Dry Reforming of Methane under Mild Conditions Using Radio Frequency Plasma

DOI
10.1002/ente.201900886

Publication date
2020

Document Version
Final published version

Published in
Energy Technology

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):
Dry Reforming of Methane under Mild Conditions Using Radio Frequency Plasma

Edwin Devid, Diyu Zhang, Dongping Wang, Maria Ronda-Lloret, Qiang Huang, Gadi Rothenberg, N. Raveendran Shiju, and Aart W. Kleyn

Dry reforming of methane (DRM) is a challenging process wherein methane reacts with CO₂ to give syngas. This reaction is strongly endothermic, typically requiring temperatures higher than 500 °C. Catalysts can be used, but the high temperatures (which are a thermodynamic requirement) often lead to catalyst deactivation. Herein, the reaction from another conceptual direction is approached, using low-power radio frequency inductively coupled plasma (RF-ICP). It is demonstrated that this system can give high conversions of methane and CO₂ at near-ambient temperatures. Importantly, the energy costs in this system are considerably lower compared with other plasma-driven DRM processes. Furthermore, it is shown that the yield of hydrogen can be increased by minimizing the C₂ compound formation. The factors that govern the DRM process and discuss H₂ emission and its influence on H atom recycling in the process are examined.

1. Introduction

The effects of climate change caused by greenhouse gases are numerous and include deglaciation, marine heatwaves, and threats to global biodiversity. Carbon dioxide and methane are the most important anthropogenic greenhouse gases both by volume and by their contribution to the greenhouse effect. Ideally, society should stop emitting these gases completely, and hopefully this will be done in the future. However, such high temperatures mean very costly equipment and often cause catalyst deactivation via sintering and/or coking. Running the DRM process at lower temperatures is therefore a worthy scientific and technological challenge.

Plasma-based technologies for DRM have been widely studied. DRM can be performed using plasma technology without the use of precious metal catalysts. Activation of carbon dioxide and methane molecules can be achieved in different ways through plasma: by thermal decomposition, using stepwise vibrational excitation, and electron collisions. For thermal plasma, thermal decomposition is the main process. In nonthermal plasma DRM, which is conducted at ambient temperatures, vibrational excitation is a more effective activation route.

The recent advances in DRM with plasma methods are summarized in several excellent reviews. These indicate that DRM can be done with many plasma methods, giving conversions of around 40% at an energy cost range between 1.2 and 200 eV per molecule. Energy efficiencies of DRM conducted through plasma technologies are difficult to determine, because during plasma-driven DRM, a variety of species and products are generated, including H₂, CO, CH₄, H₂O, C₂H₂, C₂H₄, C₂H₅⁺, C₂H₆, C₂H₅ and C₃H₈. The wide product distribution affects the definition of energy efficiencies. Thus, plasma-based DRM processes are typically expressed in terms of “energy cost,” i.e., the amount of energy consumed by the DRM process in unit of eV per converted molecule. The energy cost (eV per molecule) is therefore

DOI: 10.1002/ente.201900886
Recently, several studies were published on DRM using dielectric barrier discharges (DBDs)[15–18] Good yields are reported, but only when a catalyst is inserted in the DBD reactor. The study by Ray et al. demonstrates that without a catalyst DRM yields by plasma only are below 10\%. Herein, we demonstrate much higher product yields without using a catalyst, applying radio frequency inductively coupled plasma (RF-ICP)[19] RF-ICP has several advantages that makes it suitable for DRM: 1) RF allows to generate nonthermal plasma at low pressures (i.e., 1–10\(^3\) Pa). This is useful to drive the DRM process in a controlled way, without yielding a wide variety of products. 2) RF plasma can be produced at low frequencies, ranging between 1 and 100 MHz. In this range, a large plasma volume of approximately the entire size of the plasma reactor can be generated. This ensures that the DRM process is driven in a fully homogeneous plasma. It is especially relevant for industry as it improves the scalability. 3) RF plasma’s energy efficiency can be optimized through an impedance matching network. By matching the impedance of the RF power generator to the RF plasma discharge one can minimize the reflected RF power to the plasma reactor. Theoretically when optimized coupling can be obtained between the plasma and the RF field, the energy efficiency of plasma-based selective heating can be up to 90\%[20,21] 4) The electrodes for generating RF-ICP are located outside the plasma reactor (see also Experimental Section). This is advantageous for the plasma-driven DRM process, as the nonthermal DRM plasma will not be contaminated by the metal electrodes. 5) Finally, RF-ICP allows to analyze the DRM process in a simple, accessible, noninvasive way, such as mass spectrometry, optical emission spectroscopy, and laser-based methods.

Despite its potential, very little is reported on DRM by RF-ICP. Mozetic et al. published an extensive article on activation of CH\(_4\) by RF-ICP[22] They showed that the main reaction products are hydrocarbons, carbon deposits, and H\(_2\). The relative abundance of each product strongly depends on the plasma conditions. Increased energy deposition in plasma leads to more hydrocarbon formation. Patino et al. also conducted studies on DRM with RF-ICP. The study focuses strongly on data analysis and experiment selection[23] In addition, they focused on steam reforming, for which they obtain high syngas yields. However, for DRM, their yields are very low. Chen et al. studied the DRM with RF-ICP. The authors complement their work with extensive kinetic modeling[24]

Other recent works have used radio frequency capacitively coupled plasma (RF-CCP)[25–30] These systems are similar to DBD[11] The work with RF-CCP is more focused on dissociation of CH\(_4\) and carbon deposition than on DRM. In CCP-based plasma setups, the electrodes are inside the reaction vessel where the electrodes get quickly contaminated. External coils, as used in RF-ICP, are preferable for DRM.

Recently, Ray et al. published in this journal work on performing DRM in an improved DBD reactor with catalysts and the possibility of heating them up thermally to obtain higher yields of syngas[19] Confirming earlier studies, Ray et al. demonstrate that the energy cost of performing DRM by DBD both with or without catalysts remains very high (about five times the thermal equilibrium limit)[18] In our work, we will compare the DRM performance of the improved plasma-enhanced temperature DBD of Ray et al. with our plasma-only RF-ICP reactor.

Another way to produce valuable hydrocarbons from methane without syngas involves the partial oxidation of methane to methanol. Using plasma technology also, this route is available[31,32]

Our work builds upon the work on methane activation by Mozetic et al. We utilize lower power, flow, and pressure and discover that C\(_2\) compound formation decreases together with increased formation of H\(_2\). This is a relevant finding for DRM. In addition, we show that DRM can be conducted in a RF-ICP setup with very high conversions and can compete on energy cost with other types of plasma-driven DRM processes. Finally, we discuss the observation of water formation and its influence on hydrogen atom recycling in the process.

2. Results

2.1. Quadrupole Mass Spectrometry Analysis of Activation of Pure CH\(_4\)

Quadrupole mass spectrometry (QMS) allows us to observe in real time both qualitatively and quantitatively the species formed in plasma at low pressures. Details of the analysis are reported in the Experimental Section.

Figure 1a shows the relative concentrations of product species from pure CH\(_4\) reforming in RF-ICP and the carbon balance at different input powers. For decomposition of pure CH\(_4\), the product’s H/C ratio should be 4 (irrespectively of the RF power). In fact, this ratio increases from 4 at 0 W to 4.6 at 150 W. This indicates a loss of carbon by deposition of a carbonaceous film on the reactor wall. From the carbon balance plotted in Figure 1a (calculated as given in the caption and following the study by Ray et al.[19]), it is shown that with increasing power the loss of carbon behaves linearly. With increasing specific energy input (SEI), more CH\(_4\) dissociates into H\(_2\) and C, where carbon gets deposited at the reactor walls.

A direct in situ spectroscopic analysis of this film is not possible. However, we see the formation of a yellow film inside the reactor tube after prolonged operation. In previous studies, we measured the electron temperature. In the present arrangement, this was not possible[20,33] However, based on our results, we estimate it to be between 2 and 5 eV. This means that direct electronic excitation of CO\(_2\) is unlikely.

Our results show that RF-ICP can effectively activate methane molecules. The main products of CH\(_4\) reforming were hydrogen and C\(_2\) hydrocarbons. Increasing the power, the conversion of methane increased up to 60\% (Figure 1a, b). The yields of H\(_2\) and C\(_2\) hydrocarbons sharply increased below 50 W. With a further increase in power, H\(_2\) yield increased steadily and the C\(_2\) yield stabilized. The highest concentration was for H\(_2\) with 50\% (at 150 W) of all gaseous products (Figure 1a), and the total H\(_2\) yield over H-containing products was 35\% at 150 W. The energy cost for CH\(_4\) reforming follows here a linear trend as a function of the input power, which is lower compared with most plasma-based
Thus, RF-ICP is a contribution, we use the same method described previously for energy input into the plasma. The energy cost is defined as power (kW) divided by flow rate (L min⁻¹)

\[\text{Conversion} \times \frac{\text{Energy cost}}{\text{Energy input}} \times \frac{\text{CH}_4}{\text{mol}^{-1}} \times 6.022 \times 10^{23} \text{ (molecule mol}^{-1}) \].

The reaction conditions: feed: CH₄, flow: 50 sccm; and pressure: 44 Pa.

Figure 1. a) Relative molecular concentration of effluent gas from pure CH₄ reforming at different input powers. The right y-axis shows the % where the ratio = (CH₄ out + 2 × C₂H₄ out)/(CH₄ in) × 100%. Reaction conditions: feed: CH₄, flow: 50 sccm; and pressure: 44 Pa.

b) Conversion of CH₄ as a function of input power. The energy cost for pure CH₄ reforming by RF-ICP is shown on the right (blue colored) y-axis. The energy cost is defined as power (kW) × 60 (s min⁻¹) × 24.5 (L mol⁻¹) × 6.24 × 10¹¹ (eV kJ⁻¹) divided by (flow rate (L min⁻¹) × 6.022 × 10²³ (molecule mol⁻¹)). The reaction conditions: feed: CH₄, flow: 50 sccm; and pressure: 44 Pa.

Figure 2b shows the relative conversion of CH₄ as a function of input power. The energy cost for pure CH₄ and CO are shown in Figure 2c. Figure 2b shows the relative conversion of CH₄ as a function of input power. The energy cost for pure CH₄ and CO are shown in Figure 2c.

2.2. QMS Analysis of Activation of Mixtures of CH₄ and CO₂

The DRM process is activated through a nonthermal plasma generated by RF-ICP (see also the Experimental Section). QMS allows us to real time probe in a nonevasive way both qualitatively and quantitatively the low-pressure effluent gases from our plasma reactor. Figure 2a shows the observed unreacted reactants (see black line on mass spectrum) and the formed species during plasma-driven DRM at 75 W (see blue line). Figure 2a shows clearly that CH₄ and CO₂ are converted by plasma only into H₂ and CO. To extract quantitative information from QMS, a calibration is performed for each gas species (such as H₂, CO, CH₄, CO₂, and O₂) that requires to be identified in the plasma reactor. The calibration and analysis are described in the Experimental Section.

The feed fraction of CO₂/(CH₄ + CO₂) is one of the key factors affecting the DRM. Previous work on RF-ICP has shown that the DRM is more efficient at low CO₂ feed. For pure CO₂ feed, the yield of CH₄ is 0.77 eV. The heats of formation of C and O are derived from QMS signals of effluent gas from pure CO₂ feed.

To test the data consistency, we analyzed the H/C and O/C ratios. For a 1:1 mixture of CH₄ and CO₂, about 20% of the C atoms are “missing,” which indicates that they are probably deposited on the system walls. In the case of a CO₂-rich plasma, O/C reaches a below the expected value of 2 by up to 30%. We infer that both C and O can be adsorbed by the walls of the plasma reactor. The calibration and analysis are described in the Experimental Section.

As shown in Figure 2b, the main products of the DRM in RF-ICP are H₂, CO, O₂, and C₂ hydrocarbons. Changing the ratio of CO₂/CH₄ significantly alters the ratio of the products. Increasing the proportion of CO₂ from 0% to 70%, the C₂ hydrocarbons decrease, whereas the H₂ concentration remains almost constant (Figure 2b). In plasma, pure CO₂ is decomposed into CO and O₂. For pure CO₂, the O₂ relative concentration (17%) is almost 50% of that of the CO concentration (40%). With a small amount of CH₄ (0.8 CO₂/(CH₄ + CO₂) added, the O₂ decreased from 17% (at 100% CO₂ feed) to 7%. This is attributed to the rapid reaction of CH₄ with O to produce H₂O or OH, both of which are not detected by QMS. In addition, O₂ varies slightly between experiments with low CO₂/(CH₄ + CO₂) fractions. Most likely, it depends on the amount of H₂O adsorption on the system walls.

The yields and selectivity of H₂ and CO are shown in Figure 2c. The H₂ yield with respect to the incident H atoms (in CH₄) increases with CO₂ content in the flow. The CO yield is basically constant between 40% and 55% at the CO₂/(CH₄ + CO₂) feed ratio.
fractions 0.4–0.9. The reason for the appearance of a dip in the CO yield around 0.2 and 0.3 feed ratio is not known. The selectivity of H₂ increases from 72.3% to 83.5% when the fraction CO₂/(CH₄ + CO₂) reaches unity. Beyond the fraction 0.1, the selectivity shows small fluctuations around 80%. Higher fractions CO₂/(CH₄ + CO₂) show that the presence of more CO₂ in the mix enables the increasing selectivity and yield of H₂. The decrease in CH₄ in the mix shows that the decomposition of CH₄ affects little to none the selectivity and yield of CO.

Figure 3a shows the power dependence of the relative concentrations derived from QMS signals of the effluent gas from mixed CH₄/CO₂ reforming in RF-ICP at CH₄/CO₂ = 1. With increasing SEI, the decrease in carbon balance behaves nonlinearly. At higher input powers, a steady state is reached in carbon loss. The presence of a CO₂ feed at CH₄/CO₂ = 1 enables to limit the carbon loss. Presumably the carbon from the dissociated CH₄ reacts with the atomic O atoms from the dissociated CO₂. This observation corresponds with the steady-state concentration of O₂ in Figure 3a that explains why the O₂ concentration does not increase further with increasing power beyond 75 W.

RF-ICP grants here the combination of carbon and atomic oxygen into CO, thereby increasing further the yield of CO compared with the yield of CₓHₓ molecules.

Measurement conditions are similar to those previously discussed in Figure 2. The H/C and O/C ratios were analyzed to test the consistency of the data. For a 1:1 mixture of
CH₄ and CO₂, about 20% C atoms is “missing” irrespective of power. The O/C ratio can deviate from the ideal value 1 by more than 20%. Formation of H₂O is likely under these conditions.

The yields of H₂ and CO are shown in Figure 3b. Both H₂ and CO yields gradually increase with increasing power. At 200 W, H₂ yield is 65% and CO yield is 74%.

The total conversion of mixed CH₄/CO₂ (1:1) reaches 77% (200 W) by plasma-only RF-ICP (see Figure 3c). This value is better than the absolute conversion of CH₄ and CO₂ of Ray et al., respectively, 68% and 65% obtained in their plasma-assisted thermal DBD reactor with the addition of their best-performing catalyst 15% Ni/Al₂O₃. Without the catalyst, Ray et al. obtain a maximum yield for both CO ad H₂ of 10%. In this case, power and flow are lower so a good comparison cannot be made. DRM driven by RF-ICP plasma only has the advantage that no catalysts are required to obtain high syngas yields, and so there is no need to find suitable catalysts resistant to coke formation.

Figure 3c shows that the energy cost of DRM at a CO₂:CH₄ ratio of 1:1 is here lower than the energy cost of reforming CH₄ only (Figure 1b). RF-ICP on CO₂:CH₄ mixed ratios provides energy costs comparable with DRM studies conducted by atmospheric pressure glow discharge (APGD) (Table 1).[11]

Table 1 shows the total conversion and energy cost for multiple different plasma-driven DRM processes (originating from the study by Snoeckx and Bogaerts[11]). Our RF-ICP-driven DRM process reaches a total conversion range of 0–77% (from 0 W to 200 W) and an energy cost range of 0–79 eV per molecule (from 0 W to 200 W). Comparing our performance ranges with the ones from Table 1, we observe that our RF-ICP-driven DRM outperforms microwave (MW) and DBD-operated DRM processes. The DRM processes operated by DBD[37–39] reach
close to the total conversion and energy cost of our RF-ICP-driven DRM performances. Furthermore, our RF-ICP-driven DRM performances reach closely the performances of APGD. Finally, RF-ICP-driven DRM reaches total conversions similar to corona and spark-driven DRM. But the energy cost with our RF-ICP is, respectively, about a factor 2 and factor 5 higher. However, we note that the efficiency of our RF-ICP system is not optimized and that better efficiencies should be obtainable using RF-ICP. By tuning the mixed ratios of the reactants, the energy cost of DRM by RF-ICP can be further changed and optimized.

2.3. Optical Emission Spectra Analysis of Activation of Mixtures of CH₄ and CO₂

We measured the optical emission spectra (OES) for CH₄/CO₂ mixtures as a function of composition (Figure 4) and as a function of input power for an equimolar mixture. In the analysis, we focus on the emission of the CO b⁺Σ⁺ state, OH, O atoms, and H atoms. To compare the emission intensity at different compositions of the mixture, the peaks of Hα and the 0-0, 0-1 transition of CO (b⁺Σ⁺ − a¹Π) system are integrated (Figure 5).

Figure 4 and 6 show CO vibrational progressions that do not exhibit large vibrational excitations, such as the ones we previously observed for CO₂ plasma diluted by Ar.[20] The CO emission spectrum changes when tuning the CH₄/CO₂ ratios (Figure 4). The emission from CO and O atoms will dominate the OES in a pure CO₂ feed. As the proportion of CH₄ in the feed is increased from 0% to 10%, the emission peak of O atoms decreases drastically, and an OH emission band (A²Σ⁺ − X²Π) appears in the 300–320 nm region. In addition to the emission from OH, also, a large Hα emission intensity was observed at 10% CH₄ in the mixed feed CH₄/CO₂ case rather than in pure CH₄ which has highest H/C ratio and H₂ yields.

The integrated intensities of two CO lines, two O atom lines, and Hα emission are shown in Figure 5, as a function of the relative CO₂ content of the feed. The CO emission shows a linear increase with CO₂ content, very similar to the CO yield observed by QMS (Figure 2b). The linear increase seen in both QMS and OES of the CO signal confirms that the decomposition of the mass 28 signal to C₂H₂ and CO is done correctly. The QMS data show no leveling off of the CO signal, as shown for CO emission in Figure 5. We attribute this to change in plasma parameters at the highest CO₂ fraction, leading to a smaller electronic excitation of CO.

The O atom signal in Figure 5 shows a marked increase at the highest CO₂ content (>0.7). The Hα emission shows a peak at the CO₂ content of 0.9, where the number of H atoms introduced by CH₄ is already very low.

The power dependence of the OES is shown in Figure 6a,b where the spectral regions are shown as in Figure 4. We see that the emission of Hα and 0-0, 0-1 transition of CO (b⁺Σ⁺ − a¹Π) system increase as the power increases. For equimolar mixtures, no O atom emission is observed. In addition, the CO₂⁺ doublet is observed, centered at λ = 288.3 nm and λ = 289.6 nm. OH emission is also observed (especially at a higher power) for the equimolar mixture. The line integrated intensities are shown in Figure 7. The trends observed are very similar to what is observed by the QMS intensities in Figure 3.

Figure 6b shows that the emission of Hα during RF-ICP-driven DRM intensifies by increasing the power to 75 W. Above 75 W, the emission of Hα levels off as a function of the input power. This indicates that RF-ICP-driven DRM enables easy excitation of hydrogen into Hα. RF-ICP offers an easy and accessible way to yield high levels of Hα.

![Figure 4](https://www.advancedsciencenews.com/doi/10.1002/ente.202000886)
Figure 4. OES from CO₂ and CH₄ reforming at different CH₄/CO₂ ratios. Reaction conditions: feed: CH₄ and (or) CO₂; input power: 75 W; total flow: 50 sccm; and pressure: 50 Pa.
3. Discussion

3.1. Activation of Methane

For a comparison to our DRM experiments, we conducted the RF-ICP-induced activation of pure methane. With increasing SEI, we observed an increasing dissociation. At the highest power (150 W, SEI \(= 45.71 \text{ eV per molecule}\)), 60% of CH\(_4\) was converted into H\(_2\), C\(_2\)H\(_x\), and C deposit. Conversion efficiencies of CH\(_4\) are very significant at these power levels. There are very few similar studies using RF-ICP. The most comparable work is the study by Mozetic et al. [22] These authors also studied pure CH\(_4\) discharges. However, their setup is different, as it contains a special after-glow chamber connected to the plasma chamber via a small orifice. Moreover, the RF power used in their study (\%/C_2^1200 \text{ W}) is six times higher than what we use here. Our system gives a higher conversion, which can be attributed to the lower operating pressure and possibly the absence of a buffer chamber. Comparing our results with those of Mozetic et al., we conclude that methane conversion of more than 50% can be obtained at lower power levels and pressures as well. This indicates that efficient DRM can be expected with RF-ICP, as we discuss in the following sections.

3.2. Activation of Mixtures of CH\(_4\) and CO\(_2\)

The product concentration of a CH\(_4\)/CO\(_2\) mixture is shown in Figure 2b as a function of the CO\(_2\)/CH\(_4\) feed composition. As expected, the CH\(_4\) signal linearly decreases with the CO\(_2\)/(CH\(_4\) + CO\(_2\)) fraction, whereas the CO\(_2\) relative concentration linearly increases. Also, the CO concentration linearly increases. The CO yield is constant at 48% at 75 W. Figure 2c shows that the CO yield is nearly constant as a function of feed composition. This implies that the conversion of CO\(_2\) into CO is independent of feed composition. Figure 3b shows that the CO yield increases with power, where even values of 75% CO yield can be reached at 200 W. The CO yield in DRM at 200 W is higher than what we measured for pure CO\(_2\). The limited yield in pure CO\(_2\) plasma is attributed to recombination of the reaction products CO + O back to the reactant CO\(_2\), e.g., see the studies by Yin and coworkers. [45–47] RF-ICP-driven DRM enables the suppression of the reverse reaction.

The product H\(_2\) in Figure 2b is not proportional to the fraction of CH\(_4\) in the feed. It is almost constant at a level 27–33% and decreases at CO\(_2\)/(CH\(_4\) + CO\(_2\)) fractions above 0.7. As a consequence, the H\(_2\) yield (Figure 2c) increases as a function of CO\(_2\)/(CH\(_4\) + CO\(_2\)) fraction. Increasing power, as shown in Figure 3b, increased the H\(_2\) yield to almost 75%. This shows that the formation of syngas has a high probability. Thus, RF-ICP-driven DRM is an efficient and clean way to produce syngas. The energy cost between CH\(_4\) reforming (Figure 1b) versus mixed CO\(_2\)/CH\(_4\) reforming (Figure 3c) shows significant differences, especially when compared with the total conversion. RF-ICP reforming of mixed CO\(_2\)/CH\(_4\) ratios achieves lower energy costs while...
and CO yields at low powers to valuable CO. H$_8$ emission is similar to that observed before by Mucha et al. while minimizing the formation driven disso-

and 25 sccm CO. A schematic diagram of the experimental setup. Integrated emission intensity of 0-0, 0-1 transition of CO emission indicates that a high number of H atoms as a function of input power. Reaction con-

O, as the CO yields in DRM keep exceed-

and pressure: 39 Pa. Emission

+ in the feed, where relatively few

by DRM. Syngas yields of more than 70% were observed above

3.3. H$_8$ Emission

A most remarkable observation in OES is the strong H$_8$ emission at high CO$_2$/CH$_4$ fractions in the feed, as shown in Figure 4 and 5. The highest optical emission intensity of H$_8$ was achieved at 90% CO$_2$ in the feed, where relatively few H atoms are introduced into the discharge. Nevertheless, the strong H$_8$ emission indicates that a high number of H atoms is present in the plasma. We attribute this signal to the presence of H$_2$O in the discharge, preferably for a high CO$_2$ content. H$_2$O cannot be easily detected in the discharge by QMS, but its presence is here deduced from the optical emission of OH (Figure 6). We believe that this is due to the electron impact–driven disso-

ation of H$_2$O. The H and OH emissions are not equally strong due to different spectral properties. The process leading to strong H$_8$ emission is similar to that observed before by Mucha et al. for diamond forming CH$_4$ discharges.

4. Conclusions

Our work demonstrates that RF-ICP discharges can form syngas by DRM. Syngas yields of more than 70% were observed above 150 W at an equal feed CH$_4$/CO ratio. Moreover, RF-ICP-driven reforming of mixed CO$_2$:CH$_4$ ratios demonstrates low energy costs comparable with APGD-driven DRM and much lower than DBD-driven DRM. By controlling the mixing ratios of CO$_2$:CH$_4$, we can tune up the yield of H$_2$ while minimizing the formation of C2 compounds. At high CO$_2$/CH$_4$ fractions in the feed, we observe significant amounts of H$_8$. The presence of H$_8$ and OH in a RF-ICP-driven DRM process suppresses the recombination of CO + O, as the CO yields in DRM keep exceeding the CO yields found during the RF-ICP-driven discharge of pure CO$_2$. The formation of water plays a key role in the hydrogen atom recycling in an RF-ICP-driven DRM process. All in all, we show that DRM using RF-ICP is a promising alternative for transforming the greenhouse gases methane and CO$_2$ to valuable syngas under moderate conditions.

5. Experimental Section

All experiments were conducted in a designated RF-ICP reactor constructed in house (Figure 8). The plasma reactor consisted of a quartz tube, with a diameter of 40 mm and length of 600 mm. It was supported by two stainless steel flanges and sealed by O rings. The reactor tube was surrounded by a water-cooled copper coil. To establish efficient coupling of RF energy into the plasma, a matching box was placed between the RF power supply (13.56 MHz, 2 kW) and the copper coil. In contrast to our previous experiments, we could not mount a Langmuir probe to measure plasma parameters. A detailed technical description of the setup was published in previous studies.

The maximum power used was 350 W, and the reflected power was maintained below 1 W by the matching box. However, this does not imply that all power from the supply was coupled into the plasma. Ohmic losses and RF losses by radiation will decrease the power actually coupled into the plasma. We had not optimized the coupling of power into plasma and only note that earlier work shows that very high coupling could be achieved.

The gases used in the reaction were directly obtained from gas cylinders and mixed before going into the reactor. Each gas cylinder was equipped with calibrated mass flow controllers (MFC, Sevenstar D07-19B) to set the flow. The plasma ignited inside the reactor tube, after supplying RF power. Prior to feeding the reaction gases, the reactor was evacuated to 1 Pa by a rotary pump with the nominal pumping speed around 18 L s$^{-1}$.

The light emitted by the plasma was collected by an optical fiber located 1.5 cm downstream from the coil, viewing the center of the reactor tube. The data were transmitted to our ultraviolet (UV)–vis–near-infrared (NIR)
The composition of the gaseous products from the plasma reactor was determined by QMS. This was a powerful tool, because the gas composition could be measured in real time. In this way, the stability of the plasma can be checked continuously. Analyzing the mass spectra can be tricky, as different components led to ions with the same mass such as 28, and the sensitivity for each species could differ. Moreover, the transmission of the instrument may be mass dependent. To solve this, we used a simple approach to obtain the composition of the effluent gas. We determined the relative yields of equimolar mixtures of H_2, CH_4, CO, O_2, or CO_2, and Ar by QMS. The ratio of the yield of the parent molecular ions concerned and Ar^+ was used to determine the relative efficiency for each gas. This analysis yielded the relative composition of the product gas as a function of one of the experimental variables.

To deconvolute the contributions to for instance the mass 28 peak, we conducted an interpolation between extreme cases, where the composition was known, such as experiments with pure CO_2 or CH_4. In this interpolation we took the height of secondary peaks into consideration. The interpolation was done by hand on the basis of individual mass spectra. Intensities of C_2H_4 species were hard to determine individually, also because of overlapping peaks in the mass spectrum. We obtained the C_2H_4 signal by adding the intensities of the dominant peaks. QMS had internal consistency checks, namely, the H/C and O/C ratio of the measured intensities. The ratio was set by the reactant flow and could be changed by plasma action. For pure CH_4: $H/C=4$ and for pure CO_2: $O/C=2$. We checked that the analysis was done in a consistent way.

Previously, we reported the analysis data for the decomposition of pure methane and mixtures of H_2, CH_4, CO, CH_2, and O_2 in the plasma reactor with a varying mixture of one of the experimental variables. The interpolation we took the height of secondary peaks into consideration. The interpolation was done by hand on the basis of individual mass spectra. The ratio was set by the reactant flow and could be changed by plasma action. For pure CH_4: $H/C=4$ and for pure CO_2: $O/C=2$. We checked that the analysis was done in a consistent way.

Previously, we reported the analysis data for the decomposition of pure methane and mixtures of H_2, CH_4, CO, CH_2, and O_2 in the plasma reactor with a varying mixture of one of the experimental variables. The interpolation we took the height of secondary peaks into consideration. The interpolation was done by hand on the basis of individual mass spectra. The ratio was set by the reactant flow and could be changed by plasma action. For pure CH_4: $H/C=4$ and for pure CO_2: $O/C=2$. We checked that the analysis was done in a consistent way.

Previously, we reported the analysis data for the decomposition of pure methane and mixtures of H_2, CH_4, CO, CH_2, and O_2 in the plasma reactor with a varying mixture of one of the experimental variables. The interpolation we took the height of secondary peaks into consideration. The interpolation was done by hand on the basis of individual mass spectra. The ratio was set by the reactant flow and could be changed by plasma action. For pure CH_4: $H/C=4$ and for pure CO_2: $O/C=2$. We checked that the analysis was done in a consistent way.

Previously, we reported the analysis data for the decomposition of pure methane and mixtures of H_2, CH_4, CO, CH_2, and O_2 in the plasma reactor with a varying mixture of one of the experimental variables. The interpolation we took the height of secondary peaks into consideration. The interpolation was done by hand on the basis of individual mass spectra. The ratio was set by the reactant flow and could be changed by plasma action. For pure CH_4: $H/C=4$ and for pure CO_2: $O/C=2$. We checked that the analysis was done in a consistent way.