

DOI
10.1039/d0cc03945d

Publication date
2020

Document Version
Final published version

Published in
Chemical Communications

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
A light-operated pillar[6]arene-based molecular shuttle†

Tomoki Ogoshi,*ab Daisuke Kotera,c Shixin Fa,ab Shungo Nishida,c Takahiro Kakuta,b,c Tada-aki Yamagishic and Albert M. Brouwerdd

Molecular shuttles are mechanically interlocked molecules (MIMs) in which a macrocyclic ring is able to move back-and-forth between two recognition sites (stations). The constitution and length of the linker connecting the two stations dominate the ring movement. Insertion of groups sensitive to external stimuli (pH, redox reactions and light) into the linker is a useful approach to control the ring movement. Among these stimuli, light is especially useful because it functions quickly, efficiently, and reversibly. Azobenzene derivatives are widely used as photo-responsive compounds. Their conformational change between E and Z isomers in response to visible light or ultraviolet (UV) can be exploited to construct light-operated molecular shuttles. Examples include shuttles based on macrocyclic rings such as cyclodextrins, cucurbit[n]urils and cyclobis(paraquat-p-phenylene). However, few light-operated molecular shuttles have been designed because of the need to match the sizes of the macrocyclic ring and azobenzene derivatives. In this study, we synthesised a new light-operated molecular shuttle, [2]rotaxane, consisting of a pillar[6]arene ring and an azobenzene derivative. Pillar[n]arenes, which were reported by our group in 2008, are pillar-shaped macrocyclic hosts in supramolecular chemistry. Based on their superior functionality, host–guest property, symmetric structures, and facile synthesis, various pillar[n]arene-based supramolecular assemblies and systems have been reported.

In this study, we designed a pillar[n]arene-based photo-responsive molecular shuttle using a photo-responsive host–guest complexation between azobenzene derivatives and pillar[6]arenes. From previous reports, the smaller size of the E isomers of azobenzene derivatives permits them to thread pillar[6]arene cavity (Fig. 1a). In contrast, pillar[6]arenes rarely form stable complexes with Z isomers because the latter are too bulky. Therefore, the pillar[6]arene ring can only accommodate E isomer azobenzenes.

![Fig. 1](https://example.com/fig1.png)

Fig. 1 (a) Photo-responsive host–guest system based on an azobenzene guest and a pillar[6]arene. (b) Host–guest complexation between C4 methylene station (axle 1) and pillar[6]arene.
We thus introduced the azobenzene group as a photo-responsive gate to control pillar[6]arene shuttling between two stations. A C4 methylene chain group flanked by N-substituted triazoles, axle 1 (Fig. 1b) was used as a station. Axle 1 forms a 1:1 host-guest complex with the pillar[6]arene 2 at 298 K in CDCl$_3$ ($K = 1.6 \pm 0.1$ M$^{-1}$, see ESI† for detail), that is notably weaker than its corresponding complexes with pillar[5]arenes ($K > 10^4$ M$^{-1}$)13 because of the larger cavity size of pillar[6]arenes (ca. 6.7 Å) compared with pillar[5]arenes (ca. 4.7 Å). The weak binding of the C4 station by pillar[6]arenes enables rapid shuttling between two such stations. Thus, we designed [2]rotaxane 5, a pillar[6]arene ring 2, encircling axle 3 (a central photo-responsive azobenzene gate connecting two C4 stations), capped by a pair of bulky trityl stoppers 4. The pillar[6]arene-based [2]rotaxane 5 was synthesised using a stepwise copper(i)-catalysed alkyne–azide cyclo-addition (CuAAC) reaction, previously developed in our laboratory (Fig. 2A).13 In the rotaxane synthesis, first CuAAC reaction between axle 3 and stopper 4 produced an intermediate 5.

Fig. 2 (A) Synthesis of pillar[6]arene-based [2]rotaxane 5 from pillar[6]arene ring 2, stopper 4 and azobenzene axle 3. (B) 1H NMR spectra (CDCl$_3$) of (a) dumbbell 6 at 298 K, (b–d) E-[2]rotaxane 5 at different temperatures and (e) Z-[2]rotaxane 5 (E/Z = 10/90) at 298 K.
containing one C4 station in situ, then pseudo[2]rotaxane structure forms. The second CuAAC reaction produces the second C4 station. However, wheel 2 cannot slip over the stopper ends, resulting in formation of [2]rotaxane 5 with two C4 stations (yield 39%). We used a large excess of the pillar[6]arene 2 to promote the complex formation, thus [2]rotaxane 5 was obtained in relatively high yield despite the low association constant.

Fig. 2B shows 1H NMR spectra of dumbbell 6 (Fig. 2B(a)) and [2]rotaxane 5 with the E isomer azobenzene (E-[2]rotaxane 5, Fig. 2B(b)) at 298 K. Both dumbbell 6 and E-[2]rotaxane 5 showed clear proton signals from the E isomer azobenzene gate (k, l; shown in purple), stopper and methylene linkers (a, b, c, j; black); however, proton signals from C4 stations and triazole moieties (d–i; green, Fig. 2B(a)) were so strongly broadened in the spectra of E-[2]rotaxane 5 at 298 K (Fig. 2B(b)) that they are not visible, indicating that shuttling of the pillar[6]arene ring between the two C4 stations occurs on the NMR time scale. To clarify this, we obtained 1H NMR spectra of E-[2]rotaxane 5 at lower temperatures. At 213 K (Fig. 2B(d)), new proton signals appeared because the ring shuttling was now slow on the NMR time scale. New peaks (d–i; green) were observed at the similar position as the signals from the C4 station and triazole moieties of dumbbell 6 (Fig. 2B(a)), confirming that they originate from the un-covered C4 station and triazole moieties. Other new peaks were attributed to proton signals from the C4 station and triazole groups covered by the pillar[6]arene ring (D–I; blue). Proton signals (α, β, Et; red) from pillar[6]arene ring were broadening even at low temperature due to the rotation of the units. The same trend was observed in the pillar[6]arene-based [2]rotaxane. All proton signals were completely assigned using 2D NMR experiments. NOE cross peaks were observed between proton signals of pillar[6]arene ring and axle (details in ESI†). Proton signals from the triaryl stopper (signals b and B) were individually observed at 213 K because of the slow ring shuttling on the NMR time scale, and coalesced at 245 K (Fig. 2B(c)). The ring motion was evaluated using the coalescence temperature, from which the rate of ring shuttling in E-[2]rotaxane 5 at 298 K was determined to be \(k = 4.7 \times 10^7 \text{ s}^{-1} \) (ESI†). The value of \(k \) at 213 K estimated by EXSY measurements (ESI†) was 0.86 ± 0.02 s\(^{-1}\), which is consistent with the extrapolated value of \(k \) at 213 K by variable temperature 1H NMR measurements (0.8 s\(^{-1}\)). The pillar[6]arene ring in E-[2]rotaxane 5 rapidly moves back-and-forth between the two C4 stations because the E isomer azobenzene functions as an “open gate” (Fig. 3a).

Shuttling of the pillar[6]arene ring in [2]rotaxane 5 after photo-isomerisation of the azobenzene gate from E to Z isomers was investigated using 1H NMR (Fig. 2B(e)) at 298 K. When E-[2]rotaxane 5 was irradiated with UV (365 nm), new peaks appeared at 6.9 ppm, which were attributed to the Z isomer of the azobenzene gate (orange). At equilibrium, the E-Z-azobenzene ratio was 10/90, which was determined from the relative intensity of the 1H signals corresponding to E-azobenzene (peaks c and j) and Z-azobenzene (peaks C and J) in Fig. 2B(e). The new peaks at 7.55, 4.45 and 1.95 ppm were attributed to un-covered C4 stations and triazole groups (green). The other set of signals at 6.3, 6.0, 1.8 and 0.2 ppm could be attributed to C4 station and triazole groups covered by the pillar[6]arene ring (blue), because they were found at the similar position in the spectra of E-[2]rotaxane 5 at 213 K (Fig. 2B(d)). These peaks were observed in the spectra of Z-[2]rotaxane 5 even at 298 K, indicating that the Z isomer of the azobenzene gate restricted the ring to reside over one C4 station.

UV irradiation of E-[2]rotaxane 5 caused a decrease in the absorbance of E-azobenzene at 357 nm, and an increase in the absorbance of Z-azobenzene at 450 nm (Fig. 4a), indicating E-to-Z photo-isomerisation of the azobenzene group. A photostationary state was reached after 120 s. When the solution was left at 298 K in the dark, the absorbance of the E-azobenzene completely recovered after 2000 s, with a concomitant decrease in the absorbance of Z-azobenzene (Fig. 4b), indicating that
Z-to-E thermal isomerisation occurred at 298 K. The above processes could be reversibly repeated at 298 K (Fig. 4c).

In summary, we have synthesised a pillar[6]arene-based photo-responsive molecular shuttle. The azobenzene derivative functions as a photo-gate to control shuttling of the pillar[6]arene ring. In its E isomer, the pillar[6]arene ring can shuttle between two stations, while no or slow shuttling on an NMR timescale occurs in the Z isomer. To the best of our knowledge, this is first example of a photo-controlled molecular shuttle based on a pillar[n]arene. A fundamental understanding of such simple photo-controlled molecular shuttles will aid the design of more complicated supramolecular assemblies.

This work was supported by a Grants-in-Aid for Scientific Research on Innovative Areas: Soft Crystals (JP18H04510, JP20H04670 for T. O.) and for the Promotion of Joint International Research on Innovative Areas: Soft Crystals (JP18H04510, WPI), MEXT, Japan.

Conflicts of interest

There are no conflicts to declare.

Notes and references

14 Proton signals of c/C and j/j are still in the fast exchange limit in Fig. 2B(b). This must be because the chemical shift difference is small so that coalescence occurs at much lower temperature than for the proton pairs of which the shielding in the covered part is very strong.

16 The value of δ at 25 °C should be viewed as having at least 5% error because this estimation includes uncertainty to determine the coalescence temperature, some approximations and extrapolations.