CITTA: Cache Interference-aware Task Partitioning for Real-time Multi-core Systems

Jun Xiao
University of Amsterdam
Amsterdam, Netherlands
J.Xiao@uva.nl

Andy D. Pimentel
University of Amsterdam
Amsterdam, Netherlands
A.D.Pimentel@uva.nl

Abstract

Shared caches in multi-core processors introduce serious difficulties in providing guarantees on the real-time properties of embedded software due to the interaction and the resulting contention in the shared caches. Prior work has studied the schedulability analysis of global scheduling for real-time multi-core systems with shared caches. This paper considers another common scheduling paradigm: partitioned scheduling in the presence of shared cache interference. To achieve this, we propose CITTA, a cache-interference aware task partitioning algorithm. An integer programming formulation is constructed to calculate the upper bound on cache interference exhibited by a task, which is required by CITTA. We conduct schedulability analysis of CITTA and formally prove its correctness. A set of experiments is performed to evaluate the schedulability performance of CITTA against global EDF scheduling over randomly generated tasksets. Our empirical evaluations show that CITTA outperforms global EDF scheduling in terms of task sets deemed schedulable.

CCS Concepts → Computer systems organization → Embedded software.

Keywords Shared caches, Partitioned scheduling, Schedulability analysis, Real-time systems

ACM Reference Format:

1 Introduction and Motivation

Caches are common on multi-core systems as they can efficiently bridge the performance gap between memory and processor speeds. The last-level caches are usually shared by cores to improve utilization. However, this brings major difficulties in providing guarantees on real-time properties of embedded software due to the interaction and the resulting contention in a shared cache.

On a multi-core processor with shared caches, a real-time task may suffer from two different kinds of cache interferences [21], which severely degrade the timing predictability of multi-core systems. The first is called intra-core cache interference, which occurs within a core, when a task is preempted and its data is evicted from the cache by other real-time tasks. The second is inter-core cache interference, which happens when tasks executing on different cores access the shared cache simultaneously. In this work, we consider non-preemptive task systems, which implies that intra-core cache interference is avoided since no preemption is possible during task execution. We therefore focus on inter-core cache interference.

It is necessary to conduct schedulability analysis when designing hard real-time application systems executing on multi-core platforms with shared caches, as those systems cannot afford to miss deadlines and hence demand timing predictability. Any schedulability analysis requires knowledge about the Worst-Case Execution Time (WCET) of real-time tasks. However, as pointed out in [28], it is extremely difficult to predict the cache behavior to accurately obtain the WCET of a real-time task considering cache interference since different cache behaviors (cache hit or miss) will result in different execution times of each instruction. In this paper, we assume that a task’s WCET itself does not account for shared cache interference but, instead, we determine this interference explicitly (as will be explained later on). Hardy and Puaut [18] present such an approach to derive a task’s WCET without considering shared cache interference.

On multi-core systems, two paradigms are widely used for scheduling real-time tasks: global and partitioned (semi-partitioned) scheduling. For global scheduling, a job is allowed to execute on any core. In partitioned scheduling, on the other hand, tasks are statically allocated to processor cores, i.e., each task is assigned to a core and is always executed on that particular core. Although the partitioned
approaches cannot exploit all unused processing capacity since a bin-packing-like problem needs to be solved to assign tasks to cores, it offers lower runtime overheads and provides consistently good empirical performance at high utilizations [6].

Furthermore, taking the shared cache interference into account, partitioned approaches can achieve better schedulability than global scheduling. We provide a simple example to illustrate this. Consider three tasks τ_1, τ_2 and τ_3 with the same period and relative deadline of 7, the WCETs of τ_1, τ_2 and τ_3 are 3, 3 and 2, respectively. The execution platform is a processor with 2 cores including a last-level shared cache. If τ_1 and τ_2 run concurrently, we assume that the maximum cache interference exhibited by τ_1 and τ_2 is 3. We also assume that τ_3 has no cache interference with τ_1 and τ_2.

It is impossible to conclude that this taskset is schedulable under global scheduling. Figure 1 shows a case where τ_3 misses its deadline. At time $t = 0$, tasks τ_1 and τ_2 are scheduled to execute on the two cores. In the figure, the black area of a cumulative length of 3 denotes the WCET, and the hatched area of a cumulative length of 3 represents the extra execution time due to the cache interference. At $t = 6$, τ_1 and τ_2 both finish their executions, after which τ_3 starts its execution. At $t = 7$, τ_3 misses its deadline. Similarly, consider another case: at $t = 0$, τ_3 and τ_1 (or τ_2) are scheduled, at $t = 2$, τ_3 finishes and τ_2 (or τ_1) starts its execution. Since cache interference is counted per job [31], in the worst case, the cache interference exhibited by τ_2 (or τ_1) can still be 3 even though the duration of co-running τ_2 (or τ_1) and τ_1 (or τ_2) is less than in the previous case. Due to the cache interference, τ_2 (or τ_1) could finish its execution at $t = 8$, leading to a deadline miss for τ_2 (or τ_1).

```
Figure 1. Case where $\tau_3$ misses its deadline if $\tau_1$, $\tau_2$ and $\tau_3$ are scheduled globally.
```

However, the taskset is schedulable under the partitioned scheduling. Consider, e.g., the partitioning scheme in which τ_1 and τ_2 are assigned to core 1, and task τ_3 is assigned to core 2. Since τ_1 and τ_2 are assigned to the same core, they cannot run simultaneously. As no cache interference can occur during task execution, it can be verified that every task meets its deadline.

Contributions. Motivated by the above example, in this work, we propose a novel cache interference-aware task partitioning algorithm, called CITTA. To the best of our knowledge, this is the first work on partitioned scheduling for real-time multi-core systems, accounting for shared cache interference. An integer programming formulation is constructed to calculate the upper bound on cache interference exhibited by a task, which is required by CITTA. We conduct schedulability analysis of CITTA and formally prove its correctness. A set of experiments is performed to evaluate the schedulability performance of CITTA against global EDF scheduling over randomly generated tasksets. Our empirical evaluations show that CITTA outperforms global EDF scheduling in terms of tasksets deemed schedulable.

The rest of the paper is organized as follows. Section 2 gives an overview of related work. The system model and some other prerequisites for this paper are described in Section 3. Section 4 describes the proposed CITTA, where we also detail the computation of the inter-core cache interference and schedulability analysis of CITTA. Section 5 presents the experimental results, after which Section 6 concludes the paper.

2 Related work

WCET estimation. For hard real-time systems, it is essential to obtain each real-time task’s WCET, which provides the basis for the schedulability analysis. WCET analysis has been actively investigated in the last two decades, of which an excellent overview can be found in [30]. There are well-developed techniques to estimate a real-time tasks’ WCET for single processor systems. Unfortunately, the existing techniques for single processor platforms are not applicable to multi-core systems with shared caches. Only a few methods have been developed to estimate task WCETs for multi-core systems with shared caches [17, 23, 36]. In almost all those works, due to the assumption that cache interferences can occur at any program point, WCET analysis will be extremely pessimistic, especially when the system contains many cores and tasks. An overestimated WCET is not useful as it degrades system schedulability.

Shared cache interference. Since shared caches make it difficult to accurately estimate the WCET of tasks, many researchers have recognized and studied the problem of cache interference in order to use shared caches in a predictable manner. Cache partitioning is a successful and widely-used approach to address contention for shared caches in (real-time) multi-core applications. There are two cache partitioning methods: software-based and hardware-based techniques [15]. The most common software-based cache partitioning technique is page coloring [24, 29]. By exploiting the virtual-to-physical page address translations present in virtual memory systems at OS-level, page addresses are mapped
to pre-defined cache regions to avoid the overlap of cache spaces. Hardware-based cache partitioning is achieved using a cache locking mechanism [9, 26, 28], which prevents cache lines from being evicted during program execution. The main drawback of cache locking is that it requires additional hardware support that is not available in many commercial processors for embedded systems.

A few works address schedulability analysis for multi-core systems with shared caches [16, 34], but these works use cache space isolation techniques to avoid cache contention for hard real-time tasks. In this work, we do not deploy any cache partitioning techniques to mitigate the inter-core cache interference. Instead, we address the problem of task partitioning in the presence of shared cache interference.

Real-time Scheduling. To schedule real-time tasks on multi-core platforms, different paradigms have been widely studied: partitioned [4, 13, 35], global [3, 7, 22], and semi-partitioned scheduling [8, 10, 20]. A comprehensive survey of real-time scheduling for multiprocessor systems can be found in [12]. Most multi-core scheduling approaches assume that the WCETs are estimated in an offline and isolated manner and that WCET values are fixed.

Real-time scheduling for multi-core systems using cache partitioning techniques is done via two steps: it first captures the relationship between the task’s WCET and cache allocation by analysis or measurement as the WCET of a task depends on the number of cache partitions assigned to that task, and then develops a strategy that determines the number of cache partitions assigned to each task in the system, so that the task system is schedulable. Existing approaches typically adopt Mixed Integer Programming to find the optimal cache assignment. However, these methods incur a very high execution time complexity, and are therefore too inefficient to be practical [33].

Different from the above approaches based on cache partitioning techniques, we address the problem of task partitioning in the presence of shared cache interference. Our approach neither requires operating system modifications for page coloring nor hardware features for cache locking, which are not supported by most existing embedded processors.

The most relevant to our work is [31, 32], which also addresses schedulability analysis for multi-core systems with shared caches. However, the work of [31, 32] only considers global scheduling. In this paper, we consider another scheduling paradigm, namely partitioned scheduling, and propose CITTA, a cache interference-aware task partitioning algorithm. Our empirical evaluations show that CITTA outperforms global EDF scheduling in terms of task sets deemed schedulable.

3 System Model and Prerequisites

3.1 System Model

Task Model. A taskset \(\tau \) comprises \(n \) periodic or sporadic real-time tasks \(\tau_1, \tau_2, \ldots, \tau_n \). Each task \(\tau_k = (C_k, D_k, T_k) \in \tau \) is characterized by a worst-case computation time \(C_k \), a period or minimum inter-arrival time \(T_k \), and a relative deadline \(D_k \). All tasks are considered to be deadline constrained, i.e. the task relative deadline is less or equal to the task period: \(D_k \leq T_k \). We further assume that all those tasks are independent, i.e. they have no shared variables, no precedence constraints, and so on.

A task \(\tau_k \) is a sequence of jobs \(J_k^j \), where \(j \) is the job index. We denote the arrival time, starting time, finishing time and deadline of a job \(j \) as \(r_k^j, s_k^j, f_k^j \) and \(d_k^j \), respectively. Note that the goal of a real-time scheduling algorithm is to guarantee that each job will complete before its absolute deadline: \(f_k^j \leq d_k^j = r_k^j + D_k \).

As explained, it is difficult to accurately estimate \(C_k \) considering cache interference of other tasks executing concurrently. It should be pointed out that \(C_k \) in this paper refers to the WCET of task \(k \), assuming task \(k \) is the only task executing on the multi-core processor platform, i.e. any cache interference delays are not included in \(C_k \).

Since time measurement cannot be more precise than one tick of the system clock, all timing parameters and variables in this paper are assumed to be non-negative integer values.

Our system architecture consists of a multi-core processor with \(m \) identical cores onto which the individual tasks are scheduled.

In multi-core processors, Caches are organized as a hierarchy of multiple cache levels to address the trade-off between cache latency and hit rate. The lower level caches, for example L1, are private while the last-level caches (LLC) are shared among all cores. The caches are assumed to be non-inclusive and direct-mapped.

Partitioned Non-preemptive Schedulers. In this paper, we focus on non-preemptive partitioned scheduling. Once a task instance starts execution, any preemption during the execution is not allowed, so it must run to completion. So we do not have to consider intra-core cache interference. If not explicitly stated, cache interference will therefore refer to inter-core cache interference in the following discussion.

Since partitioning tasks among a multi-core processor reduces the multi-core processor scheduling problem to a series of single-core scheduling problems (one for each core), the optimality without idle inserted time [14, 19] of non-preemptive EDF (EDF\(_{np}\)) makes it a reasonable algorithm to use as the run-time scheduler on each core. Therefore, we make the assumption that each core, and the tasks assigned to it by the partitioning algorithm, are scheduled at run time according to an EDF\(_{np}\) scheduler.

EDF\(_{np}\) assigns a priority to a job according to the absolute deadline of that job. A job with an earlier absolute deadline
A successful approach to analyzing the schedulability of real-time tasks is to use a demand bound function [5]. The demand bound function $DBF(t_i, t)$ is the largest possible cumulative execution demand of all jobs that can be generated by t_i to have both their arrival times and their deadlines within any time interval of length t. Let t_0 be the starting time of a time interval of length t, the cumulative execution demand of t_i’s jobs over $[t_0, t_0 + t]$ is maximized if one job arrives at t_0 and subsequent jobs arrive as soon as permitted i.e., at instants $t_0 + T_i, t_0 + 2T_i, t_0 + 3T_i, \ldots$. Therefore, $DBF(t_i, t)$ can be computed by Equation (0.1).

$$DBF(t_i, t) = \max(0, \left(\frac{t - D_i}{T_i} \right) + 1) \times C_i). \quad (0.1)$$

[1] proposed a technique for approximating the $DBF(t_i, t)$. The approximated demand bound function $DBF^*(t_i, t)$ is given by the following equation:

$$DBF^*(t_i, t) = \begin{cases} 0 & t < D_i \\ C_i + U_i \times (t - D_i) & \text{otherwise} \end{cases} \quad (0.2)$$

where $U_i = \frac{C_i}{T_i}$.

Observe that the following inequality holds for all t_i and all $0 \leq t$:

$$DBF^*(t_i, t) \geq DBF(t_i, t) \quad (0.3)$$

3.2 The Demand-Bound Function

The schedulability analysis of uniprocessor scheduling is well studied. [2] presented a necessary and sufficient condition for the feasibility test of a sporadic task system τ scheduled by EDF_{np} on a uniprocessor platform.

Theorem 1. A taskset τ is schedulable under EDF_{np} on a uniprocessor platform if and only if

$$\forall t, \sum_{i=1}^{n} DBF(t_i, t) \leq t \quad (1.1)$$

and for all $t_j \in \tau$:

$$\forall t : C_j \leq t \leq D_j : C_j + \sum_{i=1, i \neq j}^{n} DBF(t_i, t) \leq t. \quad (1.2)$$

Note that the computation of $DBF(t_i, t)$ and $DBF^*(t_i, t)$ by Equation (0.1) and (0.2) and the two schedulability test conditions (1.1) and (1.2) do not account for shared cache interference. We will extend the computation of $DBF(t_i, t)$ and $DBF^*(t_i, t)$ and the two schedulability conditions to the cases where shared cache interference is considered.

3.4 Cache Interference

The WCET of a task can be obtained by performing a Cache Access Classification (CAC) and Cache Hit/Miss Classification (CHMC) analysis for each memory access at the private caches and the shared LLC cache separately [30]. The CAC categorizes the accesses to a certain cache level as Always (A), Uncertain (U) or Never (N). CHMC classifies the reference to a memory block as Always Hit (AH), Always Miss (AM) or Uncertain (U).

As an LLC is shared by multiple cores, it allows running tasks to compete among each other for shared cache space. As a consequence, the tasks replace blocks that belong to other tasks, causing shared cache interference. Let t_k be the interfered and t_i be the interfering task. We use $i_{k, i}^c$ to represent the upper bound on the shared cache interference imposed on t_k by only one job execution of t_i.

$I_{i, k}^c$ can be calculated, as indicated by Lemma 4 and its proof in [31], using the concept of Hit Block (HB), i.e. a memory block whose access is classified as AH at the shared cache and Conflicting Block (CB), i.e. memory block whose access is classified as A or U at the shared cache. By calculating the number of accesses to each t_k’s HB and the accesses to each t_i’s CB, $I_{i, k}^c$ can be derived by bounding the conflicting accesses to each shared cache set between t_k and t_i. In the following discussion, we assume $I_{i, k}^c$ is known.

4 Cache interference aware task partitioning : CITTA

Given a taskset τ comprised of n periodic or sporadic tasks and a processing platform π with m identical cores $\pi = \{\pi_1, \pi_2, \ldots, \pi_m\}$, a partitioning algorithm decides how to assign tasks to cores to avoid task deadline misses. The problem of assigning a set of tasks to a set of cores is analogous to the bin-packing problem. In this case, the tasks are the objects to pack and the bins are cores. The bin-packing problem is known to be NP-hard in the strong sense. Thus, searching for an optimal task assignment is not practical.

[25] and [13] studied several bin-packing heuristics for the preemptive and non-preemptive task model. Typically, each of the bin-packing heuristics follows the following pattern: tasks of the task system are first sorted by some criterion, after which the tasks are assigned in order to a core that satisfies a sufficient condition.

Let $\tau(\pi_x)$ denote the set of tasks assigned to processor core π_x where $1 \leq x \leq m$. $\tau_i \in \tau(\pi_x)$ means τ_i is assigned to core π_x. If taskset τ can be scheduled by a partitioned algorithm, the outcome of running a partitioning algorithm is a task partition such that:

- All tasks are assigned to processor cores:
 $$\bigcup_{1 \leq x \leq m} \tau(\pi_x) = \tau$$

- Each task is assigned to only one core:
 $$\forall y \neq x, 1 \leq y \leq m, 1 \leq x \leq m, \tau_\pi(y) \cap \tau(\pi_x) = \emptyset$$
In Section 4.1, we describe our cache interference aware task partitioning: CITTA. Section 4.2 derives the calculation of the upper bound on the shared cache interference. Section 4.3 conducts the schedulability analysis for CITTA.

Before describing CITTA, we first extend the DBF to account for shared cache interference. Due to the extra execution delay caused by shared cache interference, a task \(\tau_i\) may execute longer than \(C_i\). Given a task partitioning scheme, one can compute the upper bound on cache interference exhibited by task \(\tau_i\), denoted as \(\overline{I}_i\). We will show the method to compute this \(\overline{I}_i\) later. In multiprogrammed environment, the actual execution time including cache interference of \(\tau_i\) can be bounded by \(C_i + \overline{I}_i\). We denote \(DBF^c(\tau_i, t)\) as the demand bound function which accounts for cache interference. \(DBF^c(\tau_i, t)\) can be computed by extending Equation (0.1):

\[
DBF^c(\tau_i, t) = \max(0, \left(\frac{t - D_i}{T_i}\right) + 1) \times (C_i + \overline{I}_i).
\]

Similarly, the approximated demand bound function \(DBF^{cs}(\tau_i, t)\) is given by the following equation by extending Equation (0.2):

\[
DBF^{cs}(\tau_i, t) = \begin{cases}
0, & t < D_i \\
C_i + \overline{I}_i + U_i^c \times (t - D_i), & \text{otherwise}
\end{cases}
\]

where \(U_i^c = \frac{C_i + \overline{I}_i}{T_i}\).

It can also be observed that:

\[
DBF^{cs}(\tau_i, t) \geq DBF^c(\tau_i, t)
\]

4.1 The Task Partitioning Algorithm: CITTA

We now propose CITTA, a task partitioning algorithm taking shared cache interference into account.

We assume the tasks are sorted in non-decreasing order by means of a certain criterion. For example, if a task’s relative deadline is chosen as criterion, then \(D_i \leq D_{i+1}\) for \(1 \leq i \leq n\). More criteria for sorting the tasks will be discussed in Section 5.

CITTA performs the following steps:

step 1: for each task \(\tau_i \in \tau\):

1. Attempt to assign \(\tau_j\) to \(\pi_s\).
2. Calculate the upper bound on cache interference \(\overline{I}_j\) for \(\tau_k \in (\pi_s) \cup \{\tau_i\}\), i.e. tasks that are already assigned to \(\pi_s\) and \(\tau_i\), assuming \(\tau_i\) is assigned to \(\pi_s\). We will show the calculation procedure in the next subsection.
3. Check if the following condition holds for each \(\tau_k \in (\pi_s) \cup \{\tau_i\}\):

\[
D_k \geq \sum_{\tau_j \in (\pi_s) \cup \{\tau_i\}, D_j \leq D_k} DBF^{cs}(\tau_j, D_k) + \max_{\tau_j \in (\pi_s) \cup \{\tau_i\}, D_j > D_k} C_j + \overline{I}_j.
\]

 a. If no \(\tau_k\) violates condition (1.6), the attempt is admitted and \(\tau_i\) is added to \(\pi_s\).
 b. If condition (1.6) is violated by at least one \(\tau_k\), the attempt is rejected. We attempt to assign \(\tau_i\) to the next core \(\pi_{s+1}\) and repeat steps (2) and (3).

Core can be assigned to \(\tau_i\), then \(\tau_i\) is added to the temporarily non-allocable taskset, denoted as \(\tau^{\text{tana}}\).

step 2: after performing step 1, the resulting \(\tau^{\text{tana}}\) is either an empty set or non-empty.

(a) If \(\tau^{\text{tana}} = \emptyset\), which means all tasks have been allocated to cores, CITTA returns Success.

(b) Otherwise, we perform step 1 to each \(\tau_i \in \tau^{\text{tana}}, \tau_i\) is removed from \(\tau^{\text{tana}}\) if it can be assigned to a core. We repeatedly perform step 1 to \(\tau_i \in \tau^{\text{tana}}\) until \(\tau^{\text{tana}}\) becomes empty or no more tasks in \(\tau^{\text{tana}}\) could be allocated to cores. If \(\tau^{\text{tana}} = \emptyset\) at the end, CITTA returns Success, otherwise CITTA returns Fail: it is unable to determine if scheduling \(\tau\) is feasible on the multi-core platform.

We briefly explain the rationale behind condition (1.6). Given a task \(\tau_k\), the execution demand of tasks (including \(\tau_k\)) with a relative deadline no larger than \(D_k\) is calculated by the first part (left-hand side) of the sum in condition (1.6). Since we consider a non-preemptive task system, the second part of the sum accounts for the blocking time due to the execution of a task with a larger relative deadline than \(\tau_k\) at the time a job of \(\tau_k\) arrives. If the sum of the execution demand and the blocking time is smaller than \(D_k\), the task \(\tau_k\) will not miss its deadline. We will prove this in Section 4.3.

A more formal version of the task partitioning algorithm CITTA is given by Pseudocode 1. The input to procedure CITTA is the taskset \(\tau\) to be partitioned and the execution platform \(\pi\) consisting of \(m\) cores. CITTA repeatedly invokes the procedure TaskPartition, illustrated by Pseudocode 2, to perform step 1 of the CITTA algorithm. The input to TaskPartition is the temporarily non-allocable taskset \(\tau^{\text{tana}}, \pi\), and existing task assignment \(\tau(\pi) = (\tau(\pi_1), \tau(\pi_2), ..., \tau(\pi_m))\). \(\tau^{\text{tana}}\) is initialized as \(\tau\). Every time when TaskPartition finishes, some tasks in the taskset \(\tau^{\text{tana}}\) can be assigned to cores, and thus \(\tau^{\text{tana}}\) and \(\tau(\pi)\) are updated.

Pseudocode 1: CITTA(\(\tau, \pi\))

1: sort \(\tau\) in non-decreasing order by a selected criterion
2: \(\tau^{\text{tana}} \leftarrow \emptyset, \text{taskAssigned} \leftarrow \text{true, } \tau(\pi_1), \tau(\pi_2), ..., \tau(\pi_m) \leftarrow \emptyset\)
3: \(\tau(\pi) = (\tau(\pi_1), \tau(\pi_2), ..., \tau(\pi_m))\)
4: while \(\tau^{\text{tana}} \neq \emptyset\) and taskAssigned == true do
5: \(\tau^{\text{tana}}, \text{taskAssigned, } \tau(\pi)=\text{TaskPartition}(\tau^{\text{tana}}, \pi, \tau(\pi))\)
6: end while
7: if \(\tau^{\text{tana}} = \emptyset\) then
8: return Success
9: else
10: return Failed
11: end if

Lines 5-7 in the procedure of TaskPartition perform step 1.2(1) of CITTA to compute the upper bound on cache interference for tasks. When CITTA attempts to assign \(\tau_i\) to \(\pi_s\), the upper bound on cache interference caused by \(\tau_k\) and...
i.e. tasks that are already assigned to \(\pi_x \), is recomputed. This is because a tighter bound can be possibly obtained by the recalculation, as will be shown soon. Considering \(\tau_i \) is more likely to be assigned to \(\pi_x \) if the upper bound on the cache interference caused by \(\tau_k \in \tau(\pi_x) \) is smaller, the recalculation makes CITTA less pessimistic.

4.2 Calculation of The Upper Bound on Cache Interference: \(I^c_k \)

The CITTA algorithm requires to calculate the upper bound on cache interference before it assigns a new task to a core. We now describe such a procedure for the calculation of \(I^c_k \).

[31] presented an approach to calculating the upper bound on cache interference for tasks that are globally scheduled. By extending the approach in [31], we compute the upper bound on cache interference for partitioned scheduling. This is done by two steps. First, given the existing task assignment represented by \(\tau(\pi) = (\tau(\pi_1), \tau(\pi_2), \ldots, \tau(\pi_m)) \) and \(t^{na} \) as the taskset consisting of the tasks that have not been assigned, we construct an integer programming (IP) formulation to calculate the upper bound on the cache interference exhibited by a task within an execution window. Then, we use an iterative algorithm to obtain the upper bound on cache interference a task may exhibit during its job executions.

4.2.1 IP formulation

In the following discussion, we compute the upper bound on cache interference exhibited by \(\tau_k \), assuming \(\tau_i \) is the interfering task and \(\tau_k \) is assigned to \(\pi_x \).

The Execution Window (EW) of the \(j \)-th job of \(\tau_k \left(U^j_k \right) \) is defined as the time interval \([s^j_k, f^j_k]\) from the staring time to the finishing time of \(f^j_k \). We use \(C^i_k \) as the length of the EW because of the iterative computation which will be described later on.

The objective function of the IP formulation is to maximize the total cache interference exhibited by task \(\tau_k \). If \(N_{i,k} \) jobs of \(\tau_i \) are executing concurrently with \(\tau_k \), the cache interference that \(\tau_i \) causes on \(\tau_k \) is bounded by \(N_{i,k} \cdot I^c_k \). The total cache interference for one job execution of \(\tau_k \) is bounded by the sum of the contributions of all tasks \(\tau_i \) in the taskset \(\tau \). So the objective function is:

\[
\max \sum N_{i,k} \cdot I^c_{i,k}. \tag{1.7}
\]

To get a bounded solution, we analyze the constraints on \(N_{i,k} \).

If tasks \(\tau_i \) and \(\tau_k \) are assigned to the same core \(\pi_x \), at each time instance, at most one task of \(\tau_i \) and \(\tau_k \) executes on core \(\pi_x \). No jobs from \(\tau_i \) could interfere with \(\tau_k \). Therefore, we have the following:

\[
\forall \tau_i \in \tau(\pi_x), N_{i,k} = 0. \tag{1.8}
\]

\(N_{i,k} \) reaches its minimal value when a job of \(\tau_i \) starts to execute as soon as it is released and the execution finishes just before the start of the EW. Taking the smallest execution time of \(\tau_i \), \(C^i_k \), as 0, we have the following constraint:

\[
\forall \tau_i \in \tau(\pi_x), \left[\frac{\max(0, C^i_k - T_i)}{T_i} \right] + \xi_i
\leq N_{i,k}. \tag{1.9}
\]

where \(\xi_i = \begin{cases} 1 & (C^i_k \mod T_i) - D_i > 0 \\ 0 & \text{otherwise} \end{cases} \)

The term \(\xi_i \) indicates whether or not the last job of \(\tau_i \) released within the EW interferes with \(\tau_k \). The maximum value of \(N_{i,k} \) is taken when the first interfering job of \(\tau_i \) finishes just after the start of the EW and the last interfering job of \(\tau_i \) starts to execute at the time when it is released. Thus, we have the second constraint on \(N_{i,k} \):

\[
\forall \tau_i \in \tau(\pi_x), \quad N_{i,k} \leq 1 + \left[\left[\frac{\max(0, C^i_k - T_i + D_i)}{T_i} \right] \right]. \tag{1.10}
\]

If \(N_{i,k} > 2 \), the first and last interfering jobs of \(\tau_i \) may occupy almost 0 computation capacity in the EW. Let \(J_i^j \) be a job among the remaining \(N_{i,k} - 2 \) interfering jobs of \(\tau_i \) between the first and the last ones. Both release time \(r_i^j \) and deadline \(d_i^j \) of \(J_i^j \) are within the EW of \(\tau_k \).

If \(\tau_i \) (or will be) successfully assigned to core \(\pi_y \), at least \(C_i \) computation capacity of the processing core is reserved for the execution of \(J_i^j \) during \([r_i^j, d_i^j]\). The total execution of interfering tasks \(\tau_i \) on each processor \(y \) (with \(y \neq x \)) cannot

Pseudocode 2: TaskPartition(\(\tau, \pi, \tau(\pi) \))

1: \(\text{taskAssigned} \leftarrow \text{false}, t^{na} \leftarrow \emptyset \)
2: for all \(\tau_i \in \tau \) do
3: \(\text{assignTo} \leftarrow \text{NULL}, \text{coreSuccess} \leftarrow \text{true} \)
4: for all \(\pi_x \in \pi \) do
5: for all \(\tau_k \in \tau(\pi_x) \cup \{ \tau_i \} \) do
6: calculate \(\bar{I}^c_k \)
7: end for
8: for all \(\tau_k \in \tau(\pi_x) \cup \{ \tau_i \} \) do
9: if condition (1.6) violates for \(\tau_k \) then
10: \(\text{coreSuccess} \leftarrow \text{false} \)
11: break;
12: end if
13: if \(\text{coreSuccess} \) then
14: \(\tau(\pi_x) \leftarrow \tau(\pi_x) \cup \{ \tau_i \} \)
15: \(\text{assignTo} \leftarrow \pi_x, \text{taskAssigned} \leftarrow \text{true} \)
16: break;
17: end if
18: if \(\text{assignTo} == \text{NULL} \) then
19: \(t^{na} \leftarrow t^{na} \cup \{ \tau_i \} \)
20: end if
21: end for
22: end if
23: end for
24: return \(t^{na}, \text{taskAssigned}, \tau(\pi) \)
Thus, we have the following inequality (1.11),

$$\forall y \neq x, \sum_{\tau \in \tau(y) \cup \tau(x)} \max(0, N_{i,k} - 2) C_i \leq C_k. \quad (1.11)$$

The objective function (1.7) together with constraints on $N_{i,k}$ i.e. inequalities (1.8), (1.9), (1.10) and (1.11) form our IP problem. As task parameters such as C_i, D_i, T_i are known, the input of the IP formulation is the length of EW: C_k, existing task assignment: $\tau(\pi) = (\tau(\pi_1), \tau(\pi_2), \ldots, \tau(\pi_m))$, and remaining tasks that need to be assigned: τ_{na}. Thus, we use $IP(C_k', \tau(\pi), \tau_{na})$ to denote the IP problem and use $I^c(C_k', \tau(\pi), \tau_{na})$ to denote the optimal solution.

When CITTA attempts to assign a task τ_i to a core π_x, the upper bound on cache interference caused by $\tau_k \in \tau(\pi_x)$, i.e. tasks that are already assigned to π_x, is recomputed. We now show that a tighter upper bound for task τ_k can be possibly obtained by the re-computation.

Given a task τ_k and an execution window of length C_k', let us suppose the IP formulation in the previous computation of cache interference is $IP(C_k', \tau(\pi), \tau_{na})$, and the IP formulation for the re-computation is $IP(C_k', \tau_{q}(\pi), \tau_{q}^{na})$.

Between the two computations for the same task τ_k, CITTA may assign some tasks to cores. If a task τ_i is assigned to a core π_x, τ_i is removed from τ_{na} and is added to $\tau_{q}(\pi_x)$. Obviously, we have $\tau_{q}^{na} \subseteq \tau_{p}^{na}$ and $\forall 1 \leq x \leq m, \tau_{p}(\pi_x) \subseteq \tau_{q}(\pi_x)$.

Lemma 1. Given τ_k and C_k',

$$I^c(C_k', \tau_q(\pi), \tau_{q}^{na}) \leq I^c(C_k', \tau_p(\pi), \tau_{p}^{na}).$$

Proof Sketch: Due to space considerations, we will only show the proof sketch. From condition 1.6, one can prove the following: if $\tau_i \in \tau(\pi_x)$ and $\tau_k \in \tau(\pi_x)$, then $C_k + I_k^c \leq D_1$.

By the above statement and the constraints of the IP problem, we can prove that any solution of $IP(C_k', \tau(\pi), \tau_{q}^{na})$ is also feasible for $IP(C_k', \tau_{q}(\pi), \tau_{q}^{na})$. Thus,

$$I^c(C_k', \tau_q(\pi), \tau_{q}^{na}) \leq I^c(C_k', \tau_p(\pi), \tau_{p}^{na}).$$

Lemma 1 is the reason CITTA forces the recalculation of upper bound on cache interference caused by tasks that are already assigned to cores by CITTA.

4.2.2 Iterative Computation

Due to the presence of cache interference, a job may execute longer than C_k on a multi-core platform with shared caches. However, a larger execution time may introduce more cache interference.

We give a sufficient condition for a certain value that can be used as an upper bound on cache interference exhibited by τ_k, denoted by I_k^c.

Lemma 2. Given $\tau(\pi)$ and τ_{na}, if $\exists C_k' \geq C_k$ such that $C_k^* = C_k + I^c(C_k', \tau(\pi), \tau_{na})$, then $I_k^c = I^c(C_k', \tau(\pi), \tau_{na})$.

The equation can be solved by means of fixed point iteration: the iteration starts with an initial value for the length of EW and upper bound on cache interference, i.e. $C_k' = C_k$ and $I^c(C_k') = 0$. By solving the IP, we compute a new upper bound of the cache interference $I^c(C_k', \tau(\pi), \tau_{na})$ and a new corresponding length of EW, $C_k' = C_k + I^c(C_k', \tau(\pi), \tau_{na})$. The iterative computation for τ_k stops either if no update on $I^c(C_k', \tau(\pi), \tau_{na})$ is possible anymore or if the computed $I^c(C_k', \tau(\pi), \tau_{na})$ is large enough to make τ_k unschedulable i.e. $I^c(C_k', \tau(\pi), \tau_{na}) + C_k > D_k$.

Computational complexity: The original IP can be easily transformed to an Integer Linear Programming (ILP) problem by introducing a new integer variable $y_{i,k}$ for each $N_{i,k}$ with two additional constraints: $y_{i,k} \geq 0$ and $y_{i,k} \geq N_{i,k} - 1$.

Inequality (1.11) can be replaced by $\sum_{\tau \in \tau(y) \cup \tau(x)} \max(0, N_{i,k} - 2) C_i \leq C_k$. Thus, we use $IP(C_k', \tau(\pi), \tau_{na})$ to prove the following: if τ_{na}.

Inequality (1.11) can be replaced by $\sum_{\tau \in \tau(y) \cup \tau(x)} \max(0, N_{i,k} - 2) C_i \leq C_k$.

The iterative algorithm takes at most $y = \max\{D_k - C_k\}$ iterations to terminate since C_k' either stays the same or increases at least with I_{k}^{min} in each iteration. Thus, the complexity to compute the upper bound on cache interference exhibited by each task is $O(y(4n^2 + m)^4ln4n + m)$. In TaskPartition, at most n tasks in τ are checked for at most n cores, thus, the complexity of TaskPartition is $O(4n^2m + mn^2)4^nln4n + m)$. Since the while loop in CITTA executes at most n times, the complexity of CITTA is $O(4n^2m + mn^2)4^nln4n + m).

4.3 Schedulability Analysis

4.3.1 Uniprocessor feasibility

Task partitioning reduces the problem of multi-core processor scheduling into a set of single-core processor scheduling problems (one for each core). Following Theorem 1, we first propose a schedulability condition, as stated in Theorem 2, for uniprocessor scheduling, taking shared cache interference into consideration. Note that the condition in Theorem 2 is sufficient and not necessary as I^c_k is the calculated upper bound on the shared interference exhibited by τ_j, the actual cache interference can be smaller than I^c_k.

Theorem 2. A taskset $\tau(\pi_x)$ is schedulable under EDF$_{np}$ on a uniprocessor platform if

$$\forall \tau : C_j + I^c_j \leq t \leq D_j : C_j + I^c_j + \sum_{\tau_i \tau(x)} DBF^c(\tau_i, t) \leq t. \quad (2.2)$$

and for all $\tau_j \in \tau(\pi_x)$:

$$\forall \tau : C_j + I^c_j \leq t \leq D_j : C_j + I^c_j + \sum_{\tau_i \tau(x)} DBF^c(\tau_i, t) \leq t. \quad (2.2)$$
4.3.2 Schedulability analysis of CITTA

We first derive one property that must be satisfied for tasks assigned to the same core by CITTA. This is useful for the proof of the feasibility analysis conducted later for CITTA.

Lemma 3. If tasks are assigned to cores by CITTA,

\[\forall \pi_x \in \pi, \sum_{\tau_i \in \tau(\pi_x)} U^c_i \leq 1. \]

(A) we first prove that if Inequality (2.5) holds, it would lead to contradiction.

From Inequality (1.5) and (2.5),

\[\sum_{\tau_i \in \tau(\pi_x)} DBF^c(\tau_i, t_f) > t_f. \]

(B) we now prove that if Inequality (2.6) holds, it would also lead to contradiction.

We know that for two cases (B1): \(D_s = D_p \) and (B2): \(D_s < D_p \).

(B1) if \(D_s = D_p \), then \(t_f = D_p \)

\[DBF^c(\tau_p, t_f) = C_p + I^c_p \]

From Inequality (2.6),

\[\sum_{\tau_i \in \tau(\pi_x)} DBF^c(\tau_i, t_f) > t_f. \]

This leads to contradiction as proved in case (A).

(B2) if \(D_s < D_p \), we have

\[C_p + I^c_p \leq \max_{\tau_j \in \tau(\pi_x), D_j > D_s} C_j + I^c_j, \]
and
\[\sum_{t_i \in r(x)} DBF^c(t_i, t_f) \leq \sum_{t_i \in r(x)} DBF^c(t_i, t_f). \]

From Inequality (2.6), we have
\[\max_{t_i \in r(x)} C_j + \frac{f_j}{C_j} + \sum_{t_i \in r(x)} DBF^c(t_i, t_f) > t_f. \]
Replacing \(\sum_{t_i \in r(x)} DBF^c(t_i, t_f) \) in the above inequality using equation (2.8), we have
\[\max_{t_i \in r(x)} C_j + \frac{f_j}{C_j} + \sum_{t_i \in r(x)} DBF^c(t_i, D_s) + U_i^c \times (t_f - D_s) > t_f. \]
(2.10)

Since \(\tau \) satisfies condition (1.6),
\[D_s \geq \sum_{t_i \in r(x)} DBF^c(t_i, D_s) + \max_{t_i \in r(x)} C_i + \frac{f_j}{C_j}. \]
(2.11)

From Inequality (2.10) and (2.11),
\[\sum_{t_i \in r(x)} U_i^c > 1. \]
This also contradicts to Lemma 3. □

The correctness of Algorithm CITTA follows, by application of Lemma 4:

Theorem 3. If the task partitioning algorithm CITTA returns Success on taskset \(\tau \), then the resulting partitioning is schedulable by EDF_n on each core.

5 Experiments

We asset the performance of CITTA and the proposed schedulability test in terms of acceptance ratio, that is, the number of tasksets that are deemed schedulable divided by the number of tasksets tested. CITTA is compared against Global EDF (GEDF), which is proposed in [32], the only, at least to the best of our records, work on real-time multiprocessor scheduling, taking the shared cache interference into account.

As mentioned in the beginning of Section 4.1, the CITTA algorithm first sorts tasks in non-decreasing order using some criterion and then assigns tasks to the processor cores according to Equations (1.6).

We consider the following five sorting criteria: the reciprocal of a task’s WCET \(\frac{1}{C_i} \), a task’s period \(T_i \), the reciprocal of a task’s utilization \(\frac{1}{U_i} \), a task’s slack \(S_i = T_i - C_i \) and random order.

5.1 Workloads Generation

We systematically generated synthetic workloads by varying
i) the number of tasks \(n \) (\(n = 10, 20 \) in the taskset), ii) total task utilization \(U_{tot} \) (\(U_{tot} \) from 0.1 to \(m - 0.1 \) with steps of 0.2), iii) the cache interference factor \(IF \) (\(IF = 0.2 \) or 0.8), and iv) the probability of two tasks having cache interference on each other: \(P \) (\(P = 0.1 \) or 0.4). Given those four parameters, we have generated 20000 tasksets in each experiment.

We adopted the same policy, described in [31], to generate task parameters such as task period and utilization, and cache interference between two tasks.

In each experiment, we measure the number of tasksets that can be successfully partitioned by CITTA with different sorting criteria and the number of tasksets that can be scheduled by GEDF. The acceptance ratio is the number of schedulable tasksets divided by the total number of tasksets.

5.2 Results

We report the major trends characterizing the experimental results, illustrated in Figures 2 and 3. In the figures, CITTA-<criterion> represents a variant of CITTA using <criterion> for sorting tasks, GLB stands for the GEDF scheduler.

CITTA outperforms global EDF. Our results clearly show that CITTA outperforms global EDF in all the test cases. It is also evident that CITTA is highly effective for multi-core real-time systems, accounting for cache interference.

As shown in Figure 2(a), when \(IF = 0.2, P = 0.1 \), all the generated tasksets can be successfully partitioned by all variants of CITTA if \(U_{tot} < 2.5 \). While the global EDF achieves the full acceptance ratio when \(U_{tot} < 1.5 \). CITTA is able to partition tasksets with the highest tested total utilization, i.e. \(U_{tot} = 3.9 \). Global EDF can only schedule tasksets with a total utilization of up to \(U_{tot} = 2.5 \).

It is important to observe that the gap of acceptance ratio between all variants of CITTA and global scheduling is large when \(U_{tot} \in [2, 3.5] \). Such a schedulability performance gap also exists for different degrees of cache interference and different numbers of tasks in the taskset, as shown in Figure 2(b), Figure 3(a) and Figure 3(b).

We have also compared the schedulability performance of CITTA and GEDF using heterogeneous task periods i.e. \(T_i \in [100, 300] \) or \(T_i \in [100, 500] \) (of which the results are omitted due to space limitations). In those tests, CITTA still outperforms GEDF.

Performance gap among different variants of CITTA is small. As is depicted in Figures 2(a) and 3(a), when the cache interference is small (\(IF = 0.2, P = 0.1 \), CITTA-T and CITTA-random performed worse than the CITTA-1/C, CITTA-S and CITTA-1/U when \(U_{tot} > 3 \). While as the degree of cache interference increases, the schedulability performance gap becomes smaller, as shown in Figure 2(b) and Figure 3(b). One reason could be that even though tasks are sorted by different criteria, all variants of CITTA force recalculation of the upper bound on cache interference to obtain an upper bound that is as small as possible. The cache interference obtained by all variants of CITTA thus is likely to be similar. Therefore, if cache interference dominates the schedulability result, the gap of schedulability performance among different variants of CITTA is small.
Cache interference degrades schedulability performance. Figure 2(a) and Figure 2(b) compare the acceptance ratio with different P and IF for tasksets consisting of 10 tasks. With the same U_{tot}, the acceptance ratio achieved by all variants of CITTA and global EDF decrease as P and IF increase. This is because a larger P and IF indicate more tasks in the taskset having larger cache interference with each other, which can potentially increase the upper bound on cache interference, eventually making the interfered tasks unschedulable. Similar observation can be made from Figure 3(a) and Figure 3(b) for tasksets consisting of 20 tasks.

5.3 Average Execution Time
We measured the execution time of CITTA with different taskset sizes. The executions are conducted on an Intel Xeon processor using only one core running at 2.4GHz. On average, it takes 0.85 seconds to run CITTA for assignment of the taskset consisting of 10 tasks to a processor with 4 cores, while it takes 2.3 seconds for tasksets with 20 tasks.

6 Conclusions
Shared caches in multi-core processors introduce serious difficulties in providing guarantees on the real-time properties of embedded software. In this paper, we addressed the problem of task partitioning in the presence of cache interference. To achieve this, CITTA, a cache-interference aware task partitioning algorithm was proposed. An integer programming formulation was constructed to calculate the upper bound on cache interference exhibited by a task, which is required by CITTA. We conducted schedulability analysis of CITTA and formally proved the correctness of CITTA. A set of experiments was performed to evaluate the schedulability performance of CITTA against global EDF scheduling over randomly generated tasksets. Our empirical evaluations shows that CITTA outperforms global EDF scheduling in terms of tasksets deemed schedulable. As for future work, we plan to combine the task partitioning and cache partitioning approaches to design a new real-time scheduling algorithm that can achieve even better schedulability.
References

