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Abstract

The stop-signal paradigm is a popular procedure to investigate response inhibition—the ability to stop ongoing responses. It
consists of a choice response time (RT) task that is occasionally interrupted by a stop stimulus signaling participants to withhold
their response. Performance in the stop-signal paradigm is often formalized as race between a set of go runners triggered by the
choice stimulus and a stop runner triggered by the stop signal. We investigated whether evidence-accumulation processes, which
have been widely used in choice RT analysis, can serve as the runners in the stop-signal race model and support the estimation of
psychologically meaningful parameters. We examined two types of the evidence-accumulation architectures: the racing Wald
model (Logan et al. 2014) and a novel proposal based on the lognormal race (Heathcote and Love 2012). Using a series of
simulation studies and fits to empirical data, we found that these models are not measurement models in the sense that the data-
generating parameters cannot be recovered in realistic experimental designs.

Keywords Evidence-accumulation models - Lognormal distribution - Response inhibition - Stop-signal paradigm - Wald

distribution

Models of Response Inhibition
in the Stop-Signal Paradigm

Response inhibition is the ability to stop responses that are in
progress but become no longer appropriate—such as stopping
when the traffic light turns red. As a central component of
executive control (Aron et al. 2014; Logan 1994; Miyake
et al. 2000; Ridderinkhof et al. 2004), response inhibition
has profound impact on daily functioning and ensures that
people can safely interact with their world. Failures of re-
sponse inhibition can result in adverse outcomes and are also
considered integral to various neurological and psychiatric
disorders (e.g., Badcock et al. 2002; Schachar et al. 2000).

<l Dora Matzke
d.matzke @uva.nl

Department of Psychology, University of Amsterdam, PO Box
15906, 1001 NK Amsterdam, The Netherlands

Department of Psychology, Vanderbilt University,
Nashville, TN, USA

School of Medicine, University of Tasmania, Hobart, Australia

In the laboratory, response inhibition is often investi-
gated using the stop-signal paradigm (Logan and Cowan
1984; for a recent review, see Matzke et al. 2018), typi-
cally based on a two-choice response time task (e.g.,
pressing left button for a left arrow, or right button for a
right arrow). On a minority of trials, this primary “go”
task is interrupted by a stop signal, at a variable delay
(“stop-signal delay” or SSD), instructing participants to
withhold their response. Response inhibition succeeds
when the stop signal comes soon enough after the onset
of the go stimulus but fails when it comes later—too close
to the moment of response execution. The stop-signal
paradigm has been used in numerous studies, with both
healthy and clinical populations, to examine the cognitive,
developmental, and neural underpinning of response inhi-
bition (e.g., Aron and Poldrack 2006; Badcock et al.
2002; Bissett and Logan 2011; Fillmore et al. 2002;
Forstmann et al. 2012; Hughes et al. 2012; Matzke et al.
2017a; Schachar et al. 2000; Schachar and Logan 1990;
Verbruggen et al. 2014; Williams et al. 1999).

Performance in the stop-signal paradigm is commonly for-
malized as a race between two runners representing indepen-
dent cognitive processes: a single go process that is triggered
by the go stimulus and a stop process that is triggered by the
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stop signal (Logan 1981; Logan and Cowan 1984). According
to the stop-signal race model, the outcome of response inhibi-
tion depends on the relative finishing times of the go and stop
processes. If the stop process wins, the go response is success-
fully inhibited; if the go process wins, the go response is
executed. The model does not require the specification of
the parametric form of the finishing times of the go and the
stop process and makes distribution-free predictions about the
interplay of response times (RTs) and inhibition rates.

The stop-signal race model plays a central role in response
inhibition research because it enables the non-parametric esti-
mation of the unobservable latency of the stop response,
known as the stop-signal reaction time (SSRT; Colonius
1990; de Jong et al. 1990; Logan and Cowan 1984; for an
overview, see Matzke et al. 2018). Reliable non-parametric
estimates of SSRT can be obtained with as few as 50 stop-
signal trials per participant (Verbruggen et al. 2019).

Although the non-parametric approach theoretically pro-
vides estimates of (upper limits on the) moments of the entire
SSRT distribution, non-parametric estimation of moments
higher than the mean requires an unrealistically large number
of stop-signal trials (Logan 1994; Matzke et al. 2013). To
address this limitation, Matzke et al. (2013, 2017b) developed
the BEESTS approach that parameterizes the finishing time
distribution of the go and stop processes using an ex-Gaussian
distribution. BEESTS provides a reliable characterization of
the entire SSRT distribution based ~50 stop-signal trials per
participant when implemented in a hierarchical framework
(Matzke et al. 2017b).

Both approaches, the traditional non-parametric and para-
metric BEESTS approaches are purely descriptive: They al-
low researchers to quantify the latency of stopping and
describe differences in stop-signal performance between indi-
viduals or experimental conditions. Descriptive models, how-
ever, do not explain performance, and can, therefore, some-
times fail to give direct insights into the cognitive processes
that contribute to successful stopping.

More recently, Matzke etal. (2019) extended the BEESTS
approach to also model the choice embedded in the go task by
including one go runner for each response option as well as a
stop runner, all with finishing times described by ex-
Gaussian distributions. This approach provides a process ac-
count of the choice errors in terms of which go runner wins
therace, but contrary to process models of choice RT (Brown
and Heathcote 2008; Vickers 1979), the ex-Gaussian
finishing times ofthe runners do not have a plausible psycho-
logical interpretation in terms of an evidence-accumulation
process. Inparticular, the mapping between the parameters of
the ex-Gaussian distribution and the parameters of evidence-
accumulation processes can be difficult to specify (Matzke
and Wagenmakers 2009), and so the three-runner model pro-
posed by Matzke et al. has difficulty realizing the benefits ofa
full process model.

@ Springer

To illustrate the limitations of using a distribution like the
ex-Gaussian to describe finishing times, even if it is sufficient-
ly flexible to do so quite accurately, consider Matzke et al.’s
(2017a) findings about stop-signal performance deficits in
schizophrenia. They augmented the BEESTS approach with
the ability to account for “trigger failures,” occasions on
which the stop runner fails to enter the race. They found that
apparent inhibitory deficits in patients were largely due to
trigger failures, which they attributed to deficits in attention
rather than inhibition. However, there was also a uniform
slowing in the SSRT distribution, as quantified by the ex-
Gaussian g parameter. This slowing could result from the
same attention deficit that is responsible for trigger failures
also causing a delay in the time at which the stop runner
entered the race, but it could also result from a slowing in
the speed of the rate at which it races, which would be more
consistent with an inhibitory deficit. Matzke et al. argued for
the former account because slowing in patients’ go RT distri-
butions was due to an increase in skew as quantified by the ex-
Gaussian 7 parameter rather than a y effect as was found for
SSRT. However, this inference required assumptions based on
findings about the general nature of slowing in evidence ac-
cumulation in schizophrenia (Heathcote et al. 2015b) and on
partial mappings between the ex-Gaussian and evidence-
accumulation parameters identified by Matzke and
Wagenmakers (2009). A much more straightforward conclu-
sion would have been possible if the runners had been
modeled by evidence-accumulation processes, because their
parameters separate factors determining the time taken to run
the race (i.e., the rate of accumulation and the amount of
evidence required to make a choice) and factors related to
when the runners enter the race.

Stop-Signal Evidence-Accumulation Models

Logan et al. (2014) proposed an evidence-accumulation
model of response inhibition that provides a comprehen-
sive process characterization of stop-signal performance.
The model assumes an independent race among a set of
runners, each characterized as a single-boundary diffusion
process where evidence accumulates stochastically at a
constant average rate until a threshold is reached. As in
Matzke et al. (2019), one runner corresponds to the stop
response and each of the remaining runners corresponds to
one of the N possible response options in the go task. The
single-boundary diffusion process produces a Wald distri-
bution (Wald 1947) of finishing times, which has an ana-
lytic likelihood, facilitating Bayesian and maximum-
likelihood estimation of the model parameters. The Wald
distribution is characterized by three parameters: rate of
evidence accumulation, decision threshold, and non-
decision time. The non-decision time parameter shifts the
lower bound of the finishing time distributions to RTs
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greater than zero to account for the duration of processes
involved in the encoding of the stimuli (e.g., the choice
stimulus or the stop signal) and, for the go accumulators,
the production of responses.

Logan et al. (2014) tested hypotheses about capacity limi-
tations by comparing stop-signal performance over conditions
requiring choices among different numbers of options (i.e., N),
where they identified capacity with evidence-accumulation
rates (see also Castro et al. 2019). Their analysis relied on data
with exceedingly low measurement noise, with 6480 go and
2160 stop-signal trials per participant and compared the
maximum-likelihood fit of models in which capacity was un-
limited (i.e., rates did not vary with N) or limited (i.e., different
rates were estimated for each &) for both the go processes and
the stop process. Model selection based on the Bayesian in-
formation criterion (BIC; Raftery 1995; Schwarz 1978) fa-
vored the model with limited capacity for the go process but
unlimited capacity for the stop process (i.e., the same stop rate
for different N). As the sum of rate parameters for the go
processes decreased as N increased, Logan et al. inferred that
the go process had limited capacity. These conclusions illus-
trate the advantages afforded by the evidence-accumulation
framework in enabling direct tests of hypotheses about psy-
chological processes that are not possible with descriptive
stop-signal race models.

Challenges to Parameter Estimation

Parameter-dependent lower bounds are a necessary feature of
any theoretically plausible RT model in general (Rouder
2005), and evidence-accumulation models in particular.
However, they make estimation irregular, so that estimates
based on likelihoods are not necessarily optimal (Cheng and
Amin 1983). For instance, maximum-likelihood estimation
can return the minimum observed RT as estimate of the lower
bound parameter, and so it must necessarily overestimate the
true lower bound. On average, the degree of overestimation
increases as the number of trials and hence measurement
precision decreases (for further discussion, see Heathcote
and Brown 2004). Such irregularity is typically not problem-
atic in evidence-accumulation models for standard choice
tasks, but it may pose challenges to parameter estimation
for the partially observed data available in the stop-signal
paradigm. Indeed, Matzke et al. (2019) suggested that this
was the case because they had little success in obtaining
stable estimates for the stop-process parameters when apply-
ing Logan et al.’s (2014) evidence-accumulation model to
their data with a realistic number of 395 go and 144 stop-
signal trials per participant. In contrast, the ex-Gaussian stop-
signal race model performed well with this data, even when
made more complex by augmenting it with parameters to
account for attention failures.

Our goal here is to understand why these estimation
problems occurred, and how they generally apply, by in-
vestigating the estimation properties of stop-signal evi-
dence-accumulation models as a function of the number
of stop-signal trials. In particular, we examine whether
stop-signal evidence-accumulation models can serve as
measurement models. We define measurement models as
models having a one-to-one mapping between the data-
generating parameter values and the corresponding esti-
mates, which enables the quantification of (differences in)
the psychological processes represented by the model pa-
rameters. This property is crucial when researchers are in-
terested in assessing individual differences in psychologi-
cal processes and their relationship to covariates, or when
they want to quantify the magnitude of differences between
individuals, populations, or experimental conditions."

In measurement models, the unique mapping between gen-
erating and estimated parameters implies that fits to simulated
data can be used to recover the data-generating parameters.
Our investigation will, therefore, rely on a series of parameter-
recovery studies (Heathcote et al. 2015a). We will use
Bayesian parameter estimation to evaluate not only any bias
in the estimates but also how well uncertainty about these
estimates is quantified by the posterior distributions. A good
assessment of uncertainty is highly desirable in order to ensure
that researchers are not overly confident in their inferences
about parameters.

We performed this investigation not only using Logan
et al.’s (2014) racing Wald model but also a novel proposal
based on the lognormal race (Heathcote and Love 2012;
Rouder et al. 2015). The lognormal race model belongs to
the family of evidence-accumulation models with a
parameter-dependent lower bound, and as such it consti-
tutes a process-plausible conceptualization of performance.
The lognormal race, in contrast to the Wald model, cannot
separately identify evidence-accumulation rates and deci-
sion thresholds. This may be disadvantageous for answer-
ing some research questions, such as Logan et al.’s specific
question about evidence-accumulation rates, but not
others, such as the question examined by Matzke et al.
(2017a) about group differences in the time the stop runner

' We acknowledge that different definitions of measurement models exist. For
instance, a reviewer suggested that measurement models can be defined as
models where parameters are linked to latent psychological processes, such
that changes in those processes are reflected only in changes in the correspond-
ing parameters. Under this definition, measurement models do not require a
one-to-one mapping between the data-generating parameter values and the
estimates; all that is required is that the estimates reflect the selective influence
of experimental manipulations or the psychological processes they are sup-
posed to represent. We also acknowledge that cognitive models do not neces-
sarily need to maintain a unique mapping between generating and estimated
parameters to be useful. However, the question whether stop-signal evidence-
accumulation models satisfy this definition of a measurement model is out of
the scope of the present investigation.

@ Springer
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enters the race. Although less psychologically informative,
the lognormal race model has better estimation properties
than the Wald, and this may be particularly beneficial in the
context of stop-signal data.

In what follows, we first provide a formal introduction to
the general stop-signal race architecture and present the log-
normal and Wald evidence-accumulation instantiations of the
framework. We then discuss the results of a series of
parameter-recovery studies, followed by an empirical valida-
tion of our findings.

Race Models for the Stop-Signal Paradigm

Stop-signal race models predict that the probability of go re-
sponse i, i=1, --*, Nis given by the probability that go process
i finishes before all other racers (see also Logan et al. 2014,
Matzke et al. 2018):

- JH
PR,i(tssd) = -[ofgo,i(t) [1 (I_Fgoﬁj(t)) (I_Fsmp(t_tssd))dt’

JEN
(1)

where fy, ; is the probability density function (PDF) of the finishing times
of go accumulator 7 and F,(f — £4sq) is the cumulative distribution func-
tion (CDF) of the finishing times of the stop accumulator at stop-signal
delay (SSD) 4. On go trials, fyq =00 and Fyp(t — t5q) = 0. The proba-
bility of inhibition is given by

Py(tsa) = '[wastop(t_tSSd) r][v (I_Fgo,i(t))dta 2)
and the conditional PDF of RTs given that the response was
not inhibited is then

| J:# - i 1 stop I Issg
() = Lo ME fgﬁ?i? Panllhal) )

On go trials, Fyop(f = fssa) = 0 and Py(#sq) = 0. Note that on
stop-signal trials, f,,q < <oo and Eq. 3 is the PDF of RTs for
response i that escaped inhibition, also known as signal-
respond RTs.

The PDF of RTs on go trials is given by

J#

fgo(t) = iEZNfgo,i(t) jle_I[V (I_Fgo-,j(t))’ (4)

and the PDF of signal-respond RTs is given by

: Yot a0 (O (1= Fao j(2)) (1= Fop (-t
S sr(t]tssa) = v oo (I N(l_Pl&(t.lss(d;)( p(1tssa)) ) (5)
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Stop-Signal Lognormal Race Model

The lognormal distribution has a long history in modeling
simple and choice RTs due to its desirable measurement prop-
erties and excellent fit to empirical RT distributions (e.g.,
Ratcliff and Murdock 1976; Ulrich and Miller 1994;
Woodworth and Schlosberg 1954). Here we build on
Heathcote and Love’s (2012) lognormal race model (see also
Rouder et al. 2015) and embed the lognormal distribution in
the stop-signal race architecture. We denote the resulting mod-
el as the stop-signal lognormal race model (SS-LNR).

The time to accumulate evidence to a threshold has a log-
normal distribution when one or both of either the rate of
accumulation or the distance from start-point to threshold
have a lognormal distribution. Hence, each of N such go ac-
cumulators in the race has a lognormal distribution with pa-
rameters p (location) and o (o > 0; scale). The PDF of the
finishing time distribution of go accumulator i, i=1, -*-, N,
is thus given by

fi(t) = P 1271_ exp (—% <ln(2M>2>,fort > 0. (6)

The PDF of the finishing time distribution of the stop accu-
mulator with support ¢ > #,4 can be obtained by substituting (¢ —
tssa) for ¢, and 150 and ogyop for 2 and o in Eq. 6. The finishing
time distribution of the winner of the race is given by the dis-
tribution of the minima of the lognormal distributions for all the
runners. It is clear from Eq. 6 that the SS-LNR cannot separate-
ly identify decision thresholds and evidence-accumulation
rates; only the ratio of thresholds-to-rate is identifiable. Our
software implementation of the SS-LNR is available at https://
osf.io/rkw5a/ as part of the Dynamic Models of Choice
collection of R functions and tutorials (Heathcote et al. 2019).

Although suppressed in Eq. 6, the SS-LNR assumes that
the finishing time distributions have a parameter-dependent
lower bound that shifts the distribution away from zero. As
in standard evidence-accumulation models, the parameter-
dependent lower bound of the go accumulator quantifies
non-decision time f,, the duration of processes outside the
decision-making process. Note that £, has two components,
the time to encode the go signal and the time to produce a
response once the go process finishes, but these cannot be
separately identified. For the stop accumulator, the psycholog-
ical interpretation of this parameter, which we denote C, de-
pends on the assumptions about when go response production
can be interrupted once it has reached its threshold. If go
response production is assumed to be entirely non-ballistic
(i.e., the go response can be stopped right up to the instant that
it occurs), C retains the standard interpretation of non-decision
time as the duration of processes outside the decision-making
process. However, if go response production is assumed to be
ballistic, either fully (i.e., the go response cannot be stopped
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once it has reached threshold) or partially (i.e., it can be
stopped after it has reached threshold but not right up to the
instant it occurs), C lumps together the non-decision compo-
nent of the stop process and the ballistic response production
component of the go process. The reader is referred to Logan
and Cowan (1984) for the non-parametric treatment of the role
of ballistic processes in stopping and to the Supplemental
Materials (https://osf.io/tkw5a/) for the derivations in the
context of the evidence-accumulation framework.

Stop-Signal Racing Wald Model

The Wald distribution (i.e., inverse Gaussian distribution;
Wald 1947) represents the density of the first passage
times of a Wiener diffusion process toward a single ab-
sorbing boundary. The Wald has a rich history in the RT
literature (e.g., Burbeck and Luce 1982; Emerson 1970;
Luce 1986; Heathcote 2004; Schwarz 2001; Schwarz
2002; Smith 1995), and has been recently embedded in
the racing evidence-accumulation architecture for model-
ing choice RTs (Leite and Ratcliff 2010; Teodorescu and
Usher 2013). Logan et al. (2014) derived closed form
solutions for the likelihood of the racing Wald model
and applied it to the stop-signal paradigm.

The resulting stop-signal racing Wald model (SS-RW) as-
sumes that the stop accumulator and each of the N go accu-
mulators is a Wiener diffusion process with evidence-
accumulation rate v (v>0), start point 0, and threshold &
(k> 0). The model allows thus for the separation of thresholds
and rates. The finishing time distribution of each accumulator
is a Wald distribution. Hence, the PDF of the finishing time
distribution of go accumulator 7, i=1, -*-, N, is given by

fi(t) =k (27rt3)_%exp <_21t (vl-t—k,-)2> ,fort > 0. (7)

The PDF of the finishing time distribution of the stop ac-
cumulator with support 7> 74 is obtained by substituting (£ —
fssa) for ¢, and vgyop and kgyop for v and & in Eq. 7. The finishing
time distribution of the winner of the race is given by the
distribution of the minima of the Wald distributions for all
the runners. The SS-RW also assumes a parameter-
dependent lower bound for each accumulator, #, for the go
accumulators and C for the stop accumulator, and a drift co-
efficient that we set to 1 to make the model identifiable
(Donkin et al. 2009).

To account for fast error RTs, Logan et al. (2014) extended
the SS-RW to allow for uniform trial-by-trial variability in
response threshold, with support [(k—a), (k+ a)]. In the full
model, the PDF of the finishing time distribution of go accu-
mulator 7 is given by

gi(tvi kisa;) = 2% (@) =(B;)~vi( () =P(3))) (8)
,forv; > 0,a; > 0,
where
B —(k—a—tv)
a=——r, 9)
and
B (k +a-)
B = i (10)

and ¢(x) and ®(x) are the PDF and CDF of the standard nor-
mal distribution, respectively. Note that for a =0, Eq. 8 sim-
plifies to Eq. 7.

Equations 7-10 follow Logan et al.’s (2014) notation in
terms of threshold & and threshold variability a. Our simula-
tions will rely on a slightly different parameterization in terms
of threshold » (b > 0) and start-point variability A, where A is
assumed to be uniformly distributed from 0-A, and the
“threshold gap” is given by B=b—A (B> =0). Hence, k=
b—A/2=B+A/2 and a=A/2. The new parametrization al-
lows us to enforce b>A by assigning a positive prior distri-
bution to B. Our software implementation of the SS-RW is
available at https://osf.io/rkw5a/.

Parameter-Recovery Studies

We report the results of a series of parameter-recovery studies
aimed at investigating the measurement properties of the SS-
LNR and the SS-RW as a function of the number of stop-
signal trials. In particular, we examined four scenarios: 300
go and 100 stop, 600 go and 200 stop, 1200 go and 400 stop,
and 9600 go and 3200 stop trials. The first scenario is repre-
sentative for clinical/developmental studies, the second and
third for experimental investigations, and the fourth can be
practically considered as a near-asymptotic case with substan-
tially more trials than Logan et al.’s (2014) design with ex-
tremely low measurement noise. In each recovery study and
for each sample-size scenario, we generated 200 synthetic data
sets with the same true value. The true values were chosen to
result in realistic go RT and SSRT distributions by cross-fitting
ex-Gaussian go RT and SSRT distributions reported in Matzke
et al. (2019) with the lognormal and the Wald distributions.’
Unless indicated otherwise, SSD was set using the staircase-
tracking algorithm (e.g., Logan 1994); SSD was increased by
0.05 s after successful inhibitions and was decreased by 0.05 s
after failed inhibitions.

2 We explored multiple true generating-parameter sets; the results were similar
to the ones reported here.
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As the parameters of both models are strongly correlated, we
used the Differential Evolution Markov Chain Monte Carlo (DE-
MCMC; Ter Braak 2006; Turner et al. 2013) algorithm to sample
from the posterior distribution of the parameters. The reader is
referred to the Supplemental Materials for a more detailed expla-
nation of MCMC-based Bayesian inference (Figure S1). We set
the number of MCMC chains to three times the number of model
parameters and initialized each chain using over-dispersed start
values. The MCMC chains were thinned as appropriate to reduce
auto-correlation. During the burn-in period, the probability of a
migration step was set to 5%; after burn-in, only crossover steps
were performed until the chains converged to their stationary
distribution. Convergence was assessed using the following pro-
cedure. Apart from monitoring the proportional scale reduction

factor (IAQ ) to ascertain that the MCMC chains have mixed well
(Brooks and Gelman 1998; Gelman and Rubin 1992; criterion:

R< 1.1), we assessed the stationarity of the chains by (1)
treating the first and second half of a chain as a different chain

when calculating R: () monitoring the absolute change in the
median between the first and last third of the posterior samples
relative to the interquantile range (criterion: <0.5); and (3) mon-
itoring the absolute change in the interquantile range between the
first and last third of the posterior samples relative to the overall
interquantile range (criterion: <0.5). This procedure was followed
by visual inspection of the MCMC chains.

Unless indicated otherwise, we used wide uninformative
uniform prior distributions (see Supplemental Materials) in
order to avoid posterior distributions that are truncated by
the—arbitrary—lower or upper bound of the priors. This
allowed us to maintain the structural correlations among the
model parameters (as reflected in the pairwise correlations
among the posterior samples), which in turn enabled us to
thoroughly explore the behavior of the models.

To assess the bias of the parameter estimates, we computed
the median of the means of the posterior distributions across the
200 replications and compared it to the true value. To assess the
uncertainty of the estimates, we computed the median of the
lower and upper bounds of the central 95% credible intervals.
The 95% credible interval (CI) quantifies the range within which
the true data-generating parameter value lies with 95% probabil-
ity (see Morey et al. 2016, for a discussion of the differences
between Bayesian credible intervals and frequentist confidence
intervals). To assess the calibration of the posterior distributions,
we computed the percentage of replications for which the CI
contained the true value (i.e., coverage) and determined whether
estimates fall within the CI at the nominal rate.

Stop-Signal Lognormal Race Model
We present parameter-recovery results for a standard two-

choice stop-signal design featuring only a stimulus factor
(e.g., right or left arrow) assuming the following go

@ Springer

parameters: ur and pr for the location parameter of the go
runner that matches and mis-matches the stimulus, respective-
ly, o7 and o for the matching and mis-matching scale param-
eters, and non-decision time £,. For the stop accumulator, we
assumed /igop, Tstops ad C. The first two panels in the top row
of Fig. 1 show the true data-generating go RT and SSRT
distributions.

Figure 2 shows parameter recovery as a function of the
number of go and stop-signal trials. The Supplemental
Materials show detailed results, including the distribution of
the posterior means and representative posterior distributions
for the scenarios with 200 and 3200 stop-signal trials
(Figure S2). The Appendix in the Supplemental Materials
provides examples of the MCMC chains.

The recovery of the go parameters is excellent: the param-
eter estimates closely approximate the true values, and the
coverage of the 95% ClIs is close to nominal, even with rela-
tively few go trials. As expected, as the number of go trials
increases, the uncertainty of the estimates decreases. In con-
trast to the go estimates, the stop estimates are heavily biased
unless a very large number of stop-signal trials are available.
In particular, the figp parameter is underestimated, whereas
Ostop and C are overestimated. The coverage of the 95% Cls is
far below nominal, even in the near-asymptotic case of 3200
stop-signal trials. For g, and ogyep, the uncertainly of the
estimates decreases as the number of stop-signal trials in-
creases, and the same is true for C for larger sample sizes.
Note, however, that the posterior distribution of C'is very wide
even with 3200 stop-signal trials, indicating substantial uncer-
tainty in estimating this parameter. Note also that—contrary to
the other three sample sizes—the posterior of C is quite nar-
row in the 100 stop-trial scenario, conveying a false sense of
confidence in the biased estimates in small samples. This pat-
tern probably arose from the combination of the strong bias
and the strong structural correlations between the stop param-
eters, which imposed an implicit upper bound on C.

In the Supplemental Materials, we present parameter re-
coveries for a more complex design that features the manipu-
lation of the stop parameters, and explore the effects of using
fixed SSDs, high-accuracy paradigms, and informative prior
distributions (Figures S3-S5). The results show similar per-
formance as reported in the main text, indicating that poor
parameter recovery is not unique to the particular design used
in our simulations and is not necessarily improved by impos-
ing highly informative prior distributions.

The third panel in the top row and the second row of Fig. 1
show predicted SSRT distributions that were generated using
the median of the posterior means of the biased stop estimates
for the four sample-size scenarios. For realistic samples sizes,
the predicted SSRT distributions are more peaked than the true
SSRT distribution (middle panel in the top row of Fig. 1), with
an unrealistically steep leading edge. This pattern suggests a
trade-off between the estimated variance and the lower bound
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Fig. 1 True and predicted RT distributions for the SS-LNR. For the go RT distribution, the black density line corresponds to correct RTs and the red

density line corresponds to error RTs

C of the finishing time distribution of the stop accumulator. In
fact, in the 100 stop-trial scenario, the predicted SSRT distri-
bution has near-zero variance and its mode closely approxi-
mates the lower bound C, which is relatively close to the mode
of the true SSRT distribution (estimated C = 0.313, estimated
mode =0.313, and true mode =0.3O9).3

These results imply that parameter recovery can be ade-
quate when the true SSRT distribution has very low variance.
This is illustrated in Fig. 3 where we compare recovery per-
formance for a SSRT distribution with appreciable variance
and one with near-zero variance. The black density lines (right
panels) and histograms (left panels) show the 200 posterior
distributions and the distribution of the corresponding 200
posterior means, respectively, for the recovery study with

3 As non-parametric methods only provide estimates of the central tendency of
SSRTs, they are unable to signal this identifiabilty problem.

100 stop-signal trials using the distribution shown in the mid-
dle panel in the top row of Fig. 1 as the data generating SSRT
distribution. Note that the same results are also summarized in
Fig. 2. The black triangles show the true values and the gray
triangles show the median of the posterior means across the
200 replications. As established earlier, the parameter esti-
mates are heavily biased. The gray density lines and histo-
grams show the results of a new recovery study where we
used a distribution with near-zero variance shown in the first
panel in the second row of Fig. 1 as the data-generating SSRT
distribution. In the new simulation, the true values equal the
biased estimates from the first recovery study depicted by the
gray triangles. As shown in Fig. 3, recovery performance in
the new parameter region is satisfactory, in terms of both bias
and coverage.

These results also illustrate that if a researcher were to fit the
SS-LNR to empirical data generated from a true SSRT
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distribution with plausible levels of variability, and then used the
resulting parameter estimates to assess the recovery performance
of the model, they would mistakenly conclude that estimation is
adequate. In reality, however, successful recovery is purely a
consequence of using a specific set of data-generating parameter
values, the biased estimates that correspond to a SSRT distribu-
tion with near-zero variance and extremely steep leading edge.

@ Springer

In the discussion, we revisit the implications of this phenomenon
of misleading parameter recovery.

Stop-Signal Racing Wald Model

We now present the results of two sets of parameter-recovery
studies for the SS-RW. Both sets used a standard two-choice
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Fig. 3 Misleading parameter
recovery for the SS-LNR. The
black density lines and
histograms show the 200
posterior distributions and the
distribution of the corresponding
200 posterior means, respectively,
from the parameter-recovery
study with 100 stop-signal trials
generated by the SSRT distribu-
tion in the middle panel in the top
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stop-signal design featuring only a stimulus factor (e.g., right
or left arrow). The first set assumed the following five go
parameters: vy and v for the rate of evidence accumulation
that matches and mis-matches the stimulus, respectively, B,
A, and non-decision time f,. For the stop accumulator, we
assumed Vgiop, Bsiops Asiops and C. Figure 4 shows the true
data-generating go RT and SSRT distributions, and Fig. 5
shows the true values. In the second set, we used the same
setup with the exception that Ag,, was fixed to 0, with the
true SSRT distribution strongly resembling the one shown in
Fig. 4. We investigated this setting because estimation of
start-point variability is notoriously difficult (Boehm et al.
2018; Castro et al. 2019), and so fixing it to zero might
improve estimation performance for the remaining parame-
ters. We again examined four sample sizes, but for the sake
of brevity we only discuss the 200 and 3200 stop-trial sce-
narios because (1) recovery of the stop parameters was poor

T T T T
04 0.6 0.8 1.0 0.8 1.0

even in the near-asymptotic case; and (2) the results for the
100, 200, and 400 stop-trial scenarios were virtually
indistinguishable.

Full SS-RW with Ag;,,, Figure 5 shows parameter-recovery re-
sults for the full SS-RW with Ag,, as a function of the number
of go and stop-signal trials. The Supplemental Materials show
detailed results, including the distribution of the posterior
means and representative posterior distributions (Figure S8).
The Appendix in the Supplemental Materials provides exam-
ples of the MCMC chains.

The recovery of the go parameters is excellent: the estimates
closely approximate the true values, and the coverage of the 95%
CIs is close to nominal. As expected, the uncertainty of the
estimates decreases as the number of go trials increases. In con-
trast to the go estimates, the stop estimates are heavily biased
regardless of the sample size. In the near-asymptotic case with
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3200 trials, vgp is underestimated, whereas Agop is slightly
overestimated. The situation is more worrisome for C and
Bgiop- C is severely overestimated, whereas Bgp, is severely
underestimated; Bg;p, is in fact estimated near zero for more than
90% of the replications. The 95% Cls are very narrow, and their
coverage is far from nominal: the Cls of Bgop, Asiop, and C
contain the true values in only 5-6% of the replications. With
200 stop-signal trials, Vsiop, Bsiops and Aggp, are strongly
overestimated, whereas C is underestimated. Note, however, that
for the majority of the replications, the uniform prior distributions
of vgiop and Agp, are barely updated and the posteriors are trun-
cated by the upper bound of the priors (see Figure S8). This
problem persisted even after quadrupling the prior range, indicat-
ing the data simply do not provide sufficient information to con-
strain the posteriors.* Additionally, the distributions of the poste-
rior means of Vgyop, Bsiop, and Agyop are bimodal. This suggests
that the MCMC chains got stuck on two different ranges of
values of the simulated distribution, which can be thought of as
a kind of local minimum problem. Note that bimodality in the
posterior means was not reflected in bimodality in the posterior
distributions themselves. In fact, the more prominent mode of the
distribution of the posterior means was far away from the average
start values and was typically more than an order of magnitude
higher than the data-generating values. These results suggest that
the reported biases are unlikely to reflect sampling problems
associated with the presence of local minima. The
Supplemental Materials show similar performance for fixed
SSDs, high-accuracy paradigms, informative prior distributions,
and a more complex design that features the manipulation of the
stop parameters (Figures S9-S11).

4 Unbounded prior distributions, such as diffuse normal priors, resulted in
convergence problems.
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The third panel of Fig. 4 shows the predicted SSRT distri-
bution that was generated using the median of the posterior
means of the stop estimates from the simulations with 3200
stop-signal trials. We did not explore the 200 stop-trial scenar-
io because of the artificially truncated posterior distributions.
Similar to the SS-LNR, the stop estimates are jointly pulled
toward a parameter region where the predicted SSRT distribu-
tion has near-zero variance and an unrealistically steep leading
edge, with C—and consequently the mode—approximating
the mode of the true SSRT distribution, although not as close-
ly as for the SS-LNR (estimated C'=0.199, estimated mode
=0.200, and true mode =0.236). In contrast to the SS-LNR,
however, this pathological behavior is present not only in
small samples but also in the near-asymptotic case. These
results reinforce our earlier conclusion about a trade-off be-
tween SSRT variance and the lower bound C.

The identification problem resulting from this trade-off and
the associated danger of misleading parameter recovery is
illustrated in Fig. 6 where we compare recovery performance
for a SSRT distribution with appreciable variance and one
with near-zero variance. The black density lines (right panels)
and histograms (left panels) show the 200 posterior distribu-
tions and the distribution of the corresponding 200 posterior
means, respectively, for the recovery study with 3200° stop-
signal trials using the distribution shown in the middle panel
of Fig. 4 as the data generating SSRT distribution. Note that
the same results are also summarized in Fig. 5. The black
triangles show the true values and the gray triangles show
the median of the—heavily biased—posterior means across
the 200 replications. The gray density lines and histograms

> We did not explore the 200 stop-trial scenario because of the artificially
truncated posterior distributions.
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Fig. 5 Parameter recovery for the
SS-RW with and without A, as
a function of the number of go
and stop-signal trials. The hori-
zontal dotted lines indicate the
true values. The black bullets
show the median of the posterior
means across the 200 replications.
The error bars show the median
width of the central 95% Cls
across the replications. The per-
centages indicate the coverage of
the CIs. The ranges of the y-axes
correspond to the ranges of the
uniform prior distributions on the
model parameters
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Fig. 6 Misleading parameter SR
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posterior distributions and the
distribution of the corresponding
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show the results of a new recovery study where we used a
distribution with near-zero variance shown in the right panel
of Fig. 4 as the data-generating SSRT distribution. In the new
simulation, the true values equal the biased estimates from the
first recovery study depicted by the gray triangles. As shown
in Fig. 6, parameter recovery in the new parameter region is
substantially better, in terms of both bias and coverage. Just as
for the SS-LNR, these results illustrate that it can be
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misleading to rely on parameter-recovery studies that use bi-
ased SS-RW estimates as data-generating values.

SS-RW Without Agyp, Figure 5 shows parameter-recovery re-
sults for the SS-RW without Ag, (indicated as “-AS”) as a
function of the number of go and stop-signal trials. As expected,
the recovery of the go parameters is excellent. The bias in the
stop estimates decreases substantially relative to the model with
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Asiop, but the coverage of the 95% Cls is still unsatisfactory. As
shown in the Supplemental Materials, the distributions of the
posterior means are bimodal, with a minority of the estimates
relatively close to the true values, but the majority showing—
depending on the parameter—an upward or downward bias
(Figure S14). The lower bound C is typically underestimated
even in the near-asymptotic case; in fact with 3200 stop trials,
the majority of the C estimates approaches zero.

In the Supplemental Materials, we show that poor param-
eter recovery is not unique to the particular setup used in our
simulations and is not necessarily improved by imposing
highly informative prior distributions (Figures S15-S17).
We did not explore the possibility of misleading parameter
recovery using the biased estimates as true values because
zero or near-zero estimates of lower bounds in RT distribu-
tions would not be considered as reasonable data-generating
values in most applications.

Fitting Empirical Data

We next investigated the behavior of the SS-LNR and SS-RW
in fits to empirical stop-signal data reported by Matzke et al.
(2019). The two-choice go task required participants to indi-
cate with a button press whether a random-dot kinematogram
displayed 45° left or right upward global motion. The difficul-
ty of the go task was manipulated on two levels (Easy vs.
Difficult) by varying the percentage of dots moving in a uni-
form direction, with higher coherence supporting easier per-
ceptual judgments. Participants were instructed to withhold
their response to the go stimulus when the stop signal (i.e., a
gray square boarder around the go stimulus) was presented.
As previously mentioned, the experiment used 395 go and
144 stop-signal trials, which is intermediate between the two
lowest sample sizes used in our parameter-recovery studies.
SSD was set using the staircase-tracking algorithm with step
size of 0.033s.°

We report the results of fits to the data of a single partici-
pant, with an average error rate of 31%. We chose this partic-
ular participant because both the SS-LNR and SS-RW models
resulted in interpretable parameter estimates in the sense that
the posterior distributions converged to the stationary distri-

bution (ﬁ < 1.1) and were not truncated by the prior bounds.
The data from the other participants are available in the
Supplemental Materials of Matzke et al. (2019) at https://osf.
io/me26u/. To investigate the possibility that the results may
reflect local minima, as was sometimes the case in the
recovery studies, we repeated the analyses six times. The
problem of local minima was exacerbated in real data: In
contrast to the simulations, it also affected the SS-LNR and

6 The experiment also featured 24 fixed SSDs of 0.05 s, which were removed
from this analysis (see also Heathcote et al. 2019).

often influenced the go estimates in both models. Here we
present estimates corresponding to the solution with the
highest (posterior) log-likelihood.

Stop-Signal Lognormal Race Model

We used a 13-parameter SS-LNR, where the go parameters iz
Ir Op O and ¢, were free to vary with task difficulty, whereas
the stop parameters fisiop, Tstop, and C were constrained be-
tween the Easy and Difficult conditions. We chose for a flex-
ible parameterization to ensure that the stop parameters are not
(unduly) influenced by constraints on the go parameters.

Figure 7 shows the posterior distribution of the stop param-
eters. The posteriors of the go parameters are available in the
Supplemental Materials (Figure S19). The posteriors of figp
and oygep are quite wide, indicating a large degree of uncer-
tainty in estimating these parameters. The posterior of C is
bimodal and the estimate is relatively high. The right panel
shows the predicted SSRT distribution that was generated
using the mean of the posterior distribution of the stop esti-
mates. Similar to the parameter-recovery results, the predicted
SSRT distribution has near-zero variance and an unrealistical-
ly steep leading edge.

We used posterior predictive simulations (Brooks and
Gelman 1998; Gelman and Rubin 1992) to assess the descrip-
tive accuracy of the model; the results are presented in the
Supplemental Materials (Figures S20-S21). Despite the se-
verely biased estimates, the SS-LNR provided an adequate
characterization of the CDF of go RTs and signal-respond
RTs, and captured the increase in response rate and median
signal-respond RTs as a function of increasing SSD.
Assessing the descriptive accuracy of the model is thus insuf-
ficient to detect the bias in the parameter estimates, likely
because the mode of the SSRT distribution is captured rela-
tively well by the SS-LNR.

Stop-Signal Racing Wald Model

We fit both versions of the SS-RW using a flexible parame-
terization. The full model featured 13 parameters, where the
go parameters vz vi B, and 1, were free to vary with task
difficulty, whereas A for the go accumulator and the stop pa-
rameters Vsiop, Bsiops Astops and C were constrained between
the Easy and Difficult conditions. The restricted version used
the same parameterization with the exception that Ag,, was
fixed to zero.

Figure 8 shows the posterior distribution of the stop param-
eters. The posteriors of the go parameters are available in the
Supplemental Materials (Figures S22—S23). The posteriors are
relatively well-constrained, and the two sets of estimates are
quite similar. Note, however, that the estimated C parameter is
again relatively high. C was in fact estimated to be higher than
the non-decision time of the go process 7, an unlikely result
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generated by the mean of the posterior distributions

given that the go and stop stimuli were presented in the same
modality and—unlike the go process—the stop process does
not produce an overt response. The right panels in Fig. 8 show
the predicted SSRT distributions that were generated using the
mean of the posterior distribution of the stop estimates. Similar
to the simulations, the SSRT distribution predicted by the full
SS-RW has low variance and a very steep leading edge. Unlike
in the simulations where C was pulled to zero, the SSRT distri-
bution predicted by the SS-RW without Agy,,, follows the same
pattern in this parameter region.

The results of the posterior predictive simulations are pre-
sented in the Supplemental Materials (Figures S24-S27).

Both SS-RW models provided an adequate characterization
of the CDF of go RTs and signal-respond RTs, and captured
the increase in response rate and median signal-respond RTs
as a function of increasing SSD. Again, assessing the descrip-
tive accuracy of the model is thus insufficient to detect the bias
in the parameter estimates.

Discussion

Our goal was to examine whether stop-signal evidence-accu-
mulation models can serve as measurement models that can be
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used to quantify the psychological processes represented by
the model parameters. We investigated two instantiation on
the stop-signal evidence-accumulation framework: the stop-
signal lognormal race (SS-LNR) and the stop-signal racing
Wald (SS-RW) models. Our parameter-recovery studies indi-
cated that neither the SS-LNR nor the SS-RW is suited as
measurement models in standard applications of the stop-
signal paradigm with a realistic number of trials. The results
can be summarized as follows.

For the SS-LNR, where the finishing-time distribution of
the evidence accumulators is lognormal, recovery of the pa-
rameters corresponding to the go runners was excellent even
for the smallest sample size (i.e., 300 go and 100 stop-signal
trials). In contrast, recovery of the parameters corresponding
to the stop runner was poor, unless a very large number of
trials was available. For realistic sample sizes, the stop param-
eters were heavily biased, resulting in severe underestimation
of the variance and overestimation of the lower bound of the
SSRT distribution. For the near-asymptotic case of 9600 go
and 3200 stop-signal trials, the estimates were, on average,
relatively accurate, but estimates of the lower-bound C were
variable and the posterior distributions were poorly calibrated.

For the SS-RW, where the finishing times of the evidence
accumulators follow a Wald distribution, recovery of the go
parameters was good even for small sample sizes, although as
expected not as good as for the SS-LNR. The recovery of the
stop parameters was substantially worse than for the SS-LNR,
with C severely overestimated and the decision threshold B
severely underestimated even for the near-asymptotic case. As
for the SS-LNR, this particular pattern of bias resulted in un-
derestimation of the variance and overestimation of the lower
bound of the SSRT distribution. From a practical standpoint,
working with both models was difficult because of the prob-
lem of multiple distinct but almost equally good fits.

For both models, we observed a trade-off between the es-
timated variance and the lower-bound C of the finishing-time
distribution of the stop runner (i.e., the SSRT distribution).
This pattern acted as an “attractor,” distorting all estimates
corresponding to the stop runner. Given that SSRT variance
can be estimated accurately with parametric methods in
models that do not assume a parameter-dependent lower
bound (e.g., BEESTS; Matzke et al. 2013), our results indicate
that the recovery problems arise from difficulties with estimat-
ing C, at least in realistic sample sizes. Indeed, we show in the
Supplemental Materials that when C is fixed to its true value,
recovery of the SS-LNR stop parameters is excellent, even
with only 100 stop-signal trials (Figures S6-S7). Note, how-
ever, that using a very restrictive prior distribution with a 100-
ms range on C did not have the same beneficial effect
(Figures S3 and S5). For the SS-RW, fixing C to its true value
substantially improved estimation for the near-asymptotic
case, but not for smaller sample sizes (Figures S12—-S13);
small samples did not seem to provide sufficient information

to estimate the remaining stop parameters Vsp, Bsiop, and
Agop- This is perhaps not surprising as it can be difficult to
separately estimate thresholds and rates for a single-boundary
diffusion process even when finishing times are observable
(see parameter recovery in Castro et al. 2019).

The trade-off between SSRT variance and lower bound C
signals an identifiability problem, where data-generating SSRT
distributions with similar central tendency (mode) but different
variances and lower bounds can yield very similar parameter
estimates and the corresponding characteristically peaked “J-
shaped” predicted SSRT distribution. That is, the J-shaped distri-
bution forms an attractor, with many different true data-
generating values producing the same parameter estimates. As
we illustrated in Figs. 3 and 6, this behavior can result in suc-
cessful but spurious parameter recovery. In particular, if a re-
searcher were to fit the SS-LNR or SS-RW to empirical data
generated from a true SSRT distribution with plausible levels
of variability, and then used the resulting—biased—estimates
to assess the performance of the model, they would conclude that
parameter recovery was successful. However, this conclusion is
mistaken as successful recovery is purely a result of using a
specific set of data-generating parameter values that correspond
to a J-shaped SSRT distribution. The attractor behavior is dan-
gerous, because it could mislead even cautious researchers who
follow recommended practices and perform parameter-recovery
studies for their particular experimental design (Heathcote et al.
2015a), at least when the recovery is based on data-generating
values obtained from fits to empirical data.

In the hope to constrain the SS-RW, we also examined a
simpler version of the model where we fixed start-point vari-
ability A to zero. However, this has not improved recovery
performance; the distribution of the estimates became bimod-
al, with a minority of the estimates close to the true values but
a majority still severely biased. The pathology for C was now
different from the full model, with values now being
underestimated. This underestimation was so severe, with
most estimates near zero, that at least if researchers obtained
such results they would likely assume them to be spurious and
so would not be misled. In the small-sample scenario, the
bimodality in the posterior means was occasionally accompa-
nied by bimodal posterior distributions, with modes approxi-
mating the two modes of the distribution of the posterior
means. Although this particular pattern may reflect sampling
problems, we believe that even these results are highly infor-
mative for researchers working with these models: Despite the
possibility of sampling problems resulting from local minima,
the vast majority of fits—even for the small-sample
scenarios—resulted in seemingly converged and well-
behaved unimodal posteriors. In real-world applications,
where we do not know the true data-generating values, this
behavior is clearly problematic and may lead to biased infer-
ence. As shown in the Supplemental Materials, fixing C to its
true value substantially improved estimation, especially for

@ Springer



284

Comput Brain Behav (2020) 3:269-288

the near-asymptotic case; in small samples, the distribution of
the posterior means as well as the posterior distributions them-
selves still exhibited some bimodality, at least in the parameter
region we had examined (Figures S12 and S18).

The problems we identified in the parameter-recovery
studies were also evident in fits to real data from Matzke
et al. (2019). Despite this, the models provided an adequate
characterization of the CDF of go RTs and signal-respond
RTs, and captured the increase in response rate and median
signal-respond RT as a function of increasing SSD, likely
because the mode of the SSRT distribution was captured
relatively well by all models. Hence, goodness-of-fit for
observable performance provides no guidance as to whether
parameter identifiability problems are present. Both the SS-
LNR and the SS-RW had severe problems with local mini-
ma, producing many inconsistent solutions with almost
equally good fits, the pattern that initially lead Matzke
et al. not to use the SS-RW with these data. The only differ-
ence from the parameter-recovery results was that the SS-
RW with Ag,, =0 produced a large rather than small esti-
mate of C. The large estimate might be viewed as implausi-
ble because C was much slower than the non-decision time
of the go runner ¢,, even though stop and go stimuli were
presented in the same modality. Note that Logan et al.
(2014) also reported a similar pattern, where the non-
decision time of the go process was estimated at 0.164 and
0.160 in the aggregate and the individual fits, respectively,
whereas the non-decision time of the stop process was esti-
mated at 0.241 in both cases. Logan et al.’s stop signal was
auditory and the go stimulus visual, and it is usually as-
sumed that transduction for auditory stimulation is, if any-
thing, faster than for visual stimulation. Although it is im-
possible to categorically reject Logan et al.’s parameter es-
timates on these grounds, the fact that the estimates showed
the same pattern that we found in our simulations, with
predicted SSRT distributions having very little variance,
suggests that they were distorted by the attractor behavior
identified in this paper.

However, it is important to note that Logan et al. (2014)
did not rely on the stop estimates to make psychological
inferences. Their conclusion that the stop and go processes
do not share capacity, and that there is a change in the
capacity required by the go process with the number of
choice alternatives, was based on model selection using
the BIC. The BIC relies on goodness-of-fit and a count of
the number of parameters in the models, where the latter is
used as a complexity penalty. It is only in cases with mul-
tiple local minima that estimates of goodness-of-fit may be
compromised, which is unlikely given the large number of
trials used by Logan et al. They did rely on the sum of the
go rate estimates over accumulators to infer that capacity is
limited, but our results indicate adequate recovery for the
go parameters for Logan et al.’s sample size.
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Although these considerations suggest that Logan et al.’s
(2014) psychological inferences are on solid ground, we urge
caution in any further applications of parameter inference and
model selection for the SS-RW, particularly in designs with a
relatively small number of trials. In particular, future work
should assess the performance of various model-selection
methods (e.g., Evans et al. 2020) to evaluate whether and
under what circumstances they provide valid and useful tools
for psychological inference in stop-signal evidence-accumu-
lation models. But for now, the only point on which our results
clearly contradict Logan et al. is their claim that the SS-RW
provides valid estimates of the distribution of SSRTs: our
findings indicate that the SS-RW can severely underestimate
SSRT variability and overestimate its lower bound.

It might be tempting to conclude from our results that the
SS-LNR might provide a viable measurement model in de-
signs with a very large number of stop-signal trials. However,
we urge caution based on the likely occurrence of non-
negligible levels of trigger failures in real data, which can
substantially bias the stop estimates (Matzke et al. 2017a;
Skipppen et al. 2019; Weigard et al. 2019). Matzke et al.
(2017b) found that although the addition of trigger failures
to the ex-Gaussian stop-signal race model made estimation
more difficult, it remained viable even in relatively small sam-
ples. In simulations not reported here, we also investigated the
effects of adding trigger failures in the SS-LNR and SS-RW.
For the SS-LNR, the degradation was more marked than for
the ex-Gaussian race model, indicating that the SS-LNR is
unlikely to be useful in practice, even with a very large num-
ber of trials. For the SS-RW, the situation was even more
troubling; we were not able to obtain converged estimates
when including the additional trigger failure parameter in the
model, not even for the near-asymptotic case.

We are more optimistic about measurement applications of
the SS-LNR in situations where it is possible to obtain an
independent estimate of the lower-bound C of the SSRT dis-
tribution. Indeed, when C was fixed to its true value, the SS-
LNR provided accurate and well-constrained parameter esti-
mates with as few as 100 stop-signal trials, which is similar to,
and maybe even better than, the performance of the ex-
Gaussian race model when implemented in a non-
hierarchical setting. We note, however, that preliminary sim-
ulations indicate that independent estimates of the lower
bound of the stop runner will have to be quite precise to be
useful. Fixed lower bounds have been used for modeling the
anti-saccade task, which is closely related to the stop-signal
task, except that choice is not required for the go component.
Hanes and Carpenter (1999) assumed a lower bound (an “ir-
reducible minimum processing time”) of 60 ms for the visual
go and stop stimuli based on the onset latency of visual cells in
the macaque visuomotor system (see also Ramakrishnan et al.
2010; Walton and Gandhi 2006). Colonius et al. (2001) as-
sumed the same lower bound for a visual go stimulus and a
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shorter—20 ms—Ilower bound for an auditory stop signal. We
are concerned that the use of such fixed values requires the
strong assumption of no individual differences, and that the
appropriate value might vary with the nature of the stop signal.
Another potential avenue might be to directly obtain con-
straints on the lower bound from brain activity recorded si-
multaneously with stop-signal performance using the model-
based neuroscience approach (e.g., Forstmann and
Wagenmakers 2015).

Our investigations relied exclusively on Bayesian methods
using DE-MCMC sampling. However, we feel that this is
anything but problematic, as Miletic et al. (2017) found that
Bayesian methods were superior to maximum-likelihood es-
timation in the context of the Leaky Competing Accumulator
model (LCA; Usher and McClelland 2001), which is also
plagued by identifiability problems. Although it is possible
that alternative MCMC samplers may perform better in the
context of stop-signal evidence-accumulation models, this is
unlikely because our earlier implementation of the SS-LNR
in the WinBUGS Developmental Interface (Lunn 2003),
which relies on a different sampler, was also unsuccessful.
Further, Logan et al. (2014) incidentally reported parameter-
recovery results based on maximum-likelihood methods in a
simulation study aimed at showing that the SS-RW could
produce fast error responses. Despite the large number of
trials, recovery of the stop parameters was not ideal, with a
nearly 30-ms overestimation of the lower-bound C.” Note
also that the predicted SSRT distribution generated using
the maximum-likelihood estimates of the SS-RW stop param-
eters reported by Logan et al. closely resembles the charac-
teristic peaked shape identified by our investigation (see
Supplemental Figure S28). An alternative avenue would be
to pursue quantile-based optimization methods, which—
unlike likelihood-based methods—are robust to the problems
caused by irregularity (Heathcote and Brown 2004).
However, it remains to be shown if this will be helpful in
the present context where the SSRT distribution cannot be
directly observed. Note also that the quantile-based approach
would necessarily forgo the many advantages of Bayesian
inference. In general, future research should examine whether
parameter-recovery performance depends on the interaction
between the properties of stop-signal evidence-accumulation
models and the particular estimation procedure used.

Another potential limitation is that the SS-LNR and SS-
RW may be better behaved in parameter settings or designs
that we did not investigate here, although, as reported in the
Supplemental Materials, we did canvas a number of different
possibilities, including a comparison of parameter recovery
for the SS-LNR in three different parameter settings
(Supplemental Figure S29). These results show an identical

7 Note that the non-decision time of the go runner f, was also
overestimated by 24 ms.

pattern of bias as reported for the parameter setting we exam-
ined in the main text. Although the additional simulations are
not comprehensive (cf. White et al. 2018), they suggest that
the SS-LNR does not only fail to recover the absolute value of
the stop parameters but also fails to maintain the ordering of
the parameters and is unable to unambiguously differentiate
between the estimates even in the presence of large differences
between data-generating values.

We also acknowledge that various other instantiations of
the evidence-accumulation framework are possible. For ex-
ample, Logan et al. (2014) also explored stop-signal evi-
dence-accumulation models based on the Poisson counter
(Van Zandt et al. 2000) and the linear ballistic accumulator
(LBA; Brown and Heathcote 2008) models, but did not pursue
them because they did not fit as well as the SS-RW. However,
given that these models are similarly complex as the SS-RW, it
seems unlikely that they would perform substantially better.
The same pessimism applies to more complex models such as
the interactive race model (Boucher et al. 2007) and blocked
input models (Logan et al. 2015), although because these
models directly address the implementation of stopping in
the brain, they are in a better position to take advantage of
constraints from neural data. One possible avenue to explore
is the Linear Approach to Threshold with Ergodic Rate
(LATER; Carpenter 1981; Carpenter and Williams 1995), a
simplification of the LBA which has been used to model stop-
ping performance in the anti-saccade task. However, LATER
also assumes a lower bound for the finishing times and there-
fore seems unlikely to perform substantially better than the
SS-LNR. Note also that most, if not all, stopping applications
of LATER, have forgone the estimation of the lower bound of
the runners and fixed it to a constant (e.g., Colonius et al.
2001; Hanes and Carpenter 1999; Ramakrishnan et al. 2010;
Walton and Gandhi 2006).

Given that our findings specifically implicated the lower
bound of the stop runner as the cause of identifiability prob-
lems, perhaps the most immediately promising avenue to ob-
tain a measurement model requires dropping this assumption.
Matzke et al.’s (2019) stop-signal race model using the ex-
Gaussian distribution to model the go and stop processes does
so with excellent measurement properties, and with the ability
to account for failures to trigger the stop and the go runners. A
lesser change would be to retain the evidence-accumulation
framework for the go processes, so that some of the advan-
tages of this approach could be maintained (see White et al.
2014, for a related approach). For example, such a model
could answer Logan et al.’s (2014) question about go capacity
limitations. We have obtained promising preliminary results
for this “hybrid” approach, where we use the ex-Gaussian
distribution to model the finishing times of the stop runner
while retaining the Wald assumption for the go runners.
However, this approach would be unable to clearly answer
Logan et al.’s question about stop capacity, which could be
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confounded by a trade-off between rate and threshold chang-
es, and obviously could not address Matzke et al.’s (2017a)
question about lower bounds.

In any case, given our results, we urge the adoption of
thorough case-by-case parameter-recovery studies for any al-
ternative proposal that seeks to develop a measurement model
of the stop-signal paradigm. We also recommend that such
studies address the possibility that parameter estimates may
reflect the presence of an attractor region. Indeed, we believe
that an important broader implication of our investigation is
that parameter-recovery studies should investigate data-
generating values that deviate from estimated parameters so
that researchers do not gain a false sense of security from
possibly misleading recovery results.

Conclusion

The goal of this article was to investigate whether stop-signal
evidence-accumulation models can serve as measurement
models that can be used to quantify psychological processes
in terms of estimated parameter values. We found that this
was not the case. In realistic experimental designs, both models
we examined—the stop-signal lognormal race and the stop-
signal racing Wald—produced biased and variable parameter
estimates. However, we acknowledge that cognitive models do
not necessarily need to be measurement models to be useful.
Models with suboptimal measurement properties can still pro-
vide insights into cognitive architectures by virtue of the selec-
tive influence of experimental manipulations on the model pa-
rameters and by enabling the comparison of different formal-
izations of performance in a given experimental paradigm (e.g.,
Evans et al. 2020). Future research should investigate whether
and under what circumstances stop-signal evidence-accumula-
tion models provide useful tools for psychological inference,
despite their undesirable measurement properties.
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