Highlighting Thermodynamic Coupling Effects in the Immersion Precipitation Process for Formation of Polymeric Membranes

Krishna, R.

DOI
10.1021/acsomega.9b03609

Publication date
2020

Document Version
Final published version

Published in
ACS Omega

License
CC BY-NC-ND

Citation for published version (APA):
ABSTRACT: In the immersion precipitation process for membrane formation, a polymer casting film is placed in contact with a nonsolvent in a coagulation bath; an essential feature of the membrane formation process is the foray into the metastable region of the ternary phase diagram for the nonsolvent/solvent/polymer system. The primary objective of this article is to trace the origins of such forays. The Maxwell–Stefan diffusion formulation is combined with the Flory–Huggins description of phase equilibrium thermodynamics to set up a model for describing the transient equilibration trajectory that is followed in the polymer casting film. Four different systems are analyzed: water/acetone/CA, water/DMF/PVDF, water/NMP/PSF, and water/NMP/PEI (CA = cellulose acetate; PVDF = poly(vinylidene fluoride); PSF = polysulfone; PEI = polyetherimide, DMF = dimethyl formamide; NMP = N-methyl-2-pyrrolidone). The analysis shows that diffusional forays are mainly engendered due to thermodynamic coupling effects; such effects are quantified by the set of thermodynamic factors

\[
\Gamma_{ij} = \frac{\phi_i}{\phi_j} \frac{\partial \ln a_i}{\partial \ln \phi_j},
\]

where \(a_i\), the activity of species \(i\), is dependent on the volume fractions, \(\phi_i\) and \(\phi_j\), of both nonsolvent \((i)\) and solvent \((j)\). In regions close to phase transitions, the off-diagonal elements \(\Gamma_{ij}(i \neq j)\) are often negative and may attain large magnitudes in relation to the diagonal elements \(\Gamma_{ii}\). Strong thermodynamic coupling effects cause the transient equilibration trajectories to be strongly curvilinear, causing ingress into the metastable region. If thermodynamic coupling effects are ignored, no such ingress occurs. It is also shown that analogous diffusional forays may lead to emulsion formation in partially miscible liquid mixtures.

1. INTRODUCTION

The landmark discovery of the asymmetric cellulose acetate (CA) membrane by Loeb and Sourirajan\(^1\) for water desalination has had a significant technological impact on the development of a wide variety of polymer membranes that have several practical applications.\(^2,3\) To set the scene for this article and define its objectives, let us consider the basic principles of the immersion precipitation procedure that was originally used for preparing CA membranes.\(^3,4^{13}\) The ternary phase diagram for ternary water/acetone/CA solutions, constructed on the basis of the volume fractions using the Flory–Huggins description of phase equilibrium thermodynamics, is shown in Figure 1. The binodal curve for this ternary mixture defines the limits of phase miscibility; the compositions at the end of a tie-line are in thermodynamic equilibrium requiring equality of component activities, \(a_i\), in the two contiguous fluid phases. The spinodal curve defines the limit of phase stability. Along the spinodal curve, the determinant \(|\Gamma| = 0\), where \(|\Gamma|\) is a \(2 \times 2\) dimensional matrix of thermodynamic correction factors with elements defined by

\[
\Gamma_{ij} = \frac{\phi_i}{\phi_j} \frac{\partial \ln a_i}{\partial \ln \phi_j}; \quad i, j = 1, 2
\]

where \(\phi_i\) and \(\phi_j\) denote the volume fractions of water and acetone, respectively.\(^4,14^{15}\)

The inset to Figure 1 is a schematic of the immersion precipitation process in which a thin layer of casting film of the acetone/CA mixture, placed on a support layer, is brought into contact with water in a coagulation bath. As illustrated, the transient equilibration trajectory when a 10% solution of CA in acetone is immersed in the coagulation bath is indicated by the solid blue line connecting A and A*. With increasing immersion contact times, the compositions within the polymer casting film will get progressively richer in water and impoverished in acetone.\(^3,5,6,12,13\) Consequently, the equilibration trajectories get progressively closer to the binodal curve. Figure 1 plots the
progression in the equilibration trajectories A^*, B^*, and C^* with increasing immersion times. All three trajectories are strongly curvilinear. Particularly noteworthy is that the trajectory C^* has penetrated into the metastable region between the binodal and spinodal curves. This foray into the metastable region engendered by thermodynamic coupling effects that are strongly curvilinear. Particularly noteworthy is that the dieteric forays into metastable regions are primarily induced ingress into metastable regions, resulting in emulsification and production of nanospheres and nanoparticles by the exploitation of the “Ouzo effect”.23–27

2. RESULTS AND DISCUSSIONS

2.1. Maxwell–Stefan Formulation for Diffusion in Ternary Polymer Solutions. For a description of diffusion in ternary nonsolvent (1)/solvent (2)/polymer (m) solutions, it is convenient to use volume fractions, ϕ_i, as composition measures because this facilitates combination with the Flory–Huggins description of phase equilibrium. Let us define the volumetric diffusion fluxes J^V_i, relative to the volume average velocity of the mixture $u^V = \phi_1 u_1 + \phi_2 u_2 + \phi_m u_m$.

\[
J^V_i = \phi_i (u_i - u^V); \quad i = 1, 2
\]

\[
J^V_m = \phi_m (u_m - u^V) = -J^V_1 - J^V_2
\]

(2)

The volume fractions are related to the molar concentrations, ϕ_i, by $\phi_i V$, where V is the partial molar volume of species i. The use of u^V as a reference velocity is particularly convenient for polymeric solutions because V is practically composition independent.

In the Maxwell–Stefan (M–S) formulation, the volumetric diffusion fluxes, J^V_i, expressed in the units m3 m$^{-2}$ s$^{-1}$, are related to the chemical potential gradients as follows\(^{17,18,20}\)

\[
-\phi_i \frac{1}{RT} \frac{\partial \mu_i}{\partial z} = \frac{(\phi_{12} J^V_{12} - \phi_{1} J^V_{1})}{D_{12} V} + \frac{(\phi_{21} J^V_{21} - \phi_{2} J^V_{2})}{D_{21} V} D_{1m} \nonumber
\]

\[
-\phi_2 \frac{1}{RT} \frac{\partial \mu_2}{\partial z} = \frac{(\phi_{21} J^V_{21} - \phi_{2} J^V_{2})}{D_{21} V} + \frac{(\phi_{12} J^V_{12} - \phi_{1} J^V_{1})}{D_{12} V} D_{2m}
\]

(3)

The M–S diffusivities, D_{1m}^V and D_{2m}^V, quantifying interactions (“friction”) between species 1 and 2 with the polymer chains are relatable to the self-diffusivities in polymer solutions, for which estimation procedures using the free-volume theory are well established.28–30 The M–S diffusivities D_{12}^V and D_{21}^V, appearing in the first right members of eq 3, quantify the 1–2 friction. The symmetry constraint demanded by the Onsager reciprocal relations is

\[
\frac{D_{1m}^V}{V_1} = \frac{D_{12}^V}{V_2}
\]

(4)

The M–S diffusivities D_{12}^V and D_{21}^V are relatable to the M–S diffusivities in binary nonsolvent/solvent solutions for which reliable estimation procedures are available in the litera-
Detailed derivations of eq 3, including comparison with the equivalent Bearman friction formulation, along with step-by-step procedures for estimation of the set of M–S diffusivities are provided in the Supporting Information (SI) accompanying this publication.

In view of eq 1, the left members of eq 3 can be expressed in terms of the gradients in the volume fractions

\[
\sum \phi_i \frac{\partial}{\partial z} \phi_j = \sum \Gamma_{ij} (\Delta \phi_i/\Delta \phi_j)
\]

For the system water (1)/acetone (2)/CA (m), Figure 2a shows calculations of the four elements \(\Gamma_{ij}\) as a function of the volume fraction of CA, \(\phi_3\).

Figure 2. (a) Calculations for the matrix of thermodynamic correction factors, \(\Gamma_{ij}\). (b, c) Calculations of (b) \(\Gamma_{11} + \Gamma_{12} (\Delta \phi_2/\Delta \phi_1)\) and (c) \(\Gamma_{21} (\Delta \phi_1/\Delta \phi_2)\) for volume fractions along a straight line connecting A−A*, B−B*, and C−C* in Figure 1. Further calculation details and data inputs are provided in the Supporting Information accompanying this publication.

Figure 3. Elements of the Fick diffusivity matrix \([D]\), for water (1)/acetone (2)/CA (m) at \(T = 298.15\) K. Further calculation details and data inputs are provided in the Supporting Information accompanying this publication.

Figure 4. (a) Transient equilibration trajectory C−C* in the water/acetone/casting film. The dashed lines represent simulation results when the simplification \(\Gamma_{ij} = \delta_{ij}\), the Kronecker delta, is invoked. (b) Transient volume fraction profiles in the casting solution, as a function of the dimensionless distance coordinate \(z / \sqrt{4D_{ref}t}\). Further calculation details and data inputs are provided in the Supporting Information accompanying this publication.

\[
\frac{\phi_j}{RT} \frac{\partial \mu_i}{\partial z} = \phi_i \frac{\partial \ln a_i}{\partial z} = \sum_{j=1}^{2} \Gamma_{ij} \frac{\partial \phi_j}{\partial z}; \quad i, j = 1, 2
\]

For the system water (1)/acetone (2)/CA (3), Figure 2a shows calculations of the four elements \(\Gamma_{ij}\) as a function of the volume
fractions of CA that lie on a straight line connecting A (\(\phi_{10} = 0.2181; \phi_{20} = 0.34308\)) with A* (\(\phi_{11} = 0.2181; \phi_{21} = 0.34308\)) in Figure 1. Particularly noteworthy are the large negative values of \(\Gamma_{21}\). This factor has the effect of influencing the driving forces for the transport of water (1) and acetone (2), into and away from the casting film. Thermodynamic coupling effects on the driving forces for water and acetone transport may be quantified by the factors \(\Gamma_{11} = \Delta \phi_2/\Delta \phi_1\) and \(\Gamma_{21} = \Delta \phi_1/\Delta \phi_2\), where \(\Delta \phi_i\) denotes the difference between the interfacial volume fractions, \(\phi_{i\beta}\) and those at the start of the equilibration process, \(\phi_{i0}\):

\[
\Delta \phi_1 = \phi_{11} - \phi_{10}, \quad \Delta \phi_2 = \phi_{21} - \phi_{20}
\]

These terms are plotted in Figure 2b,c for volume fractions along straight lines connecting A–A*, B–B*, and C–C*. In all three cases, the influence of thermodynamic coupling is to suppress both the driving forces of water and acetone. If thermodynamic coupling effects are ignored by invoking the assumption \(\Gamma_{ii} = \delta_{i\beta}\) the Kronecker delta, both these factors should be unity. Remarkably, we note that for C–C* equilibration, thermodynamic coupling serves not only to reduce the magnitude of the driving force for water transport but also to reverse its sign. The precise consequences of such sign reversals will be elaborated in a later section.

Combining eqs 3 and 5 and casting into matrix notation, we obtain

\[
\begin{bmatrix}
\phi_{11} \\
\phi_{21}
\end{bmatrix}
= \begin{bmatrix}
\frac{\phi_{10}}{D_{1m}^V} + \frac{\phi_{11}}{D_{12}^V} + \frac{\phi_{2m}}{D_{1m}^V} - \phi_{20} & \frac{1}{D_{11}^V} & \frac{1}{D_{12}^V} \\
0 & \frac{\phi_{11}}{D_{2m}^V} & \frac{\phi_{21}}{D_{22}^V} + \frac{\phi_{20}}{D_{2m}^V}
\end{bmatrix}
\begin{bmatrix}
I_1^V \\
I_2^V
\end{bmatrix}
\]

Premultiplying eq 7 by \([B]^{-1}\), we can explicitly relate the diffusion fluxes to the gradients in the volume fractions

\[
\begin{bmatrix}
I_1^V \\
I_2^V
\end{bmatrix} = -[\Gamma] \frac{\partial}{\partial z} \begin{bmatrix}
\phi_{11} \\
\phi_{21}
\end{bmatrix} \quad \text{with} \quad [D] = [B]^{-1}[\Gamma]
\]

Equation 8 also serves to define the 2 \times 2 dimensional square matrix of Fick diffusivities \([D]\), which is a product of two square matrices \([B]^{-1}\) and \([\Gamma]\). Generally speaking, the off-diagonal contributions of each of the two matrices, \([B]^{-1}\) and \([\Gamma]\) are non-negligible; consequently, molecular diffusion in ternary polymer solutions is a strongly coupled process.

Figure 3 shows calculations of the elements of the Fick diffusivity matrix \([D]\) for volume fractions that lie on a straight line connecting A with A* in Figure 1. The variation of the four elements of \([D]\) with the volume fraction of CA shows approximately the same trends as the corresponding elements of the matrix of thermodynamic factors \([\Gamma]\) in Figure 2a. The large negative value of the off-diagonal element \(D_{21}\) is largely engendered by the corresponding negative off-diagonal element \(\Gamma_{21}\).

2.2. Modeling Transient Diffusion in the Immersion Precipitation Process. To meet the objectives of this article, we seek an analytic solution to describe the immersion precipitation transience and essentially follow the model of Tsay and McHugh.13 The diffusion process is considered to be essentially uni-(z)-directional; the position \(z = 0\) corresponds to the position of the interface at the start of the equilibration process. The contiguous immiscible phases, coagulation bath and polymer casting film, are both considered to be semi-infinite. At the position \(z = \infty\), the composition corresponds to that of the bulk coagulation bath that is time-invariant. At the position \(z = -\infty\), the composition corresponds to that of the polymer casting film that is in contact with the support layer; this composition is also time-invariant. At any time \(t\), during the immersion precipitation process, we have thermodynamic equilibrium at the interface between the two immiscible phases, at compositions A* and C*. The volume fractions \(\phi_{i\beta}\) and \(\phi_{i\beta b}\) are determined by the thermodynamic equilibrium constraints

\[
a_{i\beta} = a_{i\beta b}; \quad a_{i\beta} = a_{i\beta b}
\]

The Flory–Huggins (F–H) description of phase equilibrium thermodynamics17–19,35 is used to solve the set of eq 9; calculation details and F–H input parameters for all investigated systems are provided in the SI.

The transient ternary diffusion within the polymer casting film is described by a set of two coupled partial differential equations.
Inserting eq 8 for the volumetric fluxes results in

$$\frac{\partial \phi_1}{\partial t} = -\frac{\partial}{\partial z} \left(J_{V1} \right)$$

(10)

Commonly, the coagulation bath consists of a binary mixture of nonsolvent (1) and solvent (2). As a good approximation, the composition of the coagulation bath may be assumed to be polymer-free. The corresponding relation for the transient diffusion process in the coagulation bath is described by

$$\frac{\partial \phi_{1b}}{\partial t} = D_b \frac{\partial^2 \phi_{1b}}{\partial z^2}$$

(12)

The subscript b in eq 12 refers to the coagulation bath, and D_b represents the Fick diffusivity in the binary solution in the bath.

The initial conditions for eqs 11 and 12 are

$$z \geq 0, \quad t = 0, \quad \begin{cases} \phi_1(z, 0) = \phi_{10} \\ \phi_2(z, 0) = \phi_{20} \end{cases}$$

$$z \leq 0, \quad t = 0, \quad \phi_{1b}(z, 0) = \phi_{1b0}$$

(13)
The boundary conditions are

\[z = -\infty, \quad t \geq 0, \quad \begin{bmatrix} \phi_1(-\infty, t) \\ \phi_2(-\infty, t) \end{bmatrix} = \begin{bmatrix} \phi_{10} \\ \phi_{20} \end{bmatrix} \]

\[z = +\infty, \quad t \geq 0, \quad \phi_{1b}(+\infty, t) = \phi_{1b0} \]

An analytic solution for the transient volume fractions in the polymer casting bath is obtained if the Fick diffusivity \(D_b \) is assumed to be composition independent

\[\phi_{1b}(z, t) = \phi_{1b0} + \frac{\text{erfc}\left(\frac{z}{\sqrt{4D_b t}}\right)}{\text{erfc}\left(\frac{r}{\sqrt{4D_b t}}\right)} (\phi_{1b} - \phi_{1b0}) \]

The corresponding analytic expression for the volume fractions in the polymer casting film is also derivable if the Fick diffusivity matrix \([D] = [B]^{-1} [\Gamma] \) is also assumed to be composition independent; see Taylor and Krishna.\(^{31}\) In all of the calculations presented in this article, the Fick \([D]\) is evaluated at the average volume fractions \(\frac{1}{2} (\phi_{1b} + \phi_{2b}) \); this linearization procedure has been established to yield results of good accuracy.\(^{18}\) The transient volume fractions in the polymer film can be written as 2 \(\times \) 2 dimensional matrix generalization of eq 15; see Taylor and Krishna\(^ {31}\) for further theoretical background on matrix generalization procedures

\[\begin{bmatrix} \phi_1(z, t) \\ \phi_2(z, t) \end{bmatrix} = \begin{bmatrix} \phi_{10} \\ \phi_{20} \end{bmatrix} + \begin{bmatrix} \text{erfc}\left(\frac{z}{\sqrt{4D_f t}}\right) \begin{bmatrix} \phi_{11} - \phi_{10} \\ \phi_{21} - \phi_{20} \end{bmatrix} \\ \text{erfc}\left(\frac{r}{\sqrt{4D_f t}}\right)^{-1} \begin{bmatrix} \phi_{11} - \phi_{10} \\ \phi_{21} - \phi_{20} \end{bmatrix} \end{bmatrix} \]

Due to interchange of nonsolvent and solvent between the polymer casting film and the bath, the position of the interface, \(\varepsilon(t) = r \sqrt{t} \), will shift with time

\[\begin{bmatrix} \phi_{1b}(\varepsilon(t), t) \\ \phi_{2b}(\varepsilon(t), t) \end{bmatrix} = \begin{bmatrix} \phi_{1b1} \\ \phi_{2b1} \end{bmatrix} \]

\[\phi_{1b1}(\varepsilon(t), t) = \phi_{1b1} = 1 - \phi_{2b1} \]

In eq 17, \(\varepsilon(t) = r \sqrt{t} \) is the position of the moving interface, and \(r \) is a constant with units of m s\(^{-1/2}\), which is determinable from the continuity of component fluxes at either side of the moving interface

\[J_{\text{film}}^{B} - J_{\text{film}}^{A} = (\phi_{1b} - \phi_{2b}) \frac{dr(t)}{dt} \]

\[= (\phi_{1b} - \phi_{2b}) \frac{r}{2 \sqrt{t}} \quad ; \quad i = 1, 2 \]

The simultaneous solution of the set of four nonlinear eqs 9 and 18 allows calculation of the interfacial compositions \(\phi_{1b1}, \phi_{2b1}, \phi_{1b0}, \phi_{2b0} \) and \(r \).

2.3. Simulations of Four Immersion Precipitation Processes. First, we investigate in detail the C—C* equilibration trajectory followed in the water/acetone/CA casting film when the initial volume fractions in the casting film are chosen as \(\phi_{10} = 0.28; \phi_{20} = 0.63; \phi_{1b0} = 0.75; \) and \(\phi_{2b0} = 0.25; \) corresponding to the position C indicated in Figure 1. The simultaneous solution of the equations describing thermodynamic equilibrium at the interface (eq 9) and the flux continuity relations (eq 18) results in the interfacial volume fractions \(\phi_{11} = 0.24596; \phi_{21} = 0.46422; \) and \(\phi_{1b1} = 0.6753; \) these correspond to C* and CB*. The value of \(r = -3.46302 \times 10^{-6} \) is negative because of the shrinkage of the polymer casting film due to the impoverishment of acetone. Evaluated at the arithmetic average volume fractions between the initial and final equilibrated

compositions, \(\Gamma_{ij} = \begin{pmatrix} 0.15393 & 0.08279 \\ -0.08279 & 0.53829 \end{pmatrix} \), the elements of the matrix of thermodynamic factors, and the Fick diffusivity matrix are:

\[[D] = \begin{pmatrix} 0.46829 & -0.25204 \\ -0.25204 & 0.36327 \end{pmatrix} \times 10^{-9} \text{ m}^2 \text{ s}^{-1} \]

Noteworthy are the large negative values of both off-diagonal elements \(\Gamma_{12} \) and \(\Gamma_{21} \). Both off-diagonal elements \(D_{12} \) and \(D_{21} \) are also negative, primarily because of the corresponding negative values of \(\Gamma_{12} \) and \(\Gamma_{21} \).

The equilibration trajectory calculated using eq 16 is plotted in Figure 4a composition space; we note that the C–C* is strongly curvilinear and has penetrated into the metastable region.

The volume fractions of the three components are plotted in Figure 4b as a function of the dimensionless distance coordinate \(z/Dt/4 \) in the casting film, where we take the value of the reference diffusivity \(D_{ref} = 1 \times 10^{-9} \text{ m}^2 \text{ s}^{-1} \). There is a significantly higher volume fraction of the polymer near the surface of the casting film, \(z \approx 0 \). This implies that the polymer distributes asymmetrically across the membrane thickness, resulting in an asymmetric polymer membrane. Also noteworthy is that the volume fraction of water shows a pronounced overshoot at \(z = -0.2 \); this overshoot signifies uphill diffusion. The overshoot in water is a direct result of the influence of thermodynamic coupling on the driving force of water, causing the effective driving force to undergo sign reversal, as witnessed in Figure 2b.

To delineate the influence of thermodynamic coupling, we repeated the simulations by invoking the assumption \(\Gamma_{ij} = \delta_{ij} \) and calculating the Fick matrix using \([D] = [B]^{-1} \); this results in C–C* trajectory indicated by the dashed line in Figure 4a. No ingress into the metastable region is experienced, and the trajectory tends to veer away from the binodal curve in its approach to C*.

The inescapable conclusion is that the influence of the thermodynamic correction factors is to draw the trajectories into the metastable region, leading eventually to polymer precipitation.

Next, we analyze the transient equilibration trajectory followed in the ternary water/NMP/PSF solutions in which the initial volume fractions in the polymer casting film and coagulation bath are chosen as \(\phi_{10} = 0; \phi_{20} = 0.7; \phi_{30} = 0.3; \phi_{3b0} = 0.7 \), corresponding to the position A indicated in Figure 5a.

The simultaneous solution of the equations describing thermodynamic equilibrium at the interface (eq 9) and the flux continuity relations (eq 18) results in the interfacial volume fractions \(\phi_{1i} = 0.01623; \phi_{2i} = 0.23293 \) and \(\phi_{3i} = 0.25625 \). Both
the off-diagonal elements of $[\Gamma] = \begin{bmatrix} 0.93085 & -0.01965 \\ -5.36896 & 0.46328 \end{bmatrix}$ and $[D] = \begin{bmatrix} 1.39456 & -0.02938 \\ -0.6735 & 0.01775 \end{bmatrix} \times 10^{-9} \text{ m}^2 \text{s}^{-1}$ are negative. The strong coupling effects cause the $A-A^*$ equilibration trajectory to exhibit a foray into the metastable region. The dashed line in Figure 5a represents the trajectory followed by invoking the assumption $\Gamma_{ii} = \delta_{ii}$ and ignoring thermodynamic correction factors; in this scenario, the $A-A^*$ does not cross the binodal curve.

The volume fractions of the three components are plotted in Figure 5a as a function of the dimensionless distance coordinate $z/\sqrt{4D_{ijkl}\tau}$. The polymer composition is significantly higher near the casting film. The transient overshoot of water signifies uphill transport.

The analyses of the $A-A^*$ equilibration trajectories for water/NMP/PEI and water/DMF/PVDF solutions proceed along precisely analogous lines; the results are summarized in Figure 6a–d. Incursions into the metastable regions, induced by off-diagonal elements $\Gamma_{ij}(i \neq j)$, are experienced in both cases. Uphill diffusion causes overshoots in water compositions near the surface of the casting films, and the congregation of PEI and PVDF polymers near the surface of the casting film, $z \approx 0$, is also evident in Figure 6b,d.

The phenomena of uphill diffusion resulting in transient overshoots of water experienced in the four examples above are, however, not in violation of the second law of thermodynamics. As verification, the corresponding transient profiles of the activity of water are plotted in Figure 7; in all four cases, the variation of activity along the dimensionless distance is monotonic. Put another way, water transport is down the downhill di–adiagnostic elements of the Fick di–adiusivity times the identity matrix.14,15 Detailed analysis of the published experimental data on diffusivities in several partially miscible ternary liquid mixtures reveals that the interdiffusion process is strongly coupled due to thermodynamic correction factors close to regions of phase transitions, and the off-diagonal elements of the Fick diffusivity matrix $[D]$ exert significant influences on the equilibration trajectories.14,15,32,39

The model for the immersion precipitation process is amenable to the straightforward extension to cater for interdiffusion between two partially miscible liquid phases (A, B), with two different Fick diffusion matrices $[D_A]$ and $[D_B]$; the detailed derivations are available in the SI.

Figure 9a shows the simulation results for $A-A^*$ and $B-B^*$ equilibration trajectories for glycerol/acetone/water mixtures; both trajectories are both strongly curvilinear in composition space; in the glycerol-rich phase, the $B-B^*$ exhibits a foray into the metastable region with the potential for emulsification. Similarly, for water/acetic acid/MTBE mixtures, the ingress of $B-B^*$ into the metastable region (see Figure 9b) in the MTBE-rich phase may result in emulsion formation. Analogous results are obtained for water/chloroform/acetic acid, water/acetone/ethyl-acetate, water/ethanol/ethyl-acetate, and water/acetic acid/1-hexanol mixtures; see simulation results in Figures S24, S25, S27, and S29. It is noteworthy that the Ruschak–Miller model with straight-line equilibration would also have anticipated the possibilities of emulsification for all of the aforementioned six mixtures.

We now demonstrate scenarios in which forays into metastable regions may occur under conditions that are not anticipated using the model of Ruschak and Miller. For water (1)/ethanol (2)/cyclohexane (3) mixtures, we choose the set of starting compositions for the ethanol-rich phase (A) and cyclohexane-rich phase (B) as $x_{1A0} = 0.375; x_{2A0} = 0.62; x_{3A0} = 0$; $x_{1B0} = 0.57$; see Figure 10a. The composition of the $A-B^*$ mixture, $A^* = B^* = x_{11} = 0.1875; x_{31} = 0.595$, lies in the homogeneous single-phase region, but close to the binodal curve. According to the Ruschak–Miller analysis, no entry into the metastable regions is possible. Calculations of the $A-A^*$ and $B-B^*$ trajectories with reliable estimates of the Maxwell–Stefan diffusivities, along with proper accounting of thermodynamic correction factors (using the NRTL equation for phase equilibrium), lead to curvilinear trajectories. The $B-B^*$ penetrates the metastable zone in the cyclohexane-rich phase. The composition profiles of the three components are plotted in Figure 10b as a function of the dimensionless distance coordinate $z/\sqrt{4D_{ijkl}\tau}$. We note that ethanol experiences a pronounced undershoot during the transient equilibration process. Concomitantly, cyclohexane displays a slight overshoot. The overshoot/undershoot phenomena, along with the entry into the metastable zone, are engendered by the significant off-diagonal elements of $[\Gamma] = \begin{bmatrix} 0.5914 & -0.1960 \\ -0.70702 & 0.3644 \end{bmatrix}$ in the cyclohexane-rich phase. Indeed, if thermodynamic coupling

2826 https://dx.doi.org/10.1021/acsomega.9b03609 ACS Omega 2020, 5, 2819–2828
effects are completely ignored by invoking the assumption $\Gamma_{ij} = \delta_{ij}$, the equilibration trajectory (shown by the dotted line in Figure 10a) shows no entry into the metastable region.

Analyses of transient equilibration in glycerol/acetone/water, water/acetone/ethyl-acetate, water/acetic acid/1-hexanol, and water/ acrylicitrile/toluene mixtures yield results that are precisely analogous to those in Figure 10; see Figures S23, S26, S29, S32, and S33. In all cases, thermodynamic coupling induces entry into metastable zones, while the Ruschak–Miller model calculations do not anticipate such incursions.

The crystal formation and growth as a consequence of diffusional forays into supersaturated regions is also a consequence of thermodynamic coupling.2,40

3. CONCLUSIONS

For partially miscible ternary fluid mixtures, diffusivities in regions close to phase transitions are strongly influenced by phase equilibrium thermodynamics. These influences are quantified by thermodynamic correlation factors Γ_{ij} whose off-diagonal elements Γ_{12} and Γ_{21} are often significantly large in relation to the Γ_{11} and Γ_{22}. Consequently, interphase diffusion is a strongly coupled process that results in strongly curvilinear equilibration trajectories during transient equilibration. Such trajectories often signify uphill diffusion phenomena, and cause forays into the metastable regions, lying between the binodal and spinodal curves. Such forays are essential in the immersion precipitation process for the preparation of CA, PSF, PEI, and PVDF membranes, with asymmetry in the polymer distribution along the thickness. In all cases, if the off-diagonal elements Γ_{12} and Γ_{21} are set to zero, no polymer precipitation is realized. The transient development of volume fractions of water in the polymer casting film exhibits overshoots in all of the four cases; such overshoots are signatures of uphill diffusion. The theoretical model developed in this work should provide guidelines to the polymer chemist for choosing a set of operating conditions, and mixture compositions in the casting film and coagulation bath to prepare asymmetric polymeric membranes.

The exploitation of the Ouzo effect for the formation of metastable emulsions in liquid/liquid mixtures is also crucially dependent on thermodynamic coupling effects.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.9b03609.

1. Detailed development of the Maxwell–Stefan (M–S) diffusion equations for multicomponent fluid mixtures;
2. comparison of the M–S formulation with the Bearman friction formulation;
3. procedures for estimation of the M–S diffusivities;
4. description of phase equilibrium using the Flory–Huggins relations;
5. development of the analytic model to describe equilibration in the immersion precipitation process;
6. detailed development of the model to describe emulsification in ternary fluid mixtures, and
7. data inputs and simulation details for all investigated mixtures (PDF)

AUTHOR INFORMATION

Corresponding Author

Rajamani Krishna — Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam 1098 XH Amsterdam, The Netherlands; orcid.org/0000-0002-4784-8530; Email: r.krishna@contact.uva.nl

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.9b03609

Notes

The author declares no competing financial interest.

ACKNOWLEDGMENTS

The author acknowledges the contribution of Dr J. M. van Baten for providing codes for calculation of phase equilibria.

NOMENCLATURE

Latin Alphabet

- a_i: component activity, dimensionless
- $[B]$: matrix of inverse M–S coefficients, m$^{-2}$ s$^{-1}$
- c_i: molar concentration of species i, mol m$^{-3}$
- D_{ij}^S: M–S diffusivity for binary pair i–j, m2 s$^{-1}$
- $[D]$: Fick diffusivity matrix, m2 s$^{-1}$
- $[I]$: identity matrix, dimensionless
- j_i: volumetric diffusion fluxes with respect to u_i, m3 m$^{-2}$ s$^{-1}$
- n: number of species in the mixture, dimensionless
- R: gas constant, 8.314 J mol$^{-1}$ K$^{-1}$
- t: time, s
- T: absolute temperature, K
- x_i: mole fraction of component i in bulk fluid phase, dimensionless
- u_i^V: volume average mixture velocity, m s$^{-1}$
- V_i: partial molar volume of species i, m3 mol$^{-1}$
- z: direction coordinate, m

GREEK ALPHABET

- γ_i: activity coefficient of component i, dimensionless
- δ_{ij}: Kronecker delta, dimensionless
- $e(t)$: position of moving boundary, m
- Γ_{ij}: thermodynamic correction factors, dimensionless
- μ_i: molar chemical potential, J mol$^{-1}$
- ϕ_i: volume fraction of species i, dimensionless

SUBSCRIPT

- i referring to component i
- I referring to the interface
- m refers to polymer
- n referring to component n
- t referring to the total mixture

SUPERSCRIPT

- V: volume average reference velocity frame

MATRIX NOTATION

- () column matrix
- [] square matrix

REFERENCES

