Low temperature glass/crystal transition in ionic liquids determined by H-bond vs. coulombic strength

DOI
10.1039/d0cp02633f

Publication date
2020

Document Version
Final published version

Published in
Physical Chemistry Chemical Physics

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Low temperature glass/crystal transition in ionic liquids determined by H-bond vs. coulombic strength+

Self-assembled ionic liquid crystals are anisotropic ionic conductors, with potential applications in areas as important as solar cells, battery electrolytes and catalysis. However, many of these applications are still limited by the lack of precise control over the variety of phases that can be formed (nematic, smectic, or semi/full crystalline), determined by a complex pattern of different intermolecular interactions. Here we report the results of a systematic study of crystallization of several imidazolium salts in which the relative contribution of isotropic coulombic and directional H-bond interactions is carefully tuned. Our results demonstrate that the relative strength of directional H-bonds with respect to the isotropic Coulomb interaction determines the formation of a crystalline, semi-crystalline or glassy phase at low temperature. The possibility of pinpointing H-bonding directionality in ionic liquids make them model systems to study the crystallization of an ionic solid under a perturbed Coulomb potential.

Introduction

Many properties of ionic liquids (ILs), such as their vapor pressure, viscosity, or melting point reflect the nature and magnitude of their intermolecular interactions. Although, to a large extent, Coulomb interactions are responsible for this phenomenology, it has become increasingly evident that (doubly ionic) H-bonds play an important role in their understanding. For example, Fumino et al. pointed out that directional H-bonds can be regarded as defects on the Coulomb potential of Im-ILs, leading to a counterintuitive decrease of their viscosity with increasing H-bond strength. Molecular dynamics calculations by Zahn et al. revealed an scenario in which induction/dispersive intermolecular forces flatten the interaction potential, allowing the ions to explore different configurations separated by low energy barriers. On the other hand, deactivation of the more acidic H-bonds on the imidazolium cation restricts the movement of anions around the aromatic ring, resulting in higher viscosities and melting points. However, the presence of long alkyl chains in Im-ILs also adds van der Waals interactions to the Coulomb potential, which if sufficiently strong (typically for r > 12 carbon atoms) results in the formation of lamellar mesophases below a certain temperature. Hence, given the important applications derived from these materials, a complete understanding of the effect of different interactions on the formation and properties of crystalline and mesomorphic ionic solids is crucial.

In this paper we report a systematic study of a series of Im-ILs, selected to probe the effect of the H-bond strength on the nature of the solid phase stabilized at low temperature. The structural changes occurring across the liquid-to-solid transition were studied through the temperature dependence of the X-ray diffraction, polarized optical microscopy, electrical and thermal conductivities, infrared absorption, and differential scanning calorimetry experiments. Our main findings can be summarized as follows: (i) increasing the strength of H-bonds frustrates the crystallization of a 3D ionic solid, leading to a progressive loss of the 3D crystalline order and, for sufficiently strong H-bonds, the formation of a glass. (ii) The glass is thermodynamically unstable upon further cooling and small
crystallization nuclei are spontaneously formed, resulting in a substantial enhancement of the thermal conductivity. (iii) Large alkyl chains produce similar effects as H-bonds, suggesting a common mechanism in which anisotropic interactions in addition to the Coulomb potential hinder the formation of an ionic crystal. These findings are condensed in a phase diagram of ILs (Fig. 1) in which the effect of directional H-bonds on the dominant isotropic Coulomb interaction is considered.

Our study also demonstrates that thermal conductivity is an extremely sensitive tool to explore the dynamics of the ILs in the solid phase, either glass or crystal. The study of the low temperature crystallization of the Im-ILs upon systematically increasing the strength of directional H-bonds provides an ideal framework to study the crystallization of an ionic crystal under a perturbed Coulomb potential, as well as, to design effective thermal regulators.

Materials and methods

Ionic liquids were purchased from Sigma Aldrich and Iolitec. The liquids were dried under vacuum at 100 °C for several hours to remove any water which could affect the crystallization, as will be discussed below. Thermal conductivity was measured using a variation of the 3ω method described previously.22 We added two independent electrodes in order to measure the electrical conductivity under the same conditions. Far-FTIR measurements were performed with a Bruker Vertex 70v FTIR spectrometer, equipped with a DLaTGS detector. Samples were mixed with polyethylene powder and pressed into 13 mm diameter pellets, and the spectra (32 scans, resolution 2 cm⁻¹) were collected under vacuum (0.2 mbar) to reduce water and CO₂ adsorption. Mid-FTIR measurements were performed using a Nicolet 6700 FTIR spectrometer (resolution 1 cm⁻¹).

For cryogenic FTIR measurements the sample is inside CaF₂ cells (15 µm spacer) mounted in a brass holder in thermal contact with the heat exchanger of a liquid–N₂ cryostat (DN1704, Oxford Instruments). Temperature scans (2 K min⁻¹) were made using an Oxford Instruments ITIC4 temperature controller, while the temperature is measured though a type K thermocouple mounted close to the sample. The infrared spectra were recorded approximately every 18 seconds using a Perkin Spectrum Two FTIR spectrometer (spectral resolution 1 cm⁻¹).

The liquids were placed between two KBr windows for these measurements. Differential Scanning Calorimetry experiments were carried out using a Mettler Toledo DSC/821. Heat capacity was measured in a PPMS from Quantum Design. X-Ray diffraction was performed in a Bruker D8 Venture Photon III 14 k-geometry diffractometer (Cu Kα radiation). Liquids were sealed inside capillary tubes for these measurements (diameter 400 µm, wall thickness 10 µm). Each experiment was taken at a sample-detector distance of 50 mm, 100 s per image, and with the capillary perpendicular to the direction of the incident beam.

Results and discussion

We have selected for this study a series of Im-ILs in which the availability of the most acidic C(2) and N(1) positions at the cation, and different anions, were systematically varied to increase the strength of the intermolecular C–H · · · A-hydrogen bonds (see the molecular structure in Fig. 1). The strength of the H-bonds on the different Im-ILs studied in this work was probed by FTIR spectroscopy, Fig. 2.4 The suitability of IR spectroscopy to characterize the intermolecular H-bond strength in Im-ILs was previously corroborated by comparison with NMR.23,24

Im-ILs show characteristic bands in the mid-IR spectra associated with the intramolecular vibrational modes, while the low frequency (far-IR) bands are characteristic of the stretching and bending H-bonds between the anion and cation.4,5,25 The progressive increase of the frequency of the broad band at ≈70–130 cm⁻¹, and the shift of the stretching mode of intramolecular C(2)–H to lower frequencies observed in the mid-FTIR spectrum confirm the increasing H-bond strength along this series of Im-ILs (Fig. 2).5

It should be noted that the decreasing reduced mass, μ, will also contribute to the observed frequency shifts.6,26,27 Previous experimental and theoretical analysis by Fumino et al.27 showed that a simple calculation based on the harmonic oscillator approximation can provide a correct estimation of the contribution from μ, independent from the changes in the intermolecular force constant. Such approximation predicts a frequency shift Δν(1 → 2) ≈ (μ₂/μ₁)¹/², which is much smaller than the experimental observations. For instance, the decrease
The intensity ratio between both peaks decreases to the double peak absorption at 200 cm⁻¹ about 270 cm⁻¹, lowest frequency peak, for clarity. The vibrational band at different intensities (the data have been normalized to the imidazolium cation, and it is present in all the ILs with wagging modes of OQC groups (also present as a single overtone of the Im-ring (a Fermi resonance), it was firmly established that H-bonding is the main responsible of the displacement of this absorption to lower frequencies.

Fig. 2 shows the temperature dependence of the electrical conductivity, σ(T), of the Im-ILs across their liquid-to-solid transition. Liquids (1) to (4) show a large thermal hysteresis, consistent with crystallization and melting at Tg and Tm, respectively. These phase transitions were corroborated by the observation of endothermic/exothermic peaks in differential scanning calorimetric (DSC) experiments (Fig. S3 in ESI†). The hysteresis is reduced on (4), and partially suppressed on (5). For these liquids, DSC experiments show a glass transition on cooling, and a recrystallization peak at Tc, during heating, which (partially) induces a thermal hysteresis in the σ(T) curve. Finally, liquid (6) shows a completely reversible transition at Tg, coincident with the glass transition observed in the DSC experiments. Thus, the results analyzed so far suggest a correlation between the H-bond strength and the propensity to form a glass on cooling from the liquid (see Table S1 in the ESI† for the list of transition temperatures reported in this work).

Note also that although nanometer-scale segregation was observed in the liquid phase of Im-ILs with alkyl side chains as short as 4–6 carbon atoms, the comparison of σ(T), in liquids (1)-to-(4) shows that this is not a relevant effect for the crystallization of the liquids studied in this work. Therefore, our hypothesis is that directional H-bonds can be treated as defects in the isotropic Coulomb potential, which frustrate the
formation of the thermodynamically stable ionic crystals at low temperature.

To prove the validity of this scenario, we measured $\sigma(T)$ of Im-ILs (7) (1-octyl-3-methylimidazolium hexafluorophosphate, MOIM-PF$_6$) and (8) (1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, MOIM-NTF$_2$), both with moderate H-bonding strength ($\nu = 85$ cm$^{-1}$, Fig. S4 in ESI†), but with a long alkyl chain. The long lateral chain at the Im-cation introduces a steric hindrance, which can also be treated as a defect on the isotropic potential. Consistent with this hypothesis, the conductivity $\sigma(T)$ of (7) and (8) is completely reversible across their liquid-to-solid transition (see Fig. 3c), and the DSC curves show the change of slope characteristic of formation of a glass on cooling (Fig. S3c, ESI†).

To show how H-bond frustrates the 3D ionic arrangements in more detail, the nature of the different phases appearing at low temperature was studied by X-ray diffraction and polarized optical microscopy (POM); see Fig. 4. For liquid (1), with the

Fig. 3 Temperature dependence (cooling/heating) of the electrical conductivity of the Im-ILs studied in this work (1)–(8). The scan rate is 1 K min$^{-1}$ for all curves. The curves have been multiplied by a factor (indicated), to fit in the same scale.

Fig. 4 Top: Low temperature X-ray diffraction patterns of (a) EBisMIM-NTF$_2$ (1), (b) BMIM-TfO (3), (c) BMIM-NO$_3$ (5), and (d) MOIM-PF$_6$ (7). The lower panels show the polarized optical microscope images taken at approximately the same temperatures as the X-ray patterns above. The X-ray and optical images are compatible with a single crystal in (a), a partially crystalline phase in (b), and amorphous, isotropic phases in (c) and (d). The polarized optical microscopy image in (b) shows a straight wall between two domains with different orientation. The images in (c) and (d) show the tension fracture lines in the glass appearing below T_{NC} (see also the text, Fig. S5 and S6, and the corresponding videos in the ESI†).
Weakest H-bond interaction, the diffraction pattern is characteristic of a fully ordered 3D ionic crystal below $T_C \approx 230$ K. The texture observed in the POM and the kinetics of the process (see ESI† video 1) suggest crystallization by conventional nucleation and growth kinetics. As the strength of the H-bonds increases, the 3D order is progressively lost; for instance, the X-Ray diffraction pattern and POM images of liquids (2)-to-(4) suggest the formation of different semi-crystalline or liquid crystal phases below $T_C \approx 230$ K (see also the corresponding videos in the ESI† and Fig. S5 and S6). The precise crystalline structure of these phases is not relevant for the discussion or conclusions of this paper (as it will be further discussed below); its elucidation is thus beyond the scope of our work.

Niemann et al. and Khudozhnikov et al. also showed that the delocalization of the positive charge in the imidazole ring promotes the formation of cationic clusters (tetramers) by enhanced cation-cation H-bonding. This effect suppresses the tendency of these systems to form 3D crystals, resulting in low temperature liquid-to-glass transitions. These observations are in perfect agreement with our results.

Upon further increasing the H-bond strength the crystalline or semi-crystalline phases are replaced by an isotropic glass. This is the case for liquids (5) and (6), which only show an amorphous signal in the X-ray diffraction pattern down to the lowest temperature studied in this work, ≈ 110 K. However, despite the absence of any signal of crystal ordering in the X-ray diffraction pattern of these liquids, POM images show the sudden appearance of fracture lines throughout the entire system below a temperature which we have called T_{NC} (nucleation temperature) which varies between 110–150 K, depending on the liquid. This effect is totally reproducible and independent on the cooling rate, demonstrating that it is a thermodynamically (and not kinetically) driven process (see the corresponding videos in the ESI†). The same effect is observed in liquids (7) and (8), with weaker H-bonds but with long alkyl chains.

To probe whether the effects observed in POM at T_{NC} imply an actual rearrangement of the molecular packing in the glass, we studied the temperature dependence of the thermal conductivity, $\kappa(T)$. Note that κ is the only transport coefficient that does not depend on ionic diffusivity in a condensed phase, and therefore can be monitored continuously across the different phase transitions. Moreover, as heat is propagated through anharmonic coupling of intermolecular vibrations, κ should be very sensitive to subtle changes in the molecular order of the system, both in the liquid and the solid state.

The results shown in Fig. 5 can be grouped in two different categories: (i) Im-ILs with weak H-bonding and no steric impediments (liquids (1) to (4)) show a large increase in the thermal conductivity below T_c, and a more pronounced temperature dependence in the solid phase. The hysteresis between T_c and T_{m} is consistent with the formation of an ordered phase at low temperatures. (ii) Im-ILs with stronger H-bond interactions or steric effects (liquids (5) to (8)) show a broad peak in κ at T_g characteristic of a glass transition, and a flat liquid-like temperature dependence until T_{NC}. Below this temperature, both the temperature dependence of $\kappa(T)$ and the existence of a thermal hysteresis, are consistent with the existence of crystalline ordering. This phase persists up to T_g upon heating, before transforming again into the isotropic liquid. Different cooling/warming cycles resulted in very reproducible results of $\kappa(T)$, showing that the possible presence of different crystal polymorphs does not affect significatively the thermal conductivity, at least for the Im-ILs studied in this work.

The value of κ below T_{NC} does not depend on the cooling rate (see Fig. S7 in the ESI†), confirming the thermodynamic origin of this phase. The existence of the transition at T_{NC} and
Conclusions

In summary, we have shown that H-bonds act as defects in the isotropic Coulomb potential, and that the relative magnitude of the H-bond strength with respect to the Coulomb interaction determines whether the crystallization or vitrification occurs upon cooling down Im-ILs. The H-bonds act as perturbations that frustrate the 3D ionic ordering and if they are strong enough, the system forms a glassy phase. The spontaneous nucleation of small crystalline nuclei within the glass at low temperature enhances the thermal conductivity upon further cooling. Our results show the very high sensitivity of the thermal conductivity to tiny changes in the molecular structure, which allows the detection of new phase transitions that cannot be followed by conventional electrical conductivity measurements and are barely observed in DSC experiments. The results presented also demonstrate the possibility to achieve large, reversible changes in the thermal conductivity of these materials, which could be of interest for effective thermal regulation. Finally, we want to remark that the tunability of H-bond strength makes Im-ILs a good model system to study the process of crystallization of an ionic solid. Since a similar balancing between directional (H-bonding) and isotropic (Coulomb) contributions to the intermolecular potential should occur in other ionic liquids, we believe the phase behavior observed here should quite general, and we hope that our work will stimulate further experimental and theoretical work in this direction.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank Dr Francisco Ares, Dr Massimo Lazzari (from USC); and J. M. Martinez-Agudo (University of Valencia) for the use of experimental facilities and help during mid-FTIR and DSC measurements. We also acknowledge the use of IR-Raman and X-ray diffraction (RIADT-USC) facilities. This work was financially supported by the Ministerio de Ciencia, Innovación y Universidades of Spain (Projects No. MAT2016-80762-R, RTI2018-101097-A-100 and RyC-2016-20258), the Consellería de Cultura, Educación e Ordenación Universitaria (ED431F 2016/008, and Centro singular de investigación de Galicia accreditation 2016–2019, ED431G/09), the Xunta de Galicia (ED431B 2018/016), the European Regional Development Fund (ERDF), and the European Commission through the Horizon H2020 funding by H2020-MSCA-RISE-2016-Project No. 734187-SPICOLOST. C. L.-B. thanks Xunta de Galicia and ESF for a PhD Grant (ED481A-2018/013).

Notes and references