
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Sensitivity of the spectral form factor to short-range level statistics

Buijsman, W.; Cheianov, V.; Gritsev, V.
DOI
10.1103/PhysRevE.102.042216
Publication date
2020
Document Version
Final published version
Published in
Physical Review E

Link to publication

Citation for published version (APA):
Buijsman, W., Cheianov, V., & Gritsev, V. (2020). Sensitivity of the spectral form factor to
short-range level statistics. Physical Review E, 102(4), [042216].
https://doi.org/10.1103/PhysRevE.102.042216

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:18 Aug 2022

https://doi.org/10.1103/PhysRevE.102.042216
https://dare.uva.nl/personal/pure/en/publications/sensitivity-of-the-spectral-form-factor-to-shortrange-level-statistics(5991c231-f350-4a90-9346-6a5f45f80cd6).html
https://doi.org/10.1103/PhysRevE.102.042216


PHYSICAL REVIEW E 102, 042216 (2020)

Sensitivity of the spectral form factor to short-range level statistics

Wouter Buijsman ,1,* Vadim Cheianov,2 and Vladimir Gritsev1,3

1Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam,
P.O. Box 94485, 1090 GL Amsterdam, The Netherlands

2Instituut-Lorentz and Delta Institute for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
3Russian Quantum Center, Skolkovo, Moscow 143025, Russia

(Received 4 September 2020; accepted 6 October 2020; published 22 October 2020)

The spectral form factor is a dynamical probe for level statistics of quantum systems. The early-time behavior
is commonly interpreted as a characterization of two-point correlations at large separation. We argue that this
interpretation can be too restrictive by indicating that the self-correlation imposes a constraint on the spectral
form factor integrated over time. More generally, we indicate that each expansion coefficient of the two-point
correlation function imposes a constraint on the properly weighted time-integrated spectral form factor. We
discuss how these constraints can affect the interpretation of the spectral form factor as a probe for ergodicity.
We propose a probe, which eliminates the effect of the constraint imposed by the self-correlation. The use of this
probe is demonstrated for a model of randomly incomplete spectra and a Floquet model supporting many-body
localization.

DOI: 10.1103/PhysRevE.102.042216

I. INTRODUCTION

Level statistics play an unambiguously important role in
studies on quantum ergodicity [1,2], thanks to the universal
properties as described by random matrix theory [3,4]. The
applicability of random matrix theory to describe the corre-
lations between energy levels is quantified by the Thouless
energy [5], which gives the range over which the random
matrix theory description for fully ergodic systems holds. For
diffusive mesoscopic systems, this range is intimately related
to numerous quantities, such as the conductance and the time
required for electrons to diffuse over the full sample [6,7].

The dependence of the Thouless energy on the parameters
of the system allows one to study the onset of ergodicity. In the
spirit of studies on disordered mesoscopic systems conducted
in the 1990s [8–10], recent years show a revival of interest for
this quantity from several directions [11–19]. The correlations
within the spectra are typically studied through the spectral
form factor [20,21], a time-dependent probe for level statistics
on ranges long compared to the mean level spacing.

In this paper, we show that the self-correlation imposes a
constraint on the spectral form factor integrated over time.
More generally, it is shown that each expansion coefficient of
the two-point correlation function imposes a constraint on the
properly weighted time-integrated spectral form factor. As the
lower order expansion coefficients characterize correlations
at small separation, the constraints are effectively determined
by short-range level statistics. We argue that these constraints
can affect the interpretation of the spectral form factor as a
probe for long-range level statistics, as well as the usability of
the spectral form factor as a tool to study the scaling of the
Thouless energy.

*w.buijsman@uva.nl

We propose a probe for ergodicity which eliminates the
constraint imposed by the self-correlation, thereby providing a
more transparent quantification of ergodicity than the spectral
form factor. For this probe, quantifying ergodicity does not
involve a comparison with the evaluation for fully ergodic
systems, giving it the additional benefit that it is applicable
even for systems that obey intermediate level statistics. We
demonstrate the use of this probe for an ensemble of random
incomplete spectra [22,23] and a Floquet model supporting
many-body localization [24].

The outline is as follows. Section II discusses the spectral
form factor and the conventional procedure that is used to
study the evolution of the Thouless energy. Section III de-
rives the constraints imposed by short-range level statistics.
Section IV illustrates the potential consequences of these
constraints with physically relevant examples from random
matrix theory. Section V introduces the probe. Section VI
demonstrates the use of the probe for two models of interme-
diate level statistics. A discussion and an outlook are provided
in Sec. VII.

II. SPECTRAL FORM FACTOR

We consider an ensemble of spectra {λn}N
n=1 with N � 1

levels. The spectra are supposed to be unfolded, meaning that
a transformation to unit density is applied. With 〈·〉 denoting
an ensemble average, the density ρ (1)(x) and two-point corre-
lation function ρ (2)(λ, λ′) are given by

ρ (1)(λ) =
〈 ∑

n

δ(λ − λn)

〉
, (1)

ρ (2)(λ, λ′) =
〈 ∑

m �=n

δ(λ − λn)δ(λ′ − λm)

〉
. (2)
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Because of the unfolding, one finds ρ (1)(λ) = 1 over the full
range of support. The two-point correlations are assumed
to be translationally invariant, meaning that ρ (2)(λ, λ′) =
ρ (2)(0, λ′ − λ). The spectral form factor K (t ) [3] is defined
as the Fourier transform of the cluster function ρ (2)(0, λ) −
ρ (1)(0)ρ (1)(λ) accompanied by an offset:

K (t ) = 1 +
∫

[ρ (2)(0, λ) − 1]eiλt dλ. (3)

Because of the finite range of support for λ, the time is a
discrete variable taking values 2πn/N for n ∈ Z. The trans-
lational invariance of the correlations allows one to replace
exp(iλt ) by the real-valued cos(λt ). Utilizing the translational
invariance of the correlations again, the spectral form factor
can be evaluated at relatively low computational costs as

K (t ) =
〈

1

N

( ∑
n,m

ei(λn−λm )t

)〉
− Nδ(t ) (4)

=
〈

1

N

∣∣∣∣∑
n

eiλnt

∣∣∣∣
2
〉

− Nδ(t ). (5)

Ensemble averaging is required as the spectral form factor
is not a self-averaging quantity [25]. Section VI covers the
interpretation of the wave number t as a time.

The large-λ behavior of ρ (2)(0, λ) is equivalent to the
small-t behavior of the spectral form factor (restricting the
focus to t � 0), as follows from the Fourier transform of the
expansion coefficients:∫

λ−2neiλt dλ = π (−1)n

(2n − 1)!
|t |2n−1 (6)

with n ∈ N [26,27]. It is suggestive to associate the behavior
of the spectral form factor at time t with the two-point cor-
relator acting over a distance proportional to 1/t . Then, there
is a lowest time from which onwards the spectral form factor
matches the evaluation for fully ergodic systems. In the liter-
ature, this time is known as the Thouless [11,13–19], ergodic
[8–10], or ramp [12] time. It is inversely proportional to the
Thouless energy, giving the range over which the spectra obey
the correlations as for fully ergodic systems [5]. We remark
that each of Refs. [11–19] appeared in recent years.

III. CONSTRAINTS IMPOSED BY SHORT-RANGE
LEVEL STATISTICS

A key distinction between ergodic and nonergodic systems
is the occurrence of level repulsion [3]. Unfolded spectra obey

ρ (2)(λ, λ) =
{0 (level repulsion),

1 (no level repulsion). (7)

Integrating the expression for the spectral form factor as given
in Eq. (3) over time shows that the value of the self-correlation
ρ (2)(λ, λ) imposes a constraint on the time-integrated spectral
form factor:∫ ∞

0
[1 − K (t )]dt = π [1 − ρ (2)(0, 0)]. (8)

For spectra with and without level repulsion, the integral eval-
uates to, respectively, π and zero. An important consequence

appears when determining the Thouless time. Namely, pos-
itive (negative) differences between the spectral form factor
and the evaluation for fully ergodic systems at earlier times
have to be compensated by negative (positive) differences at
later times. As such, one could expect the estimated Thouless
time to deviate significantly from the value that would have
been obtained by using probes that are not sensitive to con-
straints.

The constraint imposed by Eq. (8) is a specific example
from a more general set of constraints when ρ (2)(0, λ) can
be expanded in powers of λ. Examples are given in Sec. IV.
Consider the inverse Fourier transform:

ρ (2)(0, λ) − 1 = 1

2π

∫
[K (t ) − 1]e−iλt dt . (9)

On the left-hand side, we expand ρ (2)(0, λ) in powers of λ as

ρ (2)(0, λ) = c0 + c1λ
2 + c2λ

2 + c3λ
6 + . . . . (10)

Next, we take the 2nth derivative with respect to λ on both
sides, and set λ = 0 to obtain∫ ∞

0
[1 − K (t )]t2ndt = π (−1)n(2n)!cn. (11)

This equation establishes a relation between the 2nth deriva-
tive of ρ (2)(0, λ) at λ = 0 and the time-integrated spectral
form factor weighted by a factor t2n. By a similar argument
as above, these constraints can make the estimated Thouless
time deviate from the value that would have been obtained by
unconstrained probes.

IV. ILLUSTRATIONS

Equations (8) and (11) indicate dependencies between
the spectral form factor evaluated at earlier and later times.
A physically relevant illustration is provided by the bulk
statistics of the unitary (Dyson index β = 2) random matrix
ensemble [3,28]. In the thermodynamic limit N → ∞, un-
folded spectra obey

ρ (2)(0, λ) = 1 −
( sin(πx)

πλ

)2

(12)

= −
∞∑

n=0

(−1)n4nπ2n

(2n)!(2n2 + 3n + 1)
λ2n. (13)

The level statistics of the unitary random matrix ensemble
apply to fully ergodic systems with broken time-reversal sym-
metry. The constraints given by Eqs. (8) and (11) impose∫ ∞

0
[1 − K (t )]t2ndt = − 4nπ2n+1

2n2 + 3n + 1
(14)

for the nth term of the expansion given in Eq. (13). These
constraints are consistent with the evaluation of the spectral
form factor [3], given by

K (t ) =
{ |t |

2π
if |t | � 2π,

1 if |t | > 2π.
(15)

Various models for intermediate level statistics, such as the
short-range plasma model [29], are described by Eq. (12) on
short ranges, i.e., up to lower orders. Due to the constraints,
the corresponding spectral form factor could match Eq. (15)
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down to early times, despite disagreement of the two-point
correlation function with Eq. (12) at large separations. Again,
one might consequently expect the estimated Thouless time
to deviate from the value that would have been obtained when
using alternative probes that are not sensitive to constraints.

A generalization of the above example is provided by
the Calogero-Sutherland model [30]. This model is directly
related to the random matrix models (see, e.g., Ref. [4]). It
describes particles on a ring, interacting through a pairwise
potential with a magnitude controlled by a parameter β � 1.
The positions are indicated by an angle θn ∈ [0, 2π ), where
n runs over 1, 2, . . . , N with N the number of particles. The
Hamiltonian H is given by

H = −
N∑

n=1

∂2

∂θ2
n

+
∑
n<m

β(β − 2)

8 sin2 [(θn − θm)/2]
. (16)

The amplitude of the ground state matches the joint probabil-
ity distribution

P(θ1, θ2, . . . , θN ) ∼
∏
n<m

|eiθn − eiθm |β (17)

of the circular random matrix ensembles, where β denotes the
Dyson index [3]. The Calogero-Sutherland model thus gen-
eralizes the Dyson index from β ∈ {1, 2, 4} to the continuous
range β � 1. Equation (11) imposes a constraint on the time-
integrated spectral form factor when β is even (i.e., β/2 ∈ N).
In the thermodynamic limit N → ∞, these coefficients have
been obtained analytically in terms of generalized factorials
[31]. Noting that the Hamiltonian of the Calogero-Sutherland
model is integrable, we conjecture that these coefficients are
related to the conserved charges. For β = 4 (symplectic ran-
dom matrix ensemble), the coefficients can alternatively be
obtained from the evaluation of the spectral form factor [3],
given by

K (t ) =
{ |t |

4π
− |t |

8π
ln

∣∣1 − |t |
2π

∣∣ if |t | � 4π,

1 if |t | > 4π.
(18)

V. PROBE PROPOSAL

The evolution of the Thouless time as a function of the
parameters of the system allows one to quantify the onset
of ergodicity through the spectral form factor. Because of
the constraints outlined in Sec. III, the interpretation can,
however, be fairly nonstraightforward. Equation (8) suggests
an alternative probe, defined as

ρ (2)(0, 0|t ) = 1 − 1

π

∫ t

0
[1 − K (t ′)]dt ′. (19)

This probe gives the self-correlation as captured by the spec-
tral form factor evaluated at times less than t . Poissonian
level statistics are characterized by K (t ) = 1 as the levels are
uncorrelated. With increasing t , the value of ρ (2)(0, 0|t ) thus
tends to zero or one for, respectively, ergodic and nonergodic
systems. It approximates the self-correlation in a controlled
way, thereby serving as a diagnostic when evaluated at a fixed,
late time.

The diagnostic proposed here is advantageous compared
to the Thouless time in at least two respects. First, the

constraint on the time-integrated spectral form factor imposed
by the self-correlation through Eq. (8) is eliminated, making
it arguably more transparent. Second, the quantification of
ergodicity is not based on a comparison with fully ergodic
systems, thereby allowing one to study systems exhibiting
intermediate level statistics.

Semiclassically, the Heisenberg time tH = 2π is the largest
physically relevant time (see, e.g., Refs. [32,33]). In this set-
ting, it can be natural to quantify the onset of ergodicity by
ρ (2)(0, 0|tH). Using the evaluations of the spectral form fac-
tors for the bulk statistics of the orthogonal (β = 1), unitary
(β = 2), and symplectic (β = 4) random matrix ensembles as
given in, respectively, Eqs. (22), (15), and (18), one finds

ρ (2)(0, 0|tH) =
⎧⎨
⎩

1 − 3
4 ln(3) if β = 1,

0 if β = 2,

0 if β = 4,

(20)

with 1 − 3
4 ln(3) ≈ 0.176. We note that tH = 4π for the sym-

plectic ensemble as the spectra contain 2N elements [3]. A
method to numerically evaluate the integral in Eq. (19) up to
arbitrarily large times at low computational costs is mentioned
in Sec. VI.

VI. EXAMPLES

A. Randomly incomplete spectra

Randomly incomplete spectra provide an interpolation be-
tween Poissonian and Wigner-Dyson level statistics, for which
the spectral form factor can be obtained analytically [22].
Following Ref. [23], we consider the bulk statistics of the
orthogonal (β = 1) random matrix ensemble with a randomly
selected fraction 1 − f of the levels omitted. This ensemble
was introduced originally to study the effect of missing levels
in experimental contexts. After rescaling the levels to unit
mean level spacing (unfolding), the spectral form factor K (t )
is given by

K (t ) = 1 − f + f K ′( f t ), (21)

where K ′(t ) denotes the spectral form factor for the bulk
statistics of the orthogonal random matrix ensemble [3]:

K ′(t ) =
{ |t |

π
− |t |

2π
ln

(
1 + |t |

π

)
if |t | � 2π,

2 − |t |
2π

ln
( |t |/π+1

|t |/π−1

)
if |t | > 2π.

(22)

The ensemble interpolates between Poissonian ( f = 0) and
Wigner-Dyson ( f = 1) level statistics. Level repulsion can be
observed for f > 0. For the intermediate value f = 1/2, the
statistics are close to those of the semi-Poisson model [34].
Evaluating ρ (2)(0, 0|t ) at the Heisenberg time t = 2π yields

ρ (2)(0, 0|tH ) = 1 + 5

2
( f 2 − f ) +

(1

4
− f 2

)
ln(1 + 2 f ).

(23)

Consistent with Eq. (20), this evaluates to, respectively, unity
and 1 − 3

4 ln(3) for f = 0 and 1.
Equation (21) gives the spectral form factor for a weighted

sum of the complete spectra (factor f , combined with a scal-
ing of the density) and uncorrelated levels (factor 1 − f ).
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Superimposed spectra appear more frequently as models for
intermediate level statistics [35]. Potentially, alternative inter-
polations can be obtained from superimposed spectra.

B. Many-body localization

Quantum systems with time-periodic Hamiltonians are
known as Floquet systems [36]. The Floquet operator UF is
given by the time-evolution operator of the Hamiltonian H (t )
acting over a single period T :

UF = exp

[
− ih̄

∫ T

0
H (t )dt

]
. (24)

Since UF is unitary, the eigenvalues can be parametrized
as eiθ with 0 � θ < 2π . The set {θn} gives the quasienergy
spectrum. The set of quasienergy levels of the nth power
of UF , which is the time-evolution operator for n cycles, is
given by {θin} = {xit}. As t only enters in the expression for
the spectral form factor as θt , it has the interpretation of a
(discrete) time.

We consider the Floquet model introduced in Ref. [24]. It
describes a spin-1/2 chain subject to disorder and an external
field switching back and forth between the two directions. The
Floquet operator is given by

UF = exp(−iτHx ) exp(−iτHz ), (25)

Hx =
L∑

n=1

g
σ x
n , (26)

Hz =
L−1∑
n=1

σ z
nσ z

n+1 +
L∑

n=1

(
h + g

√
1 − 
2Gn

)
σ z

n . (27)

The σ x,z
n represent Pauli matrices acting on site n. Peri-

odic boundary conditions σ x,z
L+1 = σ x,z

1 are imposed. The Gn

represent disorder sampled independently from a Gaussian
distribution with mean zero and unit variance. The free param-
eters are taken as g = 0.9045, h = 0.809, and τ = 0.8. The
spectral density is uniform. The results below are obtained
from statistics over at least 1000 disorder realizations. The
model exhibits many-body localization [37–41]. At large L,
it is indicated to be in a localized phase for 
 � 0.3 (see also
Ref. [42]).

Figure 1 shows the evolution of ρ (2)(0, 0|t ) as a function of
t . In the ergodic phase (
 = 0.8), one observes strong agree-
ment with the random matrix theory evaluation, obtained from
the spectral form factor given in Eq. (22). When approaching
the localized phase, the curve tends towards K (t ) = 1 for
Poissonian level statistics. Figure 2 shows the evolution of
ρ (2)(0, 0|1000) as a function of 
. As in Refs. [24,42], the
results are consistent with a transition between an ergodic
and a nonergodic phase at 
 ≈ 0.3 at large system sizes.
The integral in the evaluation of ρ (2)(0, 0|t ) can be evaluated
at relatively low computational costs by using Eq. (4) and
involving

N∑
n=0

cos(nx) = 1

sin(x/2)
sin

(x(N + 1)

2

)
cos

( x

2
N

)
. (28)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

t

ρ
(2

)
(0

,0
|t)

Γ = 0.3
Γ = 0.5
Γ = 0.8
RMT

FIG. 1. Numerically obtained ρ (2)(0, 0|t ) as a function of t at
system size L = 12 for 
 = 0.3 (top curve), 
 = 0.5 (middle curve),
and 
 = 0.8 (lower curve). The dashed line displays the random
matrix (RMT) theory prediction for fully ergodic systems.

VII. DISCUSSION AND CONCLUSIONS

In summary, we revisited the interpretation of the spectral
form factor as a probe for ergodicity. We have shown that
short-range level statistics imposes constraints on the spectral
form factor integrated over time, which could affect its inter-
pretation as a probe for long-range level statistics, as well as
the usability of the spectral form factor as a tool to study the
scaling of the Thouless energy. We have proposed a different
probe, and argued that it is more transparent. We demonstrated
the use of this probe for two models of intermediate level
statistics.

The Thouless energy can alternatively be determined from
the number variance [43]. Interestingly, this yields results
conflicting with the analysis of the spectral form factor for
several classes of systems [12]. Possibly, these discrepancies
can be explained using the results of this paper. Next, our
probe could be relevant in the recently emerging debate on

0.1 0.3 0.5 0.7 0.9
0.0

0.2

0.4

0.6

0.8

1.0

Γ

ρ
(2

)
(0

,0
|10

00
)

L = 8
L = 10
L = 12

FIG. 2. Numerically obtained ρ (2)(0, 0|1000) as a function of 


for L = 8 (squares), L = 10 (circles), and L = 12 (pentagons). For
Poissonian and Wigner-Dyson level statistics, one expects, respec-
tively, ρ (2)(0, 0|1000) = 1 and ρ (2)(0, 0|1000) ≈ 0.001.
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the stability of many-body localization [19,44–46], in which
the spectral form factor plays a prominent role. We remark
that the spectral form factor appears in the survival probability
for fully ergodic systems [47,48]. Finally, we note that the
proposed probe broadens the range of usability to systems
displaying intermediate level statistics.
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