Ligand-Mediated Spin-State Changes in a Cobalt-Dipyrrin-Bisphenol Complex

van Leest, N.P.; Stroek, W.; Siegler, M.A.; van der Vlugt, J.I.; de Bruin, B.

DOI
10.1021/acs.inorgchem.0c01979

Publication date
2020

Document Version
Final published version

Published in
Inorganic Chemistry

License
CC BY-NC-ND

Citation for published version (APA):
Ligand-Mediated Spin-State Changes in a Cobalt-Dipyrrin-Bisphenol Complex

Nicolaas P. van Leest, Wowa Stroek, Maxime A. Siegler, Jarl Ivar van der Vlugt, and Bas de Bruin*

ABSTRACT: The influence of a redox-active ligand on spin-changing events induced by the coordination of exogenous donors is investigated within the cobalt complex [CoII(DPP2−)]. bearing a redox-active DPP2− ligand (DPP = dipyrrin-bis(μ-p-di-tert-butylphenolate)) with a pentafluorophenyl moiety on the meso-position. This square-planar complex was subjected to the coordination of tetrahydrofuran (THF), pyridine, tBuNH2, and AdNH2 (Ad = 1-adamantyl), and the resulting complexes were analyzed with a variety of experimental (X-ray diffraction, NMR, UV−visible, high-resolution mass spectrometry, superconducting quantum interference device, Evans’ method) and computational (density functional theory, NEVPT2-CASSCF) techniques to elucidate the respective structures, spin states, and orbital compositions of the corresponding octahedral bis-donor adducts, relative to [CoII(DPP2−)]. This starting species is best described as an open-shell singlet complex containing a DPP2− ligand radical that is antiferromagnetically coupled to a low-spin (S = 1/2) cobalt(II) center. The redox-active DPP2− ligand plays a crucial role in stabilizing this complex and in its facile conversion to the triplet THF adduct [CoII(DPP2−)(THF)2] and closed-shell singlet pyridine and amine adducts [CoIII(DPP2−)(L)2] (L = py, tBuNH2, or AdNH2). Coordination of the weak donor THF to [CoII(DPP2−)] changes the orbital overlap between the DPP2− ligand radical π-orbitals and the cobalt(II) metalloradical d-orbitals, which results in a spin-flip to the triplet ground state without changing the oxidation states of the metal or DPP2− ligand. In contrast, coordination of the stronger donors pyridine, tBuNH2, or AdNH2 induces metal-to-ligand single-electron transfer, resulting in the formation of low-spin (S = 0) cobalt(III) complexes [CoIII(DPP3−)(L)2] containing a fully reduced DPP3− ligand, thus explaining their closed-shell singlet electronic ground states.

INTRODUCTION

Spin-state changes (spin crossover) can play an important role in chemistry and material research, among others in biochemistry (respiration, enzymatic conversions),1 development of molecular magnets1 and spintronics,1 and as a potential rate-accelerating process in organometallic chemistry and catalysis.4 Purely metal-centered spin-state changes of coordination complexes can be explained in terms of the coordination and geometry-dependent energy difference between partially filled and empty d-orbitals, as described by the ligand-field splitting parameter Δ.5 The respective roles of the metal and traditional (redox-innocent) ligands are well-understood in these cases. However, when a redox-active ligand, capable of bearing unpaired electrons, is present in the coordination sphere of the metal, the relative contributions and the roles and influence of metal and ligand to changes in the total spin state of the overall complex are far less well-understood. The main four modes of action of redox-active ligands that have been studied thoroughly can be summarized as (i) changing the Lewis acidity/basicty of the metal, (ii) acting as an electron reservoir, (iii) generation of a reactive ligand-centered radical, and (iv) radical-type activation of a substrate.5 We wish to expand upon these functions by investigating the role of a redox-active ligand in spin-changing events. Specifically, by keeping the redox-active ligand and metal center constant we set out to investigate how the coordination of different additional redox-innocent donors to the metal center influences the total spin state of the complex, which is governed by the interactions of the metal d-orbitals and the redox-active ligand orbitals of π-symmetry.

In this context, we became interested in the family of dipyrrin-bisphenol ligands (DPP, Figure 1), known since the 1970s.7 Different substitution patterns on the backbone were explored since 2009, and complexes of Al,8,9 B,8 Ga,9 In,9 Ti,10 Zr,10 Ge,10 Sn,10 and Mn11 have been reported. The DPP ligand scaffold was first described as being redox-active in 2012 after the synthesis of cobalt- and nickel-DPP complexes.12

Received: July 4, 2020
Published: August 20, 2020
Hereafter, the redox activity was further studied in Mn,13 Pt,14 Cu,15 and Au16 complexes. Catalytic applications have been reported for the Ti, Zr, Gn, and Sn complexes (copolymerization of epoxides with CO\textsubscript{2}) and Cu (aerobic alcohol oxidation).9,15 Contrarily, cobalt(III)-DPP complexes proved catalytically inactive in the epoxide ring-opening reaction with alcohols, which was attributed to the low Lewis acidity of the cobalt center.17

Initial studies on cobalt-DPP complexes were mainly focused on the comparison of their (redox) properties and (catalytic) reactivity with cobalt-porphyrin, -salen, and -corrole analogues. The ligand was predominantly found to coordinate as a dianionic (radical) ligand to a low-spin cobalt(II) center in neutral Co-DPP complexes.12 Density functional theory (DFT) calculations indicated that the triplet and broken-symmetry open-shell singlet (BSS) ground state (inferring (anti)ferromagnetic coupling between the metal- and ligand-centered unpaired electrons) are energetically close (\(~1 \text{ kcal mol}^{-1}\)).12,17 Although a BSS ($S = 0$) spin state was inferred based on experimental data for a Co-DPP complex, the DFT calculations indicated that the triplet state was slightly favored (\(-1.0 \text{ kcal mol}^{-1}\)).18 Furthermore, monocoordination of benzonitrile, dimethyl sulfoxide (DMSO) and pyridine was observed, with conversion to the octahedral (bis-axially coordinated) complexes in neat DMSO and pyridine. Bis-coordination of two pyridine molecules to afford the octahedral complex was indicated by UV–visible (UV–vis) studies, and DFT calculations revealed orbital compositions expected for a trianionic ligand coordinated to a low-spin (B3LYP functional) or intermediate-spin (OLYP functional) cobalt(III) center. However, the exact electronic structure of the investigated species remains largely unknown at this point.

The aforementioned studies on cobalt-DPP complexes indicate that intermediate- and low-spin configurations on cobalt are energetically close and that the DPP ligand is redox-active on cobalt. Because of these properties we selected the Co-DPP system as a suitable candidate to evaluate the influence of the redox-active ligand on the total spin state of the cobalt complex in the presence and absence of axial redox-innocent donor ligands. Specifically, in this work we study the electronic configuration of a neutral [CoII(DPP2−)] complex (with Ar = C\textsubscript{6}F\textsubscript{5}; R\textsubscript{1} = R\textsubscript{3} = tBu; R\textsubscript{2} = H, Figure 1), bearing a new DPP ligand derivative, upon coordination of different axial donor ligands with experimental (X-ray diffraction (XRD), \(\mu\textsubscript{eff}\), NMR, high-resolution mass spectrometry (HRMS), UV–vis) and computational (DFT, NEVPT2-CASSCF) techniques. We thereby describe how the molecular orbitals are influenced by

![Figure 1. General structure of a dipyrrin-bisphenol (DPP) ligand on a metal (M).](image)

a(A) Synthesis of DDPh\textsubscript{3} and [CoII(DPP2−)]. (B) Displacement ellipsoid plot (50\% probability level) of DDPh\textsubscript{3}. (C) Displacement ellipsoid plot (50\% probability level) of [CoII(DPP2−)]. H atoms (except NH and OH) and disorder are omitted for clarity. (D) Selection of active orbitals, occupancies in parentheses, and electronic structure from a NEVPT2-CASSCF(18,14) calculation on [CoII(DPP2−)]. Isosurface set at 80.
coordination of tetrahydrofuran (THF), pyridine, and primary amines and elucidate the exact electronic structures of these complexes and the influence of the redox-active ligand on the orbital changes upon coordination of axial donors.

RESULTS AND DISCUSSION

Synthesis and Open-Shell Singlet Electronic Ground-State Configuration of [CoII(DPP-2-)].

The dipyrrin-bisphenol ligand DPPH3, bearing two tert-butyl groups on the phenol ring and a pentfluorophenyl substituent on the meso-position, was obtained via a four-step synthesis in 65% overall isolated yield according to modified literature procedures (see Scheme S1 in the Supporting Information and Scheme 1A). Coordination of cobalt(II) and in situ procedures (see Scheme S1 in the Supporting Information) the phenol ring and a penta-

Slow evaporation of a concentrated solution of DPPH3 in CH2Cl2 afforded single crystals suitable for X-ray structure determination (Scheme 1B). Single crystals suitable for XRD analysis of [CoII(DPP-2-)] were also obtained in a similar manner. The molecular structure of the latter is depicted in Scheme 1C and shows a slightly distorted square planar geometry around cobalt. This distortion is most likely caused by the steric repulsion between the ortho-tert-butyl substituents on the phenolate rings. Comparison of the bond lengths in [CoII(DPP-2-)] with those found in the fully aromatic DPPH3 ligand shows alternating elongation and shortening of the C–C bond lengths (see Table S1 in the Supporting Information), consistent with the loss of aromaticity due to the oxidation of the DPP ligand in the complex. The bond lengths are similar to a previously described DPP ligand in the dianionic (radical) state on cobalt(II), thus supporting the proposed DPP-2- oxidation state of the ligand. The two 2-pyrrylphenolato fragments in [CoII(DPP-2-)] have similar bond metrics, indicating a fully conjugated ligand and a delocalized ligand-centered radical coordinated to a cobalt(II) center in the neutral [CoII(DPP-2-)] complex.19

1H NMR analysis of [CoII(DPP-2-)] in CD2Cl2 showed two remarkably downfield-shifted resonances at δ = 12.82 (2H) and 4.29 (18H) ppm. Note that these signals are observed at, respectively, δ = 7.03 and 1.54 ppm in DPPH3. All other resonances are shifted ~1 ppm relative to the free ligand. These unusual shifts are suggestive of (minor) paramagnetic contributions to the observed chemical shift in the 1H NMR spectrum, which seems to correlate with the experimentally determined bond lengths from XRD that suggest a ligand-centered radical (DPP-2-) and consequently a cobalt(II) (radical) center. However, whether these apparent paramagnetic contributions are best explained by an open-shell singlet ground state (temperature-independent paramagnetism (TIP)) or as the result of the population of an excited higher spin-multiplicity state (either thermally or induced by weak and dynamic coordination of CD2Cl2) is unclear at this stage. Nonetheless, these shifts are noteworthy.

Measurement of the effective magnetic moment (μeff) of [CoII(DPP-2-)] in the solid state as a function of the temperature with a superconducting quantum interference device (SQUID), to investigate the coupling of the two unpaired electrons, showed no significant magnetization in the S–290 K range (see Figure S1 in the Supporting Information). The effective magnetic moment in CD2Cl2 solution, as determined by the Evans method, also afforded a μeff of 0 μB. The combined XRD, NMR spectroscopic, and magnetometric data thus indicate a diamagnetic ground state, resulting from the strong antiferromagnetic coupling of the two unpaired electrons, yielding an overall (open-shell) S = 0 singlet spin state.

To study the electronic structure, we initially performed DFT calculations at the B3LYP/de2-SVP//B3LYP/de2-TZVP level of theory, employing an m4 grid and Grimme’s version 3 dispersion corrections (see the Supporting Information for more details). The calculated bond metrics for [CoII(DPP-2-)] in the open-shell singlet state closely resemble those found in the crystal structure (see Table S1 in the Supporting Information) and show similar alternating C–C bond lengths, consistent with oxidation of the ligand to the DPP-2- redox state. The relative energies of the open-shell singlet (∆Go298 K = +1.3 kcal mol−1), triplet (∆Go298 K = 0.0 kcal mol−1), and closed-shell singlet (∆Go298 K = +14.8 kcal mol−1) are consistent with the proposed open-shell (biradical) character of [CoII(DPP-2-)], but they fail to reproduce the experimentally observed (open-shell singlet) spin state being the ground state of the molecule.

Distinguishing between a triplet and a multireference broken-symmetry singlet (BSS) electronic structure is (nearly) impossible when relying on single-reference DFT calculations.22,23 We therefore investigated the electronic structure of [CoII(DPP-2-)] with multiconfigurational N-electron valence state perturbation theory (NEVPT2)-corrected complete active space self-consistent field (CASSCF) calculations (see the Supporting Information), a method we previously used successfully to study the orbital compositions of cobalt complexes bearing a redox-active ligand.24 A NEVPT2-CASSCF(18,14) calculation, employing 18 electrons in 14 active orbitals on [CoII(DPP-2-)], converged on the singlet surface and showed a dominant (>96%) contribution from a multireference open-shell singlet (OSS) electronic configuration of [CoII(DPP-2-)]. A pure triplet spin-state solution could not be found in this, nor in a reduced, active space. State averaging of the singlet and triplet state in a 50:50 mixture in the active space did afford a solution for the triplet spin state, but this triplet state was found to be +6.5 kcal mol−1 less stable than the OSS state.

A selection of the active orbitals and their occupations derived from the NEVPT2-CASSCF(18,14) calculation on [CoII(DPP-2-)] is depicted in Scheme 1D. The dxy, dxz, dyz, and a ligand (L) orbitals of parity symmetry are doubly filled, whereas the dxy, dyz, and dxz orbitals are empty. The two main contributors to the multireference OSS solution are described by the dz2 orbital, which has a bonding and antibonding combination with the π-frame of the ligand (L+dz2–L′−dz2) or nonbonding (dz2). Specifically, 50.6% of the total wave function is described by a doubly filled L+dz2–L′−dz2 orbital (and empty dz2), while 45.5% of the wave function is described by a doubly filled dz2 (and empty L+dz2–L′−dz2 orbital). The electronic structure of [CoII(DPP-2-)] is thus best described as an open-shell singlet based on the combined experimental (XRD, 1H NMR, μeff) and computational (NEVPT2-CASSCF) studies. Effectively, one unpaired electron resides in the dz2 orbital on cobalt, and another unpaired electron is fully delocalized over the ligand with a small contribution from the dxz orbital on cobalt. As such, this complex is best described as a system containing antiferromagnetically coupled cobalt(II)- and DPP-2- ligand-centered unpaired electrons.
Spin-Flip to a Triplet State upon Coordination of THF on [CoII(DPP=2−)] to Generate [CoII(DPP=2−)(THF)2]. Whereas [CoII(DPP=2−)] is purple in non-coordinating solvents (CH₂Cl₂, toluene) we noticed a distinct color change to green upon solvation of the complex in coordinating solvents (THF, MeOH, MeCN), indicative of solvent coordination. The UV−vis spectra of [CoII(DPP=2−)] in THF (solid green line, λₘₓ = 318, 409, 423, 474, 632, and 833 nm) and CH₂Cl₂ (solid purple line, λₘₓ = 326, 374, 556, and 755 nm) are shown in Figure 2 left. Titration of THF (guest) to a CH₂Cl₂ solution of [CoII(DPP=2−)] (host) afforded spectral changes in the UV−vis spectra characteristic for multiple binding events (see Figure 2 left and Figure S4 in the Supporting Information). Isosbestic points are found in two regimes: between 0 and 1.3 × 10⁻² equiv of THF (solid purple to solid light green line, λ = 413, 488, 600, 667, 771 nm) and between 5.2 × 10⁻¹ and 1.4 × 10⁻¹ equiv of THF (solid orange to solid brown line, λ = 393, 489, 593, 679, 776 nm). Between these two regimes the spectral crossing points are found between the isosbestic points, suggestive of the simultaneous presence of three species.

The titration data could be fitted to weak noncooperative host−guest−guest binding with an overall association constant (K_total) of 1.2 M⁻¹ for binding of two THF molecules (see Figure S2 in the Supporting Information). The data are therefore consistent with the initial (predominant) formation of a mono-THF adduct (first regime), followed by the formation of a bis-THF adduct (second regime, see Figure S4 in the Supporting Information). Full conversion to this latter species is not reached at the end of the depicted titration curve (brown solid line, Figure 2 left) and is only observed in neat THF (solid green line, Figure 2 left), as indicated by the increased absorbance of various spectral bands and the shoulder at 474 nm. Similar mono- and bis-coordination of solvent has been described in the literature for related Co-DPP complexes, and in combination with the titration data in Figure 2 we thus propose the formation of a bis-THF adduct ([CoII(DPP=2−)(THF)₂] in neat THF (Scheme 2).

To further study the coordination of THF to [CoII(DPP=2−)] we followed the spectral changes in the ¹H NMR spectrum upon addition of THF to a 5.89 mM CD₂Cl₂ solution of [CoII(DPP=2−)] (Figure 2 right). The presence of 1.1, 2.0, or 3.8 M THF (spectra B, C, D) led to signal broadening and gradual downshifting of one resonance (labeled as a blue square, orange triangle, and yellow diamond) are strongly shifted upfield, approaching the shifts observed in neat THF-d₈ (spectrum E). The observed sharp paramagnetically shifted resonances in the −65 to +45 ppm region in neat THF-d₈ clearly indicate conversion towards a new open-shell species. Interestingly, concentrating and thoroughly drying the sample obtained in neat THF-d₈ followed by dissolution in CD₂Cl₂, afforded a purple solution for which the spectral data (¹H NMR, UV−vis) exactly matched that of [CoII(DPP=2−)] (spectrum F). These combined data thus point to weak and reversible binding of THF to the square planar complex, consistent with the low K_total as derived from the UV−vis spectroscopic titration study.

No THF adducts were observed by HRMS, presumably due to the reversible weak binding and low boiling point of THF, which is likely easily lost in the ionization process. Attempts to crystalize a THF adduct of [CoII(DPP=2−)] were unfortunately unsuccessful. Determination of the effective magnetic moment of [CoII(DPP=2−)(THF)₂] in THF-d₈ by the Evans method afforded μₑff = 2.91 μ₀, indicating the formation of a triplet (S = 1) complex.
DFT calculations (B3LYP/def2-SVP//B3LYP/def2-TZVP, m4 grid, Grimme’s version 3 dispersion corrections) indicated that both the square pyramidal mono-THF adduct ([CoII(DPP-2-)](THF)) and the octahedral bis-THF complex ([CoII(DPP-2-)](THF)2) have a triplet spin (S = 1) ground state, consistent with the experimentally determined spin state. To obtain more insight in the electronic structure of [CoII(DPP-2-)](THF)2 and to investigate possible multi-reference contributions to the ground-state wave function, we performed NEVPT2-CASSCF(18,15) calculations on the singlet, triplet, and quintet spin surfaces. The triplet state was again found to be the lowest in energy, with the (open-shell) singlet and quintet states being disfavored by +32.2 and +33.0 kcal mol⁻¹, respectively. Dominant multi-reference character was observed in the triplet spin state, leading to an interesting electronic structure wherein cobalt retains the +II oxidation state and is ferromagnetically coupled to a ligand-centered radical on the DDP-2⁻ ligand (Figure 3).

![Figure 3. Selected active orbitals, occupancies in parentheses, and electronic structure of cobalt and the ligand from a NEVPT2-CASSCF(18,15) calculation on [CoII(DPP-2-)](THF)2. Isosurface set at 80.](https://dx.doi.org/10.1021/acs.inorgchem.0c01979)

With the dₓᵧ, dₓz, and dᵧz orbitals on cobalt doubly filled, the unpaired (and uncorrelated) α-spin electron on cobalt resides in the dₓz orbital (Figure 3). The other α-spin electron mainly resides in the strongly correlated antibonding combinations of the dₓz orbital with the ligand pyrrole π-framework (dₓz-Pyr Lₓz = -0.262 S4 Eh, 46.1% only α-spin, 1.51 total electron occupation) and the complete ligand π-system (Lₓz-dₓz = -0.208 S7 Eh, 34.9% only α-spin, 1.59 total electron occupation). The energetically slightly higher lying Lₓz-dₓz orbital is more diffuse over the ligand π-system, thus leading to a smaller electron–electron repulsive interaction (i.e., pairing energy of the α- and β-spin electrons) upon filling of this orbital in comparison to the more localized (less diffuse) dₓz-Pyr Lₓz orbital. Consequently, in the multiconfigurational description of the total triplet spin state wave function, the ligand-centered unpaired electron is mainly (46.1%) localized on the least-diffuse orbital (dₓz-Pyr Lₓz).

The spin–flip in the transition from [CoII(DPP-2-)](OSS) to [CoII(DPP-2-)](THF)]2 (triplet) can be understood by looking at the composition of the SOMOs. The α- and β-spin electrons in [CoII(DPP-2-)] are located in the dₓz-based orbitals (dₓz and Lₓz+dxz=Lₓz). A triplet state would lead to severe (α) spin–spin repulsion in this cobalt-centered orbital, and consequently an OSS solution is favored. This is not the case for [CoII(DPP-2-)](THF)]2, wherein the two unpaired electrons reside in spatially different orbitals (dₓz and dᵧz-based). In this case Hund’s rule applies, which states that the maximization of the total spin is favored for a given electronic configuration, thus leading to the observed triplet spin state.

Closed-Shell Singlet Spin State via Metal-to-Ligand Single- Electron Transfer Induced by Coordination of Stronger Donors. We next set out to explore the influence of replacing the weak-field ligand THF with the stronger-field ligand pyridine. Addition of excess (100 equiv) pyridine to [CoII(DPP-2-)] in CH2Cl2 afforded quantitative formation of the bis-pyridine adduct [CoII(DPP-2-)(Py)2] as a green powder after workup (Scheme 3A). The six-coordinate complex was characterized inter alia by ¹H NMR spectroscopy and positive mode cold-spray ionization (CSI) HRMS. Single crystals suitable for X-ray structure determination were grown by slow evaporation of a concentrated solution of the complex in a 5:1 mixture of CH2Cl2 and MeOH. Three octahedral [CoIII(DPP-3-)(Py)2] complexes are present in the unit cell (see Figure S6 in the Supporting Information), one of which (the left structure) is depicted in Scheme 3B. The bond metrics of all three [CoIII(DPP-3-)(Py)2] molecules are similar, although the relative rotation of the pyridine ligands differs from nearly parallel to perpendicular (see Table S2 in the Supporting Information).

The experimentally determined C–C bond lengths of the DPP moiety (see the Supporting Information) in the crystal structure of [CoIII(DPP-3-)(Py)2] resemble the aromaticity that is also observed in the free DPPH ligand, thus suggesting a fully reduced trinionic DPP-3⁻ redox state for the ligand and consequently a cobalt(III) center in the neutral complex. The ¹H NMR resonances of [CoIII(DPP-3-)(Py)2] do not show any paramagnetic shifts and are found entirely in the diamagnetic region (δ = 6.13–1.25 ppm), suggesting a closed-shell singlet electronic configuration, that is, a low-spin CoIII center. The SQUID analysis of solid [CoIII(DPP-3-)(Py)2] did not show significant magnetization in the 4–290 K range, again consistent with a singlet ground state (see Figure S7 in the Supporting Information).

DFT calculations (B3LYP/def2-SVP//B3LYP/def2-TZVP, m4 grid, Grimme’s version 3, dispersion corrections) indicated that formation of the closed-shell singlet octahedral bis-pyridine [CoIII(DPP-3-)(Py)2] complex is more exergonic (ΔG°₂⁹₈K = −14.2 kcal mol⁻¹) than the formation of the square pyramidal monopyridine adduct [CoII(DPP-2-)(Py)] (ΔG°₂⁹₈K = −9.1 kcal mol⁻¹, S = 1). Orbital analysis clearly showed that coordination of pyridine in [CoII(DPP-2-)(Py)2] (Scheme 3C) leads to a strongly destabilized dₓz orbital (dₓz−2NPy), resulting in a quite large gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of 0.10346 Eh.
therefore a low-spin (CSS) configuration. The $L_{d_z} - d_{dz}$ (HOMO) is doubly filled, reflecting the reduction of the ligand to the DPP$^{3-}$ state. Cobalt adopts the +III oxidation state in [CoIII(DPP$^{3-}$)(Py)$_2$] with doubly filled d_{xy}, d_{xz}, and

Scheme 3a

(A) Formation of [CoIII(DPP$^{3-}$)(Py)$_2$]. (B) Displacement ellipsoid plot (50% probability level) of one [CoIII(DPP$^{3-}$)(Py)$_2$] molecule. H atoms and disorder are omitted for clarity. (C) Selection of DFT-calculated orbitals and the electronic structure of cobalt and the ligand in [CoIII(DPP$^{3-}$)(Py)$_2$]. Isosurface set at 80.

Scheme 4a

(A) Formation of [CoIII(DPP$^{3-}$)(NH$_2$tBu)$_2$] and [CoIII(DPP$^{3-}$)(NH$_2$Ad)$_2$]. Ad = 1-adamantyl. (B) Displacement ellipsoid plot (50% probability level) of [CoIII(DPP$^{3-}$)(NH$_2$Ad)$_2$]. (C) Displacement ellipsoid plot (50% probability level) of [CoIII(DPP$^{3-}$)(NH$_2$tBu)$_2$]. H atoms and disorder are omitted for clarity.

a
d_{xy} orbital, which are stabilized due to the higher oxidation state of cobalt in comparison to [Co^{II}(DPP^{3-})]. Thus, pyridine coordination effectively results in ligand reduction via metal-to-ligand single-electron transfer. Interestingly, interaction of the pyridine-π system with the d_{xy} orbital is observed in the d_{xy}-2N_{Py,xz} orbital, reflecting at least some π-backonation from cobalt to the pyridine ligands.

Coordination of pure σ-donors was achieved via addition of the primary amines tert-butyl amine and 1-adamantyl amine. The complex [Co^{III}(DPP^{3-})(NH$_2$Bu)$_2$]$_2$ was obtained in quantitative yield as a green powder through addition of 100 equiv of tBuNH$_2$ to [Co^{II}(DPP^{3-})] and subsequent concentration and drying under reduced pressure (Scheme 4A). [Co^{III}(DPP^{3-})(NH$_2$Ad)$_2$] (Ad = 1-adamantyl) was obtained in 43% yield as green crystals after addition of 2 equiv of AdNH$_2$ to [Co^{II}(DPP^{3-})] and subsequent crystallization.

The 1H NMR resonances of [Co^{III}(DPP^{3-})(NH$_2$Bu)$_2$] and [Co^{II}(DPP^{3-})(NH$_2$Ad)$_2$] are similar to the bis-pyridine adduct, found within the diamagnetic region, suggesting that both complexes are most stable in the CSS spin state. Crystals suitable for X-ray structure determination of both complexes were obtained by slow evaporation of concentrated solutions in CH$_2$Cl$_2$ and MeOH (5:1) at room temperature. The C–C and Co–DPP bond lengths obtained from the crystal structure of [Co^{III}(DPP^{3-})(NH$_2$Ad)$_2$] (Scheme 4B) closely resemble those found in [Co^{II}(DPP^{3-})(Py)$_2$] and are consistent with a fully reduced (3–) redox state of the DPP ligand and consequently a cobalt(III) center. The crystallographically independent molecules of [Co^{III}(DPP^{3-})(NH$_2$Bu)$_2$] found in the asymmetric unit (see Figure S9 in the Supporting Information) have mutually similar bond metrics, which are also comparable to those observed in [Co^{III}(DPP^{3-})(NH$_2$Ad)$_2$]. One molecule found in the crystal structure of [Co^{III}(DPP^{3-})(NH$_2$Bu)$_2$] is depicted in Scheme 4C.

The DFT (B3LYP/def2-SVP//B3LYP/def2-TZVP, m4 grid, Grimme’s version 3, dispersion corrections) calculated bond lengths of [Co^{III}(DPP^{3-})(NH$_2$Bu)$_2$] in the CSS spin state are consistent with the experimentally determined bond metrics (see Table S3 in the Supporting Information). Moreover, the corresponding triplet spin state was found to be +4.0 kcal mol$^{-1}$ less stable. The DFT orbital analysis of [Co^{III}(DPP^{3-})(NH$_2$Bu)$_2$] (Figure 4) shows a destabilized empty d$_{xy}$ orbital due to coordination of the tBuNH$_2$ lone σ-pair (N$_{ax}$). However, the bonding interactions of these lone pairs with the d$_{xy}$ and d$_{xz}$ orbitals are observed in the doubly filled d$_{xy}+2N_{ax}$, d$_{yz}$, and 1Py$_{y,z}$, and 2N_{ax} orbitals. The d$_{xy}$, d$_{yz}$, and d$_{xz}$ orbitals are all doubly filled, consistent with a low-spin cobalt(III) electronic configuration formed after metal-to-ligand single-electron transfer.

CONCLUSIONS

The electronic ground state of [Co^{III}(DPP^{3-})] is characterized as a multiconformational open-shell singlet, which is best described as a system containing antiferromagnetically coupled cobalt(II)- and ligand-centered unpaired electrons. Solvation of this complex in THF (sp3-hyb-donor) affords the clear formation of a THF-adduct, [Co^{III}(DPP^{3-})(THF)$_2$], which resides in the triplet spin state. The origin of this spin flip is the orbital overlap of the redox-active ligand π-framework with the cobalt d-orbitals, which leads to the population of two ligand-d$_{yz}$ orbital combinations in a multiconformational triplet solution to reduce spin–spin repulsion. Coordination of pyridine (σ-donor, weak π-acceptor), tBuNH$_2$, or AdNH$_2$ (σ-donors) afforded the closed-shell singlet octahedral complexes via metal-to-ligand single-electron transfer. The redox-active DPP ligand is reduced to the trianionic redox state, and cobalt adopts a low-spin +III oxidation state.

Concluding, we have described that a redox-active DPP ligand on cobalt can accommodate three different spin states of the complex within an integer spin system. The spin-state changes are induced via coordination of axial ligands to the square-planar complex, but the relative energy and overlap of the ligand- and cobalt-centered orbitals determines the most stable spin state. The capability of the redox-active ligand to stabilize unpaired electrons and accommodate intramolecular electron transfer was found to be crucial in this context.

EXPERIMENTAL SECTION

General Considerations. All reagents were of commercial grade and used without further purification, unless noted otherwise. All reactions were performed under an inert atmosphere in a N$_2$-filled glovebox or by using standard Schlenk techniques (under Ar or N$_2$), unless noted otherwise. CH$_2$Cl$_2$ and MeOH were distilled from CaH$_2$toluene was distilled from sodium, and THF was distilled from sodium benzenophenone ketyl. Detailed information regarding the NMR, HRMS, UV–vis, SQUID, and XRD measurements is included in the Supporting Information. XRD- and DFT-derived bond lengths are also included in the Supporting Information. The magnetic moments in solution were determined via the Evans method.21

![Figure 4. Selection of DFT calculated orbitals and electronic structure of cobalt and the ligand in [Co^{III}(DPP^{3-})(NH$_2$Bu)$_2$]. Isosurface set at 70.](image)
Synthesis and Characterization. DPPH. Synthesized in four steps (overall isolated yield 65%) according to adapted literature procedures.6,10 Characterized by 1H and 19F NMR, HRMS-FD, elemental analysis, and XRD (see the Supporting Information).

\([\text{Co}^{\text{II}}(\text{DPP}^{2-})]\). Prepared in 88\% isolated yield according to a literature procedure for the insertion of cobalt in a DPP ligand.11 Characterized by 1H and 19F NMR, HRMS-FD, UV–vis, elemental analysis, \(\mu_{\text{eff}}\) (Evans method and SQUID), and XRD (see the Supporting Information).

\([\text{Co}^{\text{II}}(\text{DPP}^{2-})(\text{THF})]\). Quantitatively prepared by solvation of \([\text{Co}^{\text{II}}(\text{DPP}^{2-})]\) in THF. Characterized by 1H NMR, \(\mu_{\text{eff}}\) (Evans method), and UV–vis (see the Supporting Information).

\([\text{Co}^{\text{II}}(\text{DPP}^{3+})(\text{Py})]\). Obtained in quantitative isolated yield by the addition of pyridine (100 equiv) to a solution of \([\text{Co}^{\text{II}}(\text{DPP}^{2-})]\) in \(\text{CH}_2\text{Cl}_2\). Characterized by 1H and 19F NMR, HRMS-CS1, UV–vis, elemental analysis, \(\mu_{\text{eff}}\) (SQUID), and XRD (see the Supporting Information).

\([\text{Co}^{\text{II}}(\text{DPP}^{3+})(\text{NH}_2\text{Bu})]\). Obtained in quantitative isolated yield by the addition of \(\text{BuNH}_2\) (100 equiv) to a solution of \([\text{Co}^{\text{III}}(\text{DPP}^{2-})]\) in \(\text{CH}_2\text{Cl}_2\). Characterized by 1H and 19F NMR, HRMS-CS1, UV–vis, and XRD (see the Supporting Information).

\([\text{Co}^{\text{II}}(\text{DPP}^{3+})(\text{NH}_3\text{Ad})]\). Obtained in 43\% isolated yield by addition of \(\text{AdNH}_2\) (2.0 equiv) to a solution of \([\text{Co}^{\text{III}}(\text{DPP}^{2-})]\) in \(\text{CH}_2\text{Cl}_2\). Characterized by 1H and 19F NMR, HRMS-CS1, and XRD (see the Supporting Information).

Computational Studies. DFT. Calculations were conducted on full atomic models at the B3LYP/\text{def}-\text{2}-\text{SVP} 30/B3LYP/\text{def}-\text{2}-\text{TZVP} 31 level of theory on an m4 grid with Grimme’s version 32 (“zero-damping”) dispersion corrections with the TURBOMOLE 7.3 32 software package coupled to the PQS Baker optimizer 33 via the BOpt package. 34 Orbital interpretation was performed by Löwdin population analysis of quasi-restricted orbitals (QRO) generated with the ORCA 4.135 software package at the B3LYP/\text{def}-\text{2}-\text{TZVP} level, using the coordinates from the structures optimized in TURBOMOLE as the input and using the UNO keyword. Graphical representations of orbitals were generated using IboView. 36 Energies, \(\chi\) coordinates, and more details on the calculations are included in the Supporting Information.

NEVPT2-CASSCF. The NEVPT2-corrected CASSCF calculations were performed with the ORCA 4.135 software package on the geometries optimized in TURBOMOLE. The \text{def}-\text{2}-\text{TZVP} 35 basis set was used together with the RJCOSX37 approximation in conjunction with the \text{def}-\text{2}-\text{TZVP}/C fitting the basis set to reduce computational cost. The single-root spin state was calculated. The NEVPT238 calculations using the RI approximation were performed on converged CASSCF wave functions. Energies, contributions to the wave functions, full representations of the active spaces, and more details on the calculations are included in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acs.inorgchem.0c01979.

Experimental details, synthetic procedures, NMR, HRMS, and UV–vis spectra, crystallographic refinement details, geometries (\(\chi\) coordinates) and energies of DFT-calculated structures, description of the NEVPT2-CASSCF calculations (PDF).

Accession Codes
CCDC 2012086–2012090 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author
Bas de Bruin – Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands; orcid.org/0000-0002-3482-7669; Email: b.debruin@uva.nl

Authors
Nicolaas P. van Leest – Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
Wowa Stroock – Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
Maxime A. Siegler – Department of Chemistry, John Hopkins University, Baltimore 21218, Maryland, United States; orcid.org/0000-0003-4165-7810
Jari Ivar van der Vlugt – Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.0c01979

Author Contributions
All authors have given approval to the final version of the manuscript.

Funding
This research was funded by The Netherlands Organization for Scientific Research TOP-Grant 716.015.001 to B.d.B.

Notes
The authors declare no competing financial interest.

CCDC 2012086 (DPPH\(_2\)), 2012087 ([CoIIDPP\(^{2-}\)]), 2012088 ([CoIIIDPP\(^{3+}\)(Py)\(_2\)]), 2012089 ([CoIIIDPP\(^{3+}\)(NH\(_2\text{Ad})_2\])], and 2012090 ([CoIIIDPP\(^{3+}\)(NH\(_3\text{Ad})_2\])]

ACKNOWLEDGMENTS

Financial support from The Netherlands Organization for Scientific Research (NWO TOP-Grant 716.015.001) to B.d.B.

REFERENCES

12910 https://dx.doi.org/10.1021/acs.inorgchem.0c01979 Inorg. Chem. 2020, 59, 12903–12912

(19) Two-electron oxidation of the DPP ligand to DPP+ is highly unlikely to be stable on a cobalt(1) center. Furthermore, the DPP− oxidation state is also evident from 1H NMR analysis due to two downshifted resonances and was also consistent with the NEVPT2-CASSCF calculations.

(23) DFT, being a single reference method, is not suitable to accurately calculate the molecular structure with reasonable computational costs (see the Supporting Information for comparison with experimentally determined bond lengths and geometries). Performing these geometry optimizations with multireference NEVPT2-CASSCF calculations is unfeasible in terms of computational costs. However, the NEVPT2-CASSCF calculations can be used to correctly describe the multireference electronic structure, and therefore the two computational methods are complementary.

(26) See the Supporting Information for the calculated exchange coupling constant for the two unpaired electrons and the NEVPT2-CASSCF(14,10) calculations on [CoII(DPP−)2*(THF)].

(32) TURBOMOLE, ver. 7.3; TURBOMOLE Gmbh: Karlsruhe, Germany, 2018.

