO for up to two jets and leading order (LO) for the 
third and fourth jets. The electroweak production was calculated 
at LO for the second and third jets. The levels of the interference 
between electroweak and strong processes were computed with
madgraph5_amc@nlo [65]. The interference on the total expected 
background is only 0.1% and thus neglected.

Other potential background processes involve top quarks, di-
bosons, and multijets. Top quarks and dibosons were generated 
with powheg interfaced with pythia and evtgen [66], which sim-
ulate the heavy-flavor decays. The diboson backgrounds include 
electroweak-mediated processes. The multijet estimate does not 
directly use the MC.

To each hard-scatter MC event, pileup collisions (30 on average) 
were added to mimic the environment of the LHC. The pileup col-
lisions, simulated with pythia8 [52] using mstw2008 PDF [67] and 
the a2 set of tuned parameters [68], were subsequently reweighted 
to reproduce the pileup distribution in data.

The sizes of the MC samples vary depending on the process. 
The effective luminosity ranges for the MC samples varies depend-
ing on the process and on the selections, which are defined in 
Section 4. For the W process, the MC sample is approximately half 
of that of the data selected for the W control region and also half 
for the signal region. For the Z process, the MC sample for the Z		

subprocess is approximately twice that of data in the Z control re-
gion; the MC sample for Zνν subprocess is approximately the same 
as that of data in the signal region.

4. Event selection

All events must have a primary vertex. The selection listed be-
low divides the data sample into a signal-enriched search region 
(SR) and background-enriched control regions (CR). The control re-
gions and the statistical fit are discussed in detail in Section 5. The 
rest of this section focuses on the SR and the prefit event yields.4

For the SR, an event is required to have

• no isolated electron or muon,
• a leading jet with pT > 80 GeV,
• a subleading jet with pT > 50 GeV,

4 “Prefit” indicates that the event yields are not adjusted according to the statis-
tical treatment of the background predictions, which is described in the second half 
of Section 5. “Postfit” labels the quantities that come out of the fit procedure.

Table 1
Event yields in the signal region (SR) and control regions (CR) summed over lep-
ton charge and flavor. The yields are the prefit values for m jj > 1 TeV. The observed 
data (N), the background estimate (B), and the signal (S for mH = 125 GeV with 
Binv = 1) are given. The B and S values for individual processes are rounded to a 
precision commensurate with the sampling uncertainty associated with the finite 
MC sample size. For all processes the fractions of electroweak production [ew] are 
given. “Other” is defined in the text.

Description SR W CR Z CR

Yield [ew] Yield [ew] Yield [ew]

N , observed 2252 1602 166
B , expected 2243 1648 183

Z →νν 1111 [18%] – –
Z → ee,μμ 12 [9%] 38 [9%] 181 [23%]
Z →ττ 10 [16%] 11 [16%] –
W → eν,μν 540 [16%] 1400 [30%] –
W →τν 533 [20%] 130 [34%] –
Other 36 67 2

S , signal 1070 – –
VBF 930 – –
Gluon fusion 140 – –

• no additional jets with pT > 25 GeV,
• Emiss

T > 180 GeV,
• Hmiss

T > 150 GeV.

The two jets are required to have the following properties:

• not be aligned with �Emiss
T , | 
φ j-met | > 1,

• not be back-to-back, | 
φ j j | < 1.8,
• be well separated in η, | 
η j j | > 4.8,
• be in opposite η hemispheres, η j1 ·η j2 < 0,
• m jj > 1 TeV.

The SR includes background events containing a W or Z plus two 
jets, where the W decays into eν , μν , and τν , and the Z decays 
into two neutrinos. Here the leptons from the W decays are not 
reconstructed since they would otherwise be rejected by the se-
lection.

Table 1 gives the prefit SR yields in the first column. The VBF 
production process gives the biggest contribution (87%) to the sig-
nal sample (fixed as Binv = 1). The contribution from gluon fusion 
accompanied by parton radiation is small (13%) and other produc-
tion modes contribute negligibly. The fraction of VBF signal events 
that pass the signal region event selections, defined as acceptance 
times reconstruction efficiency, is 0.7%. As is discussed in Sec-
tion 7, the signal significance is improved by considering three bins 
of m jj defined as follows: 1 <m jj ≤ 1.5 TeV, 1.5 <m jj ≤ 2 TeV, and 
m jj > 2 TeV. The prefit S/B ratio (for Binv = 1) in these bins is ap-
proximately 0.3, 0.4, 0.8, respectively.

For the backgrounds, both the strong production and the EW 
production contribute in the SR. The strong production processes 
contributes more than 70% of the backgrounds in all of the m jj
bins. There is variation in the EW fractions for the background 
processes due to a combination of the following factors: known 
differences in the production diagrams between W and Z , differ-
ences in kinematic acceptance for the particular W or Z decay, 
and differences in the MC sample size for each EW process.

5. Control samples and statistical treatment

The main backgrounds in the SR, comprising of 98% of the 
background, are the W and Z processes. The minor backgrounds, 
comprising the remaining 2%, are the diboson, tt̄ , and multijet 
processes. Accurate estimation of the W and Z processes is the 
biggest challenge of the analysis. The main background yields are 
extracted using dedicated control samples in data.
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Fig. 1. Data-to-MC yield comparisons in the 27 subsamples used in the statistical fit. The observed data N (dots) are superimposed on the prefit backgrounds B (stacked 
histogram with shaded systematic uncertainty bands). The hypothetical signal S (empty blue histogram) is shown on top of B for Binv = 1. The bottom panels show the 
ratios of N (dots) and B + S (blue line) to B with the systematic uncertainty band shown on the line at 1. The 1, 2, and 3 bin labels corresponds to 1 <m jj ≤ 1.5 TeV, 
1.5 <m jj ≤ 2 TeV, and m jj > 2 TeV, respectively. The “e fakes” refers to Smet < 4

√
GeV selection and is determined by the fit, so postfit values are shown for the purposes of 

illustration. The diboson contribution is included in the electroweak (EW) W and Z bosons.

This section is organized as follows. First, the two main CR are 
described and the associated prefit yields are given. Second, the 
fit parameters are defined along with a discussion of the contami-
nation in the Weν subsample. Third, the fit procedure is described 
and the postfit yields are stated. Lastly, the minor backgrounds and 
the estimation of the multijet processes are described.

The W CR requires one identified lepton with a pT threshold 
of 30 GeV, but the selections are otherwise identical to those of 
the SR. The initial 	ν selection is divided by lepton flavor, charge, 
and, for the eν final state, a passing selection on Smet > 4

√
GeV

to define four W CR subsamples 
(
Wμ+ν , Wμ−ν , W high

e+ν
, W high

e−ν

)
. 

The complementary failed selection on Smet defines the two “fake-
enriched” subsamples 

(
W low

e+ν
, W low

e−ν

)
. The Emiss

T is calculated by 
adding the calibrated leptons to the sum.

The Z CR is based on the same selection criteria as the SR, but 
the lepton veto is replaced by the requirement of two same-flavor 
opposite-sign leptons 	 with |m		 − mZ | < 25 GeV. The sample is 
divided by lepton flavor, but not by charge (Zee , Zμμ). The lead-
ing lepton-pT threshold is the same as above, and the subleading 
lepton-pT threshold is 7 GeV. The Emiss

T is calculated as is done 
above.

Table 1 gives the prefit CR yields for the inclusive selection of 
m jj > 1 TeV for the W (Z ) CR in the third (fourth) columns. These 
prefit yields are the inputs for the statistical fit described below. 
The samples are very pure, as the relative contribution of the W
(Z ) CR is 95% (99%) from W (Z ) decays. The definitions of the 
main normalizations parameters in the fit are
(
Bsr

W

)
estimate = Ncr

W · Bsr

W /Bcr

W = Bsr

W · Ncr

W /Bcr

W(
Bsr

Z

)
estimate = Ncr

Z · Bsr

Z /Bcr

Z︸ ︷︷ ︸
α transfer

= Bsr

Z · Ncr

Z /Bcr

Z︸ ︷︷ ︸
β normalization

,

where the event yields are for the observed data (N) and the MC 
estimate of the background (B). The transfer factor α is the SR-to-
CR ratio of the MC yields, and is a quantity useful for visualizing 
how the systematic uncertainties partially cancel out. The normal-
ization β is the data-to-MC ratio in the CR, which is extracted from 
the fit. The analysis is performed in three m jj bins i, so i also in-
dexes α and β .

For the W high

eν subsample in the W CR, a yield parameter νfake
is introduced to quantify the “e fakes,” the group of electron can-
didates that are not prompt electrons. This contamination occurs 
most often when a jet from a multijet event identified as an elec-
tron candidate. The underlying idea is that the W decays (multi-

jets) have high (low) Emiss
T resolution event-by-event. Since Smet

is a proxy for Emiss
T resolution, a passing (failing) selection on 

Smet > 4
√

GeV provides a W high

eν (W low

eν ) subsample depleted (en-
riched) in e fakes. In the fake-enriched W low

eν subsample, about a 
third of the events are due to e fakes. (For the Weν process, the 
Emiss

T comes from the neutrino. For this reason, the kinematic bias 
in Emiss

T due to the Smet selection was found to be negligible at the 
1% level.) The resulting subsamples are tied together by a fixed ra-
tio ρfake, which is determined using a separate “pure-fake” region.

The pure-fake region (Feν ) is defined by a selection on the elec-
tron likelihood (Le). Since Le is optimized to separate electrons 
from backgrounds originating from dijet processes [41], requiring 
that the candidate’s Le value fail the tight definition [42], while 
satisfying a looser definition, selects the Feν data sample. As done 
above, the Smet selection creates two subsamples 

(
F high

eν , F low

eν

)
. 

The F low

eν -to-F high

eν ratio of the number of events in data is ρfake, 
with the small amount of prompt W contamination subtracted us-
ing MC.

Model testing uses a profile likelihood-ratio test statistic [69] in 
the CLs-modified frequentist formalism [70]. The statistical treat-
ment considers a total of 27 bins: three m jj bins for each of nine 
subsamples (one for the SR, four for the W CR, two for the fake-
enriched subsamples, two for the Z CR). A maximum-likelihood fit 
to the observed data in each m jj bin sets an upper limit,5 using 
a one-sided confidence level, on Binv for the 125 GeV Higgs boson 
and on the product σ vbf

scalar ·Binv for a scalar of different mass. The 
prefit comparisons of data and MC are shown for all subsamples 
in Fig. 1.

The fit procedure extracts the nine floating parameters intro-
duced above (βW , βZ , νfake for each m jj bin). After the fit, the 
postfit β parameters are consistent with the SM prefit prediction 
within their 1 σ uncertainties. The postfit comparisons of data and 
expected backgrounds are shown in Fig. 2 for the two key vari-
ables, m jj and Emiss

T , for the W and Z CR. The m jj (Emiss
T ) plot 

groups the backgrounds to show the dependence of the distribu-
tion shape on the production mechanism (final state).

5 The likelihood is a product of Poisson functions, one for each sample of N
events while expecting λ, a Gaussian function for each systematic uncertainty, and 
a Poisson function for the number of MC events. In the simple scenario with only 
W and Z backgrounds, the λ for the SR would be S +βW · BW

sr
+βZ · BZ

sr
, with each 

quantity multiplied by the response function for a systematic uncertainty. For the 
W CR it is βW · BW

cr
and for the Z CR it is βZ · BZ

cr
. See, e.g., Ref. [71].
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Fig. 2. Distribution of event yields in the Z (top) and W (bottom) control regions. 
The postfit normalizations for m jj (left) and Emiss

T (right) are summed over the sub-
samples. The Emiss

T distributions start at 180 GeV as indicated. The observed data N
(dots) are superimposed on the sum of the backgrounds B (stacked histogram with 
shaded systematic uncertainty bands). The breakdown of the B is given in the lower 
left box in each panel. The bottom panels show the ratios of N to B with the sys-
tematic uncertainty band shown on the line at 1. The “other,” as listed in Table 1, 
contribute a few events at low values of m jj and Emiss

T , and are omitted. The last 
bin in each plot contains the overflow.

The postfit value of νfake (the product ρfake ·νfake) is the abso-
lute number of e fake events in the W high

eν (W low

eν ) subsamples. 
Since there is a νfake parameter for each bin i, the m jj shape is 
also predicted. Apart from determining the ρfake value, which is 
fixed in the fit, Feν is not part of the fit model. We note that the 
W high

eν -W low

eν samples are split by charge, because W ± production 
is not symmetric in pp collisions. However, the same νfake param-
eter is used for both charges because the e fakes are expected to 
be symmetric in charge since they originate mostly from multijet 
events.

The remaining processes—top quarks, dibosons, multijets—
contribute negligibly to the SR (called “other” in Table 1). The 
first two are estimated with MC using nominal cross sections. The 
multijet contribution is very small, but it is a difficult process to 
estimate. It is a potentially dangerous background because those 
events that pass the Emiss

T selection are mostly due to instrumen-
tal effects.

The billionfold-or-more reduction of multijets after the event 
selection makes it impractical to simulate, so a data-driven method 
based on a rebalance-and-smear strategy [72] is used. The assump-
tion is that the Emiss

T is due to jet mismeasurement in the detector 
response to jets and neutrinos from heavy-flavor decays [73,74]. 
Using the jet-triggered sample, the jet momenta are rebalanced by 
a kinematic fit, within their experimental uncertainties, to obtain 
the balanced value of the jets’ pT. The rebalanced jets are smeared 
according to jet response templates, which are obtained from MC 
and validated with dijet data. The rebalance-and-smear method 
predicts both the shape of the Emiss

T distribution and the absolute 
normalization. The procedure is verified in a 
φ j j-sideband vali-
dation region (VR) with 95% purity of QCD multijet events. This 
VR is defined by 1.8 < | 
φ j j | < 2.7 and the loosening of the other 
requirements (| 
η j j | > 3, m jj > 0.6 TeV, and allow a third leading 
jet with 25 < pT < 50 GeV, but no other jets with pT > 25 GeV). The 

Fig. 3. Distribution of event yields in the multijet validation region for m jj (left) and 
Emiss

T (right). The m jj plot shows the 100 < Emiss
T < 120 GeV subset of the right plot 

as indicated by the arrow. The N observed data (dots) are superimposed on the 
sum of the B backgrounds (stacked histogram). The systematic uncertainty band 
applies only to the multijet component. The statistical uncertainties are relatively 
large because of the weighting of the trigger samples with large prescale values. 
See the caption of Fig. 2 for other plotting details.

comparison of the predictions and the data in the VR shows good 
agreement (Fig. 3). The multijet component is obtained using the 
rebalance-and-smear method with the associated systematic un-
certainty bands, while the non-multijet components are obtained 
using MC.

6. Uncertainties

Experimental and theoretical sources of uncertainties as well as 
the correlations between the various sources are described. The re-
sulting impact of the uncertainties on the yields and on the signal 
sensitivity is summarized later in Table 2.

Experimental sources of uncertainty are due mainly to the jet 
energy scale and resolution [75], Emiss

T soft term [76], and lep-
ton measurements [42,43]. In order to reduce fluctuations due to 
limited MC sample size, the uncertainties in number of expected 
events for the variations of jet energy scale and resolution for the 
strong and electroweak background samples are averaged. This is 
motivated by the similarities of the kinematics and the detector ef-
fects for the two production processes for each m jj bin. The uncer-
tainty related to lepton identification or veto has a non-negligible 
(negligible) effect on αW (αZ) because of the following scenarios. 
The W	ν background is significant in the SR, which results in an 
uncertainty for the cases related to the lepton veto. The Z		 back-
ground is negligible in the SR, because the selection requires there 
to be no leptons.

The following experimental sources have small or negligible 
impact in the final result. The pileup distribution and luminosity 
[77,78] have a relatively small impact. The trigger efficiency mod-
eling, for both the lepton triggers for the CR and Emiss

T triggers for 
the SR, are not listed in Table 2. Their impact on the events yields 
was at the 1% level and their impact on the signal sensitivity are 
found to be negligible.

Theoretical sources of uncertainty are due mainly to scale 
choices in fixed-order matrix-element calculations. For the back-
ground processes, QCD scales are varied for the resummation 
scale (resum.), renormalization scale (renorm.), factorization scale 
(fact.), and ckkw matching scale. The first three scales in the list—
technically called q2, μR, μF, respectively—are varied by a factor 
of two [79,80]. For the ckkw matching scale between the matrix 
element and the parton shower [60], the central value and the 
considered variations are 20+10

−5 GeV. The higher-order electroweak 
corrections to the strongly produced W or Z are found to be neg-
ligible.
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Table 2
Sources of uncertainty. The first set shows 
, the relative improvement of the 95% CL upper limit on Binv when the source of uncertainty is “removed” by fixing it to its 
best-fit value. The “visual” column shows bars whose lengths from the center tick are proportional to 
. The second set shows the effect on the yields and the α transfer 
factors for the 1 < m jj ≤ 1.5 TeV bin. The yields are for the signal process in the SR (S), Z MC in the SR (Bsr

Z ), and Z MC in the CR (Bcr

Z ). The αZ is given to demonstrate 
the reduction in the uncertainty in the ratio Bsr

Z /Bcr

Z . The individual yields for the W are not shown because the cancellation effects are similar to the Z counterparts. 
The value for “3rd jet veto” corresponds only to the uncertainty related to jet bin migration for signal processes; the corresponding effect for the background processes are 
evaluated in the various jet energy and theoretical variations. The abbreviations for the theoretical sources are described in the text. The ‘-’ indicates that the quantity is 
not applicable. The “combined” rows at the bottom are not simple sums of the rows above because of the 
 metric; the symbols (†, ‡, �) are parenthetically defined in the 
table. The penultimate (last) row shows the summary impact of removing the systematic uncertainties due to the experimental and theoretical sources (as well as statistical 
uncertainties of the MC samples).

Source Binv improve. [%] using all m jj bins Yields, α changes (%) in 1 < m jj ≤ 1.5 TeV


 visual S BZ
sr

BZ
cr

αZ αW

Experimental (†)
Jet energy scale 10 12 7 8 8 6
Jet energy resol. 2 2 0 1 1 4
Emiss

T soft term 1 2 2 2 2 2
Lepton id., veto 2 – – – 0 4
Pileup distrib. 1 3 1 2 3 1
Luminosity 0 2 2 2 – –

Theoretical (‡)
Resum. scale 1 – 2 3 0 2
Renorm., fact. 2 – 20 19 1 2
ckkw matching 4 – 2 3 1 5
PDF 0 1 1 2 1 1
3rd jet veto 2 7 – – – –

Statistical
MC sample (�) 12 4 5 9 10 9
Data sample 21 6 5 12 12 6

Combined
All † sources 17
All ‡ sources 10
Combine †, ‡ 28
Combine †, ‡, � 42

The effects of the theoretical variations are evaluated with a 
sample of generated MC events prior to reconstruction, which is 
larger than the reconstructed sample. Moreover, in order to reduce 
fluctuations due to limited MC statistics, the effect of the resum-
mation and ckkw variations as a function of m jj are determined 
by a linear fit, using m jj values below the selection for the SR and 
a sample with loosened selection on 
η j j and 
φ j j . We verified 
that an additional systematic uncertainty associated with the ex-
trapolation is dominated by the statistical fluctuations in the varied 
samples.

For both signal and background, the effects of the choice of a 
parton distribution function (PDF) set have a relatively small im-
pact. The variations are considered using an ensemble of PDFs 
within the nnpdf set [54] and the standard deviation of the distri-
bution is taken as the uncertainty.

For the signal process, the effect of the scale uncertainty on the 
third-jet veto for the gluon fusion plus two-jet contribution is eval-
uated using the jet-bin method [81]. The similar effect for the VBF 
contribution is evaluated by comparing the scale varied samples 
before and after the third-jet veto. The impact on the Higgs signal 
yield is dominated by the VBF contribution, which is around 7%.

Statistical uncertainties are due to the data and MC sample 
sizes.

Systematic uncertainties are assumed to be either fully corre-
lated or uncorrelated. The uncertainties from the following sources 
in each independent m jj bin are correlated between the SR and 
CR: QCD scales, PDF, and lepton measurements. The theoretical un-
certainties due to QCD scales are uncorrelated between the follow-
ing pairs: signal vs. background, electroweak vs. strong production, 
and W vs. Z production. Theoretical uncertainties are fully uncor-
related between bins of m jj , while the experimental uncertainties 
are fully correlated, both of which are expected to be conservative 
assumptions.

One major difference between Ref. [28] and this paper—with 
the former (latter) employing (not employing) the W -to-Z extrap-
olation strategy—is that we now have a larger Z		 control sample. 
We found that the final limit result based on the statistical uncer-
tainty of the enlarged Z		 control sample is similar to the result 
assuming the theoretical uncertainties on the W -to-Z ratio (in-
cluding the associated MC sample statistical uncertainties). This 
being the case, this paper adopts the method that is less depen-
dent on theoretical assumptions.

The sources of uncertainty are grouped into the three main 
categories given above (Table 2). The impact of each source is mea-
sured in two ways: (1) on the 95% CL upper limit on Binv and 
(2) on the event yields and α transfer factors. Impact (1) assesses 
the percentage improvement of the Binv limit if that source of un-
certainty is removed after fixing the associated parameter to its 
best-fit value. Impact (2) demonstrates that the systematic uncer-
tainties in the individual yields partially cancel out for many of 
the theoretical sources. However, for many of the experimental 
sources the cancellation is not achieved due to limited MC statis-
tics of the varied samples. For example, the effects of varying the 
renormalization and factorization scales change the MC yield in 
the Z SR 

(
BZ

sr
in Table 2

)
and the Z CR 

(
BZ

cr

)
by about 20%, but 

the αZ transfer factor changes by only 1%. In Table 2, only the 
1 <m jj ≤ 1.5 TeV yields are shown for the purpose of illustrating 
the partial cancellation in the ratio.

In general, the uncertainties are higher with m jj . The MC sam-
ple statistics is the largest source of systematic uncertainties, with 
the uncertainty increasing with m jj due to limited number of sim-
ulated events. The theory uncertainties are also higher with m jj

values for the same reason. The experimental jet energy uncer-
tainties are also affected by the limited sample size, with larger 
fluctuations because of fluctuations that do not cancel for each 
individual systematic variations. For the sources contributing the 
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Fig. 4. Contributions to the relative uncertainty in the transfer factors αZ (left) and 
αW (right) in the three m jj bins of the SR. The theoretical uncertainties from the 
sources noted in the legend are combined in quadrature.

Fig. 5. Distribution of event yields in the signal region for m jj (left) and Emiss
T (right). 

The Emiss
T distributions start at 180 GeV and shows the most sensitive m jj > 2 TeV

subset of the SR as indicated by the arrow. The postfit normalizations for m jj (Emiss
T ) 

distributions use separate background, B , normalizations in the three (one) m jj bins 
of 1 <m jj ≤ 1.5 TeV, 1.5 <m jj ≤ 2 TeV, and m jj > 2 TeV (m jj > 2 TeV), and sum the 
contributions from W and Z bosons (electroweak and strong production modes). 
The hypothetical signal S (empty blue histogram) is shown on top of B for Binv = 1. 
The bottom panels show the ratios of N (dots) and B + S (blue line) to B with the 
systematic uncertainty band shown on the line at 1. The bin width in the m jj plots 
(Emiss

T ) is 500 GeV (50 GeV except for the first bin with the non-zero entry, which is 
20 GeV). See the caption of Fig. 2 for other plotting details.

largest uncertainties, the αZ and the αW variations in the three 
m jj bins are shown graphically in Fig. 4.

The combination of uncertainties from various sources shows 
that the dominant category has a systematic origin (penultimate 
row of Table 2). The lack of MC statistical precision for background 
processes with m jj > 2 TeV has the largest impact on Binv. We note 
that the 
 values are percent improvements of the final limit on 
Binv, so they do not add in quadrature or in any such standard 
statistical combinations.

7. Results and interpretations

The 2252 observed events in the SR are divided among the 
three m jj bins defined previously: 952, 667, and 633 events. 
These values are consistent with the background-only postfit yields 
of the sum of the background processes of 2100 events, which 
are divided among the three m jj bins: 850 ± 113, 660 ± 90, and 
590 ± 81, respectively. The uncertainty represents the combined ef-
fect due to experimental and theoretical systematic uncertainties. 
These postfit values are also consistent with the prefit predictions. 
The expected signal yields (for Binv = 1 for VBF and gluon fusion) 
are 300, 310, and 460, respectively, and the last m jj bin has the 
highest sensitivity with S/B ≈ 0.8.

The postfit SR event distributions of m jj and Emiss
T are shown 

in Fig. 5, and we observe agreement, within uncertainties, between 
the data and the expected backgrounds.

Fig. 6. Upper limits on (a) the spin-independent wimp–nucleon cross section using 
Higgs portal interpretations of Binv at 90% CL vs. mwimp and (b) the VBF cross sec-
tion times the branching fraction to invisible decays at 95% CL vs. mscalar . The top 
plot shows results from Ref. [85–87].

The left plot in Fig. 5 also shows that the S/B ratio rises with 
increasing m jj values, which motivates our division of the SR into 
multiple bins. The total electroweak contribution in the SR is rela-
tively small at O(10%) (Table 1), but the much flatter distribution 
of m jj makes it an important contribution to the final result. As 
noted in Section 5, the background estimation is done indepen-
dently for each m jj bin to reduce the dependence on m jj modeling.

The fit, assuming the 125 GeV Higgs boson, gives the observed 
(expected) upper limit on Binv of 0.37

(
0.28 +0.11

−0.08

)
at 95% CL, and 

0.32
(
0.23 +0.11

−0.10

)
at 90% CL, where the uncertainties placed on the 

expected limit represent the 1σ variations. With this result, con-
nections to wimp dark matter can be made in the context of Higgs 
portal models [82]. The limit on Binv can be used to set limit 
on the Higgs-wimp coupling by the wimp-nucleon scattering cross 
section formulae (σwimp-nucleon). In this paper, scalar and Majorana 
fermion wimp models are considered [11,83,84].

The overlay of the interpretation of this result with the 
limits from some of the direct detection experiments [85–87]
shows the complementarity in coverage (Fig. 6(a)). For the scalar
wimp interpretation cross sections are excluded at values ranging 
from O

(
10−42

)
to O

(
10−45

)
cm2 and for the Majorana fermion

wimp interpretation the exclusion range is from O
(
10−45

)
to 

O
(
10−46

)
cm2, depending on the wimp mass. The uncertainty band 

in the plot uses an updated computation of the nucleon form fac-
tors [88].

The correlation between Binv and σwimp-nucleon is presented 
in the effective field theory framework assuming that the new-
physics scale is O(1) TeV [28], well above the scale probed at the 
Higgs boson mass. Adding a renormalizable mechanism for gener-
ating the fermion wimp masses could modify the above-mentioned 
correlation [89].

In place of the 125 GeV Higgs boson, the same selection is ap-
plied to additional scalars with masses (mscalar) of up to 3 TeV
assuming only VBF production. The fraction of VBF signal events 
that pass the signal region event selections corresponding to the 



506 The ATLAS Collaboration / Physics Letters B 793 (2019) 499–519

acceptance times efficiency ranges from 0.6–3%. The signal effi-
ciency for the inclusive m jj > 1 TeV selection increases with the 
mass of the scalar boson, because the VBF jets is more forward 
with higher mass, and thus have more events at higher values of 
m jj . The limit on σ vbf

scalar ·Binv as a function of mscalar is shown in 
Fig. 6(b). The 95% confidence level upper limits on the cross sec-
tion times branching fraction are in the range of 0.3–1.7 pb.

8. Conclusions

A search for Higgs boson decays into invisible particles is 
presented using the 36.1 fb−1 of pp collision data taken at √

s = 13 TeV collected in 2015 and 2016 by the ATLAS detector 
at the LHC. The targeted signature is the VBF topology with two 
energetic jets with a wide gap in η and large Emiss

T .
Assuming the Standard Model cross section for the 125 GeV

Higgs boson, an upper limit of 0.37 is set on Binv at 95% CL. This 
result is interpreted using Higgs portal models to exclude regions 
in the σwimp-nucleon vs. mwimp parameter space to exclude cross sec-
tion values ranging from O

(
10−42

)
to O

(
10−46

)
cm2, depending 

on the wimp mass and the wimp model.
Searches for invisible decays of scalars with masses of up to 

3 TeV are reported for the first time from ATLAS in the VBF pro-
duction mode. These results are rather general and can be used for 
further interpretations.
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