Pinching a glass reveals key properties of its soft spots

Rainone, C.; Bouchbinder, E.; Lerner, E.

DOI
10.1073/pnas.1919958117

Publication date
2020

Document Version
Final published version

Published in
Proceedings of the National Academy of Sciences of the United States of America

Citation for published version (APA):
Pinching a glass reveals key properties of its soft spots

Corrado Rainone$^{a, b}$, Eran Bouchbinder$^{c, d}$, and Edan Lerner$^{a, 1, b}$

aI Institute for Theoretical Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; and bChemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel

Edited by James S. Langer, University of California, Santa Barbara, CA, and approved January 27, 2020 (received for review November 13, 2019)

It is now well established that glasses feature quasilocalized nonphononic excitations—coined “soft spots”—which follow a universal ω^4 density of states in the limit of low frequencies ω. All glass-specific properties, such as the dependence on the preparation protocol or composition, are encapsulated in the nonuniversal prefactor of the universal ω^4 law. The prefactor, however, is a composite quantity that incorporates information both about the number of quasilocalized nonphononic excitations and their characteristic stiffness, in an apparently inseparable manner. We show that by pinching a glass—i.e., by probing its response to force dipoles—one can disentangle and independently extract these two fundamental pieces of physical information. This analysis reveals that the number of quasilocalized nonphononic excitations follows a Boltzmann-like law in terms of the parent temperature from which the glass is quenched. The latter, sometimes termed the fictive (or effective) temperature, plays important roles in nonequilibrium thermodynamic approaches to the relaxation, flow, and deformation of glasses. The analysis also shows that the characteristic stiffness of quasilocalized nonphononic excitations can be related to their characteristic size, a long sought-for length scale. These results show that important physical information, which is relevant for various key questions in glass physics, can be obtained through pinching a glass.

Understanding the micromechanical, statistical, and thermodynamic properties of soft, nonphononic excitations in structural glasses remains one of the outstanding challenges in glass physics, despite decades of intensive research (1–19). Soft, nonphononic excitations are believed to give rise to a broad range of glassy phenomena, many of which are still poorly understood; some noteworthy examples include the universal thermodynamic and transport properties of glasses at temperatures of 10 K and lower (2, 4, 20–22); the low-temperature yielding transition in which a mechanically loaded brittle glass fails via the formation of highly localized bands of plastic strain (23, 24); and anomalous, non-Rayleigh wave-attenuation rates (25–27).

Computational studies have been invaluable in advancing our knowledge about the statistical and mechanical properties of soft, glassy excitations and in revealing the essential roles that these excitations play in various glassy phenomena. Schober and Laird (28, 29) were the first to reveal the existence of soft spots in the form of low-frequency, quasilocalized vibrational modes in a model computer glass. Soon later, Schober et al. (30) showed that relaxation events deep in the glassy state exhibit patterns that resemble quasilocalized modes (QLMs), suggesting a link between soft, glassy structures and dynamics. In an important subsequent work (31), this link was further strengthened by showing that relaxation dynamics in supercooled liquids strongly correlates with quasilocalized, low-frequency vibrational modes measured in underlying inherent states. Some years later, it was shown that plastic activity in model structural glasses and soft-sphere packings is intimately linked to nonphononic, low-frequency modes (32–34).

It was, however, only recently that the universal statistical and structural properties of soft QLMs in glasses were revealed, first in a Heisenberg spin glass in a random field (35), and later in model structural glasses (13, 14, 36–38). It is now well accepted that the density of nonphononic QLMs of frequency ω grows from zero (i.e., without a gap) as ω^4, independently of microscopic details (13), preparation protocol (15), or spatial dimension (14). Importantly, as shown in ref. 38 and demonstrated again in this work, the ω^4 distribution of QLMs persists, even in inherent states that underlie very deeply supercooled states—i.e., in stable computer glasses whose stability is comparable to conventional laboratory glasses. Furthermore, soft QLMs have been shown to generically feature a disordered core of linear size of a few particle spacings, decorated by long-range, Eshelby-like displacement fields, whose amplitude decays as r^{1-d}/d at a distance r from the core, in d spatial dimensions (13, 14).

The key challenge in revealing the statistical, structural, and energetic properties of soft QLMs in computer investigations lies in the abundance of spatially extended low-frequency phonons in structural glasses (36, 39). These phononic excitations hybridize with quasilocalized excitations, as pointed out decades ago by Schober and Oligschleger (40). These hybridization processes hinder the accessibility of crucial information regarding characteristic length and frequency scales of QLMs and regarding their prevalence.

While promising attempts to overcome the aforementioned hybridization issues have been put forward (36, 40–42), a complete statistical–mechanical picture of QLMs is still lacking. In particular, recent work has revealed that annealing processes affect QLMs in three ways: Firstly, the number of QLMs appears to decrease upon deeper annealing—i.e., they are depleted—as first pointed out in refs. 15 and 43. Secondly, the core size of QLMs, ξ_{QLM}, was shown to decrease with deeper annealing (13, 44). Lastly, in refs. 13 and 15, it was shown that the characteristic

Significance

Glasses form when liquids are quickly cooled. Many of the properties of glasses are universal—i.e., independent of their composition and the liquid-phase temperature T_p, from which they were cooled. One such property is the existence of noncrystalline soft vibrational excitations, which are highly localized in space and follow a universal vibrational frequency distribution, with a nonuniversal coefficient. We show that pinching glasses—i.e., applying local force perturbations to them—reveals dramatic variability in the physics of this coefficient with T_p. In particular, it reveals how the number of noncrystalline soft vibrational excitations, their size, and typical degree of softness vary with T_p, having major implications for the behavior of glasses in a wide variety of situations.

Author contributions: C.R., E.B., and E.L. designed research; C.R. and E.L. performed research; C.R., E.B., and E.L. discussed the results; and C.R., E.B., and E.L. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

1To whom correspondence may be addressed. Email: e.lerner@uva.nl.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919958117/-/DCSupplemental.

First published February 24, 2020.

2Ignored: 4444.

bIgnored: 4444.

cIgnored: 4444.

dIgnored: 4444.

eIgnored: 4444.

fIgnored: 4444.
frequencies of QLMs also increase upon deeper annealing—i.e., they stiffen—in addition to their depletion. These three effects, and other concepts discussed below, are graphically illustrated in Fig. 1.

In this work, we investigate the effect of very deep supercooling/annealing on the statistical, structural, and energetic properties of QLMs in a model computer glass (see Materials and Methods for details). First, we explain why information regarding the number of QLMs cannot typically be obtained from the universal vibrational density of states (νDOS) of QLMs alone. Instead, we show that the vDOS grants access to a composite physical observable, which encodes information regarding both the characteristic frequency scale of QLMs, ω_p, and their number, N. Then, following recent suggestions (15, 45), we use the average response of the glass to a local pinch—more formally, we use the bulk-average response of a glass to force dipoles—as a measure of ω_p. This assumption, in turn, allows us to quantitatively disentangle the processes of annealing-induced stiffening of QLMs from their annealing-induced depletion.

Interestingly, this analysis reveals that N follows an equilibrium-like Boltzmann relation $N \propto \exp \left(-\frac{E_{QLM}}{k_B T_p} \right)$, with T_p denoting the parent temperature from which glassy states are quenched, k_B is Boltzmann’s constant, and E_{QLM} is the energetic cost of creating a QLM. That is, our results indicate that QLMs behave as “quasiparticles,” whose number is determined by equilibrium statistical thermodynamics at the parent equilibrium temperature T_p, and that this number is preserved when the glass goes out-of-equilibrium during a quick quench to a temperature much smaller than T_p. The QLMs thus appear to correspond to configurational degrees of freedom that carry memory of the equilibrium state at T_p, deep into the nonequilibrium glassy state, and, in this sense, T_p has a clear thermodynamic interpretation as a nonequilibrium temperature. This physical picture has been, for quite some time, the cornerstone of the nonequilibrium thermodynamic Shear-Transformation Zones (STZs) theory of glass deformation (46–48), where T_p is termed a fictive/effective/configurational temperature, once QLMs are identified with STZs, i.e., with glassy “flow defects” (49).

Furthermore, we show that ω_p can be used to define a length that appears to match the independently determined core size of QLMs, argued to mark the cross-over between the disorder-dominated elastic response of glasses at the mesoscale and the continuum-like elastic response at the macroscale (50). Taken together, these results show that important physical information, which is relevant for various key questions concerning the formation, relaxation, and flow of glasses, can be obtained through pinching a glass.

The QLMs Depletion vs. Stiffening Conundrum

It is now established that the vDOS of QLMs, $D(\omega)$, follows a universal gapless law (13, 14, 36–38)

$$D(\omega) = A_g \omega^4 \quad \text{for} \quad 0 \leq \omega \leq \omega_g, \tag{1}$$

where ω_g is the upper cutoff of this scaling regime, and the prefactor A_g is extensively discussed below. The ω^4 law has been rationalized by various models (1–4, 16–19) and is known to be intimately related to the existence of frustration-induced internal stresses in glasses (44), but its theoretical foundations are not yet fully developed. The prefactor A_g in Eq. 1 (denoted by A_4 in refs. 18, 38, and 51) is a nonuniversal quantity that encodes information about a particular glassy state, most notably its composition (constituent elements, interaction potential, etc.) and its preparation protocol (15, 38, 43). The ultimate goal of this work is to explore the physical information encapsulated in A_g and its dependence on the glass-preparation protocol.

In Fig. 2, we plot the cumulative vDOS calculated for glassy samples rapidly quenched from parent equilibrium temperatures.
should be rewritten as

\[T \text{ the way down to the deepest supercooled states accessible to us,} \]

shows, in agreement with ref. 38, that the

\[\text{at the lowest frequencies, as explained in ref. 13. The figure} \]

shows that the prefactor \(A_p \) vs. \(T_p \); see text for discussion.

Hence, we expect to have

\[A_g \sim N \omega_y^{-5} \]

for \(0 \leq \omega \leq \omega_y \).

We would like to note the analogy, and the fundamental difference, between Eq. 2 and Debye’s vDOS of (acoustic) phononic excitations in crystalline solids (52). The latter takes the form

\[D(\omega) = A_D \omega^2 \]

in three dimensions, with \(A_D = 9N/\omega_D^3 \), where \(\omega_D \) is Debye’s frequency and \(N \) is the number of particles. The integral over \(D(\omega) \) in the range \(0 \leq \omega \leq \omega_D \) equals the number of degrees of freedom in the system, \(3N \). The analogy between Debye’s vDOS and the glassy vDOS in Eq. 2, and between \(\omega_y \) and Debye’s frequency, is evident. Yet, there is a crucial difference between the two cases; in Debye’s theory, the number of phononic excitations is a priori known to equal the number of degrees of freedom \(3N \) (in fact, \(\omega_D \) is precisely defined so as to ensure the latter). In the glassy case, however, there is neither an a priori constraint on the number of QLMs \(N \), nor on the upper-frequency cutoff \(\omega_y \) (the total number of vibrational modes, both glassy and phononic, is, of course, still determined by the total number of degrees of freedom, but there is no a priori constraint on the fraction of QLMs out of the total number of vibrational modes). Hence, \(N \) and \(\omega_y \) should be treated as independent quantities that can feature different dependencies on the glass history (preparation protocol).

In order to disentangle the number of QLMs \(N \) and their characteristic frequency \(\omega_y \) and Debye’s frequency \(\omega_D \)

\(D(\omega) \sim N \omega_y^{-5} \omega^4 \)

for \(0 \leq \omega \leq \omega_y \),

\(D(\omega) = A_g \omega^2 \)

in three dimensions, with \(A_g = 9N/\omega_g^3 \), where \(\omega_g \) is Debye’s frequency and \(N \) is the number of particles. The integral over \(D(\omega) \) in the range \(0 \leq \omega \leq \omega_D \) equals the number of degrees of freedom in the system, \(3N \). The analogy between Debye’s vDOS and the glassy vDOS in Eq. 2, and between \(\omega_y \) and Debye’s frequency, is evident. Yet, there is a crucial difference between the two cases; in Debye’s theory, the number of phononic excitations is a priori known to equal the number of degrees of freedom \(3N \) (in fact, \(\omega_D \) is precisely defined so as to ensure the latter). In the glassy case, however, there is neither an a priori constraint on the number of QLMs \(N \), nor on the upper-frequency cutoff \(\omega_y \) (the total number of vibrational modes, both glassy and phononic, is, of course, still determined by the total number of degrees of freedom, but there is no a priori constraint on the fraction of QLMs out of the total number of vibrational modes). Hence, \(N \) and \(\omega_y \) should be treated as independent quantities that can feature different dependencies on the glass history (preparation protocol).

In order to disentangle the number of QLMs \(N \) and their characteristic frequency \(\omega_y \) and Debye’s frequency \(\omega_D \)

\(D(\omega) = A_g \omega^2 \)

in three dimensions, with \(A_g = 9N/\omega_g^3 \), where \(\omega_g \) is Debye’s frequency and \(N \) is the number of particles. The integral over \(D(\omega) \) in the range \(0 \leq \omega \leq \omega_D \) equals the number of degrees of freedom in the system, \(3N \). The analogy between Debye’s vDOS and the glassy vDOS in Eq. 2, and between \(\omega_y \) and Debye’s frequency, is evident. Yet, there is a crucial difference between the two cases; in Debye’s theory, the number of phononic excitations is a priori known to equal the number of degrees of freedom \(3N \) (in fact, \(\omega_D \) is precisely defined so as to ensure the latter). In the glassy case, however, there is neither an a priori constraint on the number of QLMs \(N \), nor on the upper-frequency cutoff \(\omega_y \) (the total number of vibrational modes, both glassy and phononic, is, of course, still determined by the total number of degrees of freedom, but there is no a priori constraint on the fraction of QLMs out of the total number of vibrational modes). Hence, \(N \) and \(\omega_y \) should be treated as independent quantities that can feature different dependencies on the glass history (preparation protocol).

In order to disentangle the number of QLMs \(N \) and their characteristic frequency \(\omega_y \) and Debye’s frequency \(\omega_D \)

\(D(\omega) = A_g \omega^2 \)

in three dimensions, with \(A_g = 9N/\omega_g^3 \), where \(\omega_g \) is Debye’s frequency and \(N \) is the number of particles. The integral over \(D(\omega) \) in the range \(0 \leq \omega \leq \omega_D \) equals the number of degrees of freedom in the system, \(3N \). The analogy between Debye’s vDOS and the glassy vDOS in Eq. 2, and between \(\omega_y \) and Debye’s frequency, is evident. Yet, there is a crucial difference between the two cases; in Debye’s theory, the number of phononic excitations is a priori known to equal the number of degrees of freedom \(3N \) (in fact, \(\omega_D \) is precisely defined so as to ensure the latter). In the glassy case, however, there is neither an a priori constraint on the number of QLMs \(N \), nor on the upper-frequency cutoff \(\omega_y \) (the total number of vibrational modes, both glassy and phononic, is, of course, still determined by the total number of degrees of freedom, but there is no a priori constraint on the fraction of QLMs out of the total number of vibrational modes). Hence, \(N \) and \(\omega_y \) should be treated as independent quantities that can feature different dependencies on the glass history (preparation protocol).

Fig. 2. Cumulative density of states CDF vs. \(\omega \) for various parent temperatures \(T_p \) (see values in the legend). Here, we present data measured in 10,000 glassy samples of \(N = 20,000 \) particles for \(T_p = 0.11/18 \) and 2,000 samples of \(N = 16,000 \) particles for \(T_p = 11/18 \). (Inset) The prefactors \(A_p \) vs. \(T_p \); see text for discussion.

Fig. 3. The vDOS \(D(\omega) \) of small glassy samples (the number of particles \(N \) is specified in each graph) in three dimensions (3D; Left) and four dimensions (4D; Right), obtained by a rapid quench in ref. 14. The data are adapted from figure 2 b and c of ref. 14, where frequencies are normalized as detailed in SI Appendix. The vertical continuous lines indicate the position of the first phonon band, whereas the dashed lines mark the breakdown of the \(\omega^4 \) scaling regime.
(e.g., a decrease, i.e., depletion) and in their characteristic frequency (e.g., an increase, i.e., stiffening). How to disentangle (e.g., a decrease, i.e., depletion) and in their characteristic frequency.

The previous discussion showed that the T_p dependence of A_q, cannot be readily used to extract the T_p dependence of N and ω_y separately. Consequently, one needs additional physical input in order to disentangle the two quantities. Here, we follow the suggestion put forward in ref. 15 that the characteristic frequency ω_y of QLMs can be probed through pinching a glass. Formally, by pinching, we mean applying a force dipole $d^{(i)}$ to a pair of interacting particles i, j in a glassy sample. The displacement response to $d^{(i)}$, which was shown to closely resemble the spatial pattern of QLMs (15), can be associated with a frequency $\omega_y^{(ij)}$ (see additional details in SI Appendix). By averaging $\omega_y^{(ij)}$ over many interacting pairs i, j in a glassy sample, one obtains a characteristic frequency scale, which was proposed to represent ω_y.

This suggestion was discussed at length and tested, under various circumstances, in ref. 15; here, we follow it—i.e., assume that the T_p dependence of the dipole response is proportional to $\omega_y(T_p)$. The remainder of the paper is devoted to exploring the implications of this assumption.

In Fig. 4, Left, we plot the characteristic frequency ω_y vs. the parent temperature T_p, where $\omega_y(T_p)$ is estimated by the pinching procedure just described. It is observed that ω_y varies by nearly a factor of two at low parent temperatures T_p and reaches a plateau at higher T_p. We further find that the sample-to-sample mean athermal shear modulus, G, shown in Fig. 4, Left, Inset, also plateaus at the same T_p as ω_y does. Consequently, in what follows, we conveniently express temperatures in terms of the onset temperature T_{onset} of the high-T_p plateaus of G and ω_y.

We conclude that, in the T_p range considered here, QLMs appear to stiffen by a factor of approximately two with decreasing T_p. Interestingly, in ref. 38, it was reported that the boson peak frequency ω_{BP} varies by approximately a factor of two over a similar range of T_p, suggesting that ω_{BP} and ω_y might be related. In ref. 45, a similar proposition was put forward in the context of the unjamming transition (53–55), where it was argued that the renowned “unjamming” frequency scale ω_u (5, 53) can be extracted by considering the frequencies associated with the responses to a local pinch. However, since ω_u and ω_{BP} may differ (10), it is not currently clear which of these frequencies is better represented by ω_y.

The stiffening of QLMs by a factor of approximately two accounts for an approximate 50-fold variation of A_q, due to the ω_y dependence in Eq. 2. The remaining variation is attributed to the number of QLMs, $N = A_\text{q} \omega_y^2$ (note that here, we use an equality, as the T_p-independent prefactor is of no interest), plotted in Fig. 4, Right. The result indicates that QLMs are depleted by slightly less than two orders of magnitude in the simulated T_p range. The strong depletion of QLMs upon deeper supercooling has dramatic consequences for the properties of the resulting glassy states. For example, brittle failure (56, 57) and reduced fracture toughness (58–60) are claimed to be a consequence of this depletion. It is interesting to note that the range of variability observed in Fig. 4, Right appears to be consistent with a very recent study (61) of the depletion of tunneling two-level systems in stable computer glasses, possibly indicating that a subset of the QLMs is associated with tunneling two-level systems (1, 2, 36, 62).

The results presented in Fig. 4 demonstrate that pinching a glass may offer a procedure to separate the depletion and stiffening processes that take place with progressive supercooling. Next, we aim at exploring the physical implications of disentangling N and ω_y.

A Thermodynamic Signature of the QLMs

QLMs correspond to compact zones (though they also have long-range elastic manifestations), which are embedded inside a glass, and characterized by particularly soft structures. It is tempting, then, to think of them as quasiparticles that feature well-defined properties (e.g., formation energy). If true, one may hypothesize that QLMs can be created and annihilated by thermodynamic fluctuations and follow an equilibrium distribution at the parent equilibrium temperatures T_p. Moreover, their equilibrium thermodynamic nature might be manifested in nonequilibrium glassy states as they become frozen in during the rapid quench upon glass formation.

As we have now at hand an estimate of the number N as a function of T_p (cf. Fig. 4, Right), we can start testing these ideas. To this aim, we plot in Fig. 5 N vs. T_p^{-1} on a semilogarithmic scale; the outcome reveals a key result: the number of QLMs follows a Boltzmann-like law, with the parent temperature T_p playing the role of the equilibrium temperature, namely,

![Fig. 4](image-url)

Fig. 4. (Left) The characteristic frequency ω_y of QLMs, estimated by the pinching procedure discussed in the text, plotted vs. the parent temperature T_p. (Left, Inset) The sample-to-sample mean athermal shear modulus, G, plotted against T_p. (Right) N is proportional to the number of QLMs and is plotted here against T_p.

Rainone et al. PNAS | March 10, 2020 | vol. 117 | no. 10 | 5231
controlled by a Boltzmann-like factor $e^{-E_{QLM}/k_B T_p}$, with the parent temperature playing the role of the equilibrium temperature. We find $E_{QLM} \approx 3.3$, expressed in terms of $k_B T_{musc}$.

$$N \propto \exp \left(- \frac{E_{QLM}}{k_B T_p} \right). \quad [3]$$

A possibly related Boltzmann-like law, albeit for $A_g(T_p)$ itself, was observed in ref. 51 for reheated stable glasses (63). A corollary of Eq. 3 is that QLMs seem to feature a well-defined formation energy, $E_{QLM} \approx 3.3$ (in units of $k_B T_{musc}$). It is surprising that E_{QLM} appears to be independent of T_p, while the characteristic energy scale associated with ω_g does appear to depend on it. Future research should shed additional light on this nontrivial observation.

The results in Eq. 3 and Fig. 5 indicate that QLMs might indeed correspond to a subset of configurational degrees of freedom that equilibrate at the parent temperature T_p and that carry memory of their equilibrium distribution when the glass goes out of equilibrium during a quench to lower temperatures. This physical picture strongly resembles the idea of a fictive/effective/configurational temperature, which was quite extensively used in models of the relaxation, flow, and deformation of glasses (46–48, 64–67). This connection is further strengthened in light of available evidence indicating that the cores of deformation-coupled QLMs are the loci of irreversible plastic events that occur once a glass is driven by external forces (68–70).

The Boltzmann-like relation in Eq. 3, when interpreted in terms of STZs, is a cornerstone of the nonequilibrium thermodynamic STZ theory of the glassy deformation (46–48), where T_p is treated as a thermodynamic temperature that characterizes configurational degrees of freedom and that differs from the bath temperature. The strong depletion of STZs with decreasing T_p, as predicted by the Boltzmann-like relation, was shown to give rise to a ductile-to-brittle transition in the fracture toughness of glasses (58, 59). This prediction was recently supported by experiments on the toughness of bulk metallic glasses, where T_p was carefully controlled and varied (60).

It is natural to define a length scale corresponding to the typical distance between QLMs as $\xi \sim N^{-1/d}$, once an estimate of their number N is at hand. Such a “site length” ξ_s was introduced in ref. 13, where it was related to the sample-to-sample average minimal QLM frequency $\langle \omega_{\text{min}} \rangle$, according to $\langle \omega_{\text{min}} \rangle \sim \omega_g (L/\xi_s)^{-d/3}$. The latter implies that the lowest QLM frequency is selected among $(L/\xi_s)^d \propto N^d P^N$ possible candidates, which is directly related to the extreme value statistics of ω_{min} (13). The site length ξ_s is expected to control finite-size effects in studies of athermal plasticity in stable glasses, as discussed in detail in ref. 71. Similar definitions of a site length were proposed in refs. 71 and 72; an important message here is that the disentangling of the stiffening effect from the prefactor A_g is imperative for the purpose of obtaining a consistent definition of a length scale in such a setting.

A Glassy Length Scale Revealed by Pinching a Glass

What additional physics can pinching a glass reveal? Up to now, we explored the physics of the QLMs number N; we now turn to the other contribution to A_g, i.e., to the frequency scale ω_g that characterizes the typical stiffness of QLMs. ω_g was shown to undergo stiffening with decreasing T_p (cf. Fig. 4, Left); is this stiffening related to other properties of QLMs that vary with T_p? An interesting possibility we explore here is whether it might be related to a glassy length scale that is associated with QLMs.

To that aim, we construct a length scale ξ_g as

$$\xi_g \equiv 2\pi c_s / \omega_g, \quad [4]$$

which corresponds to the wavelength of transverse phonons propagating at the shear wave-speed c_s with an angular frequency ω_g. This length is similar in spirit to the “boson peak” length $\xi_{BP} \sim c_s / \omega_{BP}$ (73). The physical rationale behind our constructed length ξ_g is that the emerging length scale is expected to mark a cross-over in the elastic response of a glass to a local pinch, as discussed below. In Fig. 6, we plot ξ_g vs. the parent temperature T_p; we find that ξ_g decreases upon deeper annealing by $\sim 40\%$, a manifestation of the modest stiffening of the macroscopic shear modulus compared to that of QLMs (recall that c_s is proportional to the square root of the shear modulus). This decreasing length is of unique character among the plethora of glassy length scales previously put forward in the context of the glass transition, most of which are increasing functions of decreasing temperature or parent temperature (74–79).

In order to shed light on the physical meaning of ξ_g, we consider also (i) the cross-over length ξ_{co}, as observed in the displacement response to local pinches, between an atomistic-disorder-dominated response at distances $r \lesssim \xi_{co}$ from the...
perturbation, to the expected continuum behavior seen at $r > \xi_{co}$, and (ii) the core size of QLMs, ξ_{QLM}, which is known to decrease upon annealing (38, 43, 44), as is also illustrated graphically in Fig. 1. In Fig. 6, we directly compare between ξ_{r} and our measurements of ξ_{co} and ξ_{QLM} (see SI Appendix for details). These three length scales feature very similar variations with T_p, strongly supporting their equivalence. Consequently, ξ_{r}—which was defined through the dipole response frequency ω_{r} (cf. Eq. 4)—seems to provide a measure of the core size of QLMs, and in light of the suggested relation between the latter and STZs, also of the size of STZs.

Additional insight may be gained by invoking the relation—established in ref. 45—between ω_{r} and the characteristic frequency ω_{∞} that emerges near the unjamming transition (53–55). Indeed, in the unjamming scenario, the length ξ_{r} (often denoted ℓ_{r}) was shown to diverge upon approaching the unjamming point (50) and to mark the cross-over between disorder-dominated responses near a local perturbation and the continuum-like behavior observed in the far field, away from the perturbation. The same length was shown in ref. 80 to characterize the core size of QLMs near the unjamming point of harmonic-sphere packings. In light of the results shown in Fig. 6, we hypothesize that the fundamental cross-over length—below which responses to local perturbations are microstructural/disorder-dominated, and above which responses to local perturbations follow the expected continuum-like behavior—is, in fact, ξ_{r}, which, in turn, we show to agree well with the size of QLMs.

Summary and Outlook

In this work, we have employed a computer-glass-forming model, which can be deeply annealed (81), to quantitatively study the variation of the properties of QLMs (soft spots) with the depth of anneal. Most notably, we calculated the variation of the number, n_0, of the properties of QLMs (soft spots) with the depth of anneal—playing the role of the Boltzmann-like law of the number of QLMs—obtained by pinching the glass—and the speed of shear waves. Our results may have important implications for various basic problems in glass physics. We mention a few of them here; first, the Boltzmann-like law of the number of QLMs may play a major role in theories of the relaxation, flow, and deformation of glasses and may support some existing approaches. Second, together with other available observations (38, 45, 80), our results may suggest that the boson-peak frequency could be robustly probed by pinching glassy samples, instead of the more involved analysis required otherwise (9, 38). Finally, the variation of the energy scale proportional to ω_{∞}^{4} with annealing temperature appears to match very well the variation of activation barriers required to rationalize fragility measurements in laboratory glasses (compare Fig. 4, Left with figure 8 of ref. 82). If valid, our results appear to support elasticity-based theories of the glass transition (83–85) and indicate that QLMs play important roles in relaxation processes in deeply supercooled liquids (31). We hope that these interesting investigation directions will be pursued in the near future.

Materials and Methods

We employed a computer-glass-forming model in three dimensions, simulating the jamming Monte Carlo method, explained, e.g., in ref. 81. The model consists of soft repulsive spheres interacting via a R^{10} pair-wise potential (with R denoting the distance between the centers of a pair of particles), enclosed in a fixed-volume box with periodic boundary conditions. The particles' sizes are drawn from a distribution designed such that crystallization is avoided (81). A comprehensive description of the model, and of all parameter choices, can be found in ref. 86, including an important discussion about how we handled large sample-to-sample realization fluctuations of particle sizes that can be large in small system sizes due to the breadth of the employed particle size distribution. Ensembles of 10,000, 1,000, and 2,000 glassy samples were made for systems of $N = 2,000$; $8,000$; and 16,000 particles, respectively, by instantaneously quenching (to zero temperature) independent configurations equilibrated at various parent temperatures T_p. All data, except for those shown in Fig. 6, were calculated using the smaller glasses. Lengths are expressed in terms of $a_0 \equiv (V/N)^{1/3}$, where V is the system's volume. All particles share the same mass m, which we set as our microscopic unit of mass. Frequencies are expressed in terms of $\omega_0 \equiv \sqrt{G_0/a_0}$, where $G_0 \equiv \sqrt{T_p}$ is the high-T_p shear wave speed, with G_0 denoting the high-T_p sample-to-sample mean athermal shear modulus, and $\rho \equiv mN/V$ denoting the mass density. T_p is expressed in terms of the cross-over temperature T_{onset}, above which the sample-to-sample mean athermal shear modulus saturates to a high-temperature plateau, as shown in Fig. 4, Left, Inset and in ref. 86. In our model, we find $G_\infty \approx 0.88T_{onset} \approx 71$. Data will be made available upon request from the corresponding author.

ACKNOWLEDGMENTS. We thank David Richard for his help with our graph- ics. Fruitful discussions with David Richard and Geert Kapekijns are warmly acknowledged. E.B. was supported by the Minerva Foundation with funding from the German Federal Ministry for Education and Research, the Ben May Center for Chemical Theory and Computation, and the Harold Perlman Family. E.L. was supported by the Netherlands Organisation for Scientific Research (Vidi Grant 680-47-554/3259).

