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Goodness-of-fit testing for copulas:
A distribution-free approach
SAMI UMUT CAN1,* , JOHN H.J. EINMAHL2 and ROGER J.A. LAEVEN1,†

1Department of Quantitative Economics, University of Amsterdam, P.O. Box 15867, 1001 NJ Amsterdam,
The Netherlands. E-mail: *s.u.can@uva.nl; †r.j.a.laeven@uva.nl
2Department of Econometrics & OR and CentER, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands. E-mail: j.h.j.einmahl@tilburguniversity.edu

Consider a random sample from a continuous multivariate distribution function F with copula C. In order
to test the null hypothesis that C belongs to a certain parametric family, we construct an empirical process
on the unit hypercube that converges weakly to a standard Wiener process under the null hypothesis. This
process can therefore serve as a ‘tests generator’ for asymptotically distribution-free goodness-of-fit testing
of copula families. We also prove maximal sensitivity of this process to contiguous alternatives. Finally,
we demonstrate through a Monte Carlo simulation study that our approach has excellent finite-sample
performance, and we illustrate its applicability with a data analysis.

Keywords: Copula; distribution-free; goodness-of-fit; Monte Carlo simulation; semi-parametric estimation

1. Introduction

Consider a d-variate (d ≥ 2) distribution function (df) F with continuous margins F1, . . . ,Fd .
By the representation theorem of Sklar [47], there is a unique df C on the unit hypercube [0,1]d
with uniform margins such that

F(x) = C
(
F1(x1), . . . ,Fd(xd)

)
, x = (x1, . . . , xd)T ∈ R

d . (1)

In fact, if X = (X1, . . . ,Xd)T is a random vector with joint df F , then it is easily seen that the
unique df C satisfying (1) is the joint df of the component-wise probability integral transforms
(F1(X1), . . . ,Fd(Xd))T, given by

C(u) = F
(
Q1(u1), . . . ,Qd(ud)

)
, u = (u1, . . . , ud)T ∈ [0,1]d , (2)

with Qj denoting the left-continuous quantile function associated with Fj , that is, Qj(·) =
inf{x ∈R : Fj (x) ≥ ·}, for j = 1, . . . , d .

The df C satisfying (1) or (2) is called the copula associated with F , and it is a representation
of the dependence structure between the margins of F , since C contains no information about the
margins, yet together with the margins it characterizes F . Thus copulas allow separate modeling
of margins and dependence structure in multivariate settings, which has proved to be a useful
approach in a wide range of applied fields, from medicine and climate research to finance and
insurance. We refer to recent comprehensive monographs such as Nelsen [36], Joe [25] and
Durante and Sempi [14] for more background on copula theory and its various applications.
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The present work is concerned with goodness-of-fit (GOF) testing for copulas. More specifi-
cally, we assume that an i.i.d. sample

X1 = (X11, . . . ,X1d)T, . . . ,Xn = (Xn1, . . . ,Xnd)T

is observed from an unknown d-variate df F with continuous margins F1, . . . , Fd and copula
C as above. We are interested in testing the hypothesis C ∈ C against the alternative C /∈ C,
where C = {Cλ : λ ∈ �} denotes a parametric family of copulas, indexed by a finite-dimensional
parameter λ. There is a rich cornucopia of parametric copula families used in various applications
(see, e.g., Ch. 4 of Joe [25] or Ch. 6 of Durante and Sempi [14] for extensive lists), and new ones
are introduced regularly in the literature, so the testing problem just described is clearly very
relevant for practitioners making use of copula modeling in their work.

GOF testing for copulas is not a new problem, and several approaches have been proposed in
the literature since the early 1990s, each with their advantages and limitations in specific situa-
tions. A partial list includes Genest and Rivest [23], Shih [45], Wang and Wells [51], Breymann,
Dias and Embrechts [3], Fermanian [16], Genest, Quessy and Rémillard [21] and Dobrić and
Schmid [13]. There seems to be no single approach that is universally preferred over others. For
a broad overview and comparison of various GOF testing procedures for copulas, we refer to
Berg [1], Genest, Rémillard and Beaudoin [22] and Fermanian [17]. As pointed out in the latter
papers, a common problem with many GOF approaches is that the asymptotic distribution of the
test statistic under the null hypothesis C ∈ C depends on the particular family C that is tested for,
as well as on the unknown true value of the parameter λ. In other words, many of the proposed
GOF tests in the literature are not asymptotically distribution-free. As a result, the asymptotic
distribution of the test statistics under the null hypothesis cannot be tabulated for universal use,
and approximate p-values have to be computed for each model via, for example, specialized
bootstrap procedures such as the ones outlined in Genest, Rémillard and Beaudoin [22], App.
A–D.

In this paper, we develop an approach to construct asymptotically distribution-free GOF tests
for any parametric copula family satisfying some rather mild smoothness assumptions. We do not
propose a particular test statistic, but instead construct a whole test process on the unit hypercube
[0,1]d , which converges weakly to a standard d-variate Wiener process under the null hypothesis.
Thus, GOF tests can be conducted by comparing the observed path of this test process with the
statistical behavior of a standard Wiener process. Various functionals of the test process can be
used for this comparison, such as the absolute maximum over [0,1]d or integral functionals.
Since the weak limit of the test process is a standard process independent of the family C or
the true value of λ, the limiting distributions of these functionals will also be independent of C
and λ, and they only need to be tabulated once for use in all testing problems. In practice, this
is an important advantage. Our results can also be used to test the GOF of fully specified copula
models rather than parametric families.

We also show that our approach is optimal, in the sense that the obtained test process does
not “lose any information” asymptotically. More precisely: when considering a sequence of con-
tiguous alternatives approaching the null model, the distance in variation between the limiting
processes under the null and the alternatives is as large as the limiting distance in variation of
the data themselves. As a consequence, for a given sequence of contiguous alternatives, we can
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find a functional of our test process that yields an asymptotically optimal test and hence outper-
forms (or matches) competing procedures. Such a test retains the distribution-freeness advantage
and thus avoids resampling procedures. Naturally, a variety of high power omnibus tests can be
constructed as indicated above; see also Section 6.

Our approach relies on parametric estimation of the marginal distributions F1, . . . ,Fd . That
is, we assume that there is a parametric family of univariate dfs F = {Fθ : θ ∈ �} such that
Fj ∈ F for j = 1, . . . , d . In fact, this requirement can be relaxed to Fj ∈ Fj for j = 1, . . . , d ,
where the parametric families Fj may be different, but we will stick with Fj ∈ F for notational
simplicity. The parametric structure of the margins might be naturally provided by the specifics
of the data-generating process, or it might follow from theoretical considerations such as limit
theorems, or it might be assumed based on independent empirical analysis or expert judgement.
Alternatively, the family F can be chosen to be rich enough to contain or reasonably approximate
all distributions relevant for the particular problem at hand. In this paper, we take the parametric
structure of the margins as given, and focus on inference about the unknown copula. In the
recent work Lu and Zheng [34], the approach of this paper is extended to accommodate dynamic
parametric marginal distributions, such as those provided by GARCH and ARMA processes.

The remainder of this paper is structured as follows. In Section 2, we introduce two estimators
for the copula C, a parametric one that works under the null hypothesis C ∈ C and a semi-
parametric one that works in general. We consider the normalized difference ηn between these
estimators and determine its weak limit η under the null hypothesis, as the sample size n tends
to infinity. We will see that the distribution of η depends on the family C, as well as on the
true values of the parameter λ and the marginal parameters, so ηn cannot be used as a basis for
distribution-free testing. The crucial step in our approach is introduced in Section 3, where we
describe a transformation that turns η into a standard Wiener process on [0,1]d . In Section 4,
we apply an empirical version of this transformation to ηn, and show that the resulting process
Wn converges weakly to a standard Wiener process on [0,1]d under the null hypothesis. This
is our first main result, and the transformed process Wn is the test process that was alluded to
above. In Section 5, we investigate the behavior of the test process Wn under a sequence of
contiguous alternatives, and we show that transforming the raw data into Wn does not lead to any
loss of information asymptotically. This is our second main result. In Section 6, we present some
simulation results that demonstrate the finite-sample behavior of some functionals of Wn under
the null and alternative hypotheses, and we then apply our approach to a real-world data set and
analyze the results. Section 7 and the supplemental article Can, Einmahl and Laeven [5] contain
all the proofs.

2. Comparing two copula estimators

As in the Introduction, we assume that Xi = (Xi1, . . . ,Xid)T, i ∈ {1, . . . , n}, are i.i.d. random
vectors with common df F , which has continuous marginal dfs F1, . . . ,Fd and copula C. We
further assume throughout that the marginal dfs are members of some parametric family of uni-
variate dfs, F = {Fθ : θ ∈ �}, indexed by θ = (θ1, . . . , θm)T ∈ �, where � is some open subset
of Rm. This means that there exist θ1, . . . , θd ∈ � such that Fj = Fθj

for j ∈ {1, . . . , d}. Our ul-
timate aim is to test the hypothesis C ∈ C = {Cλ : λ ∈ �}, where the parameter λ = (λ1, . . . , λp)T
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takes values in some open subset � of Rp . Throughout Sections 2–4, we will assume that the
null hypothesis holds, i.e. there is a λ0 ∈ � such that C = Cλ0 .

There are various ways of estimating the copula from i.i.d. data, depending on the assumptions
one is willing to make about the underlying model, as well as the requirements one chooses to
impose on the estimator, such as smoothness. Perhaps the most straightforward and well-known
copula estimator is the non-parametric empirical copula discussed in Ruymgaart [42], Rüschen-
dorf [41], Deheuvels [9,10], Gaenssler and Stute [19], Fermanian, Radulović and Wegkamp [18]
and Segers [43], among others. Other commonly used approaches for copula estimation include
two-step methods where the first step involves (non-parametric or parametric) estimation of the
margins and the second step estimates the copula parametrically from marginal data transformed
in accordance with the first step. Such estimators are studied in, for example, Genest, Ghoudi and
Rivest [20] and Shih and Louis [46]. A broad overview of various copula estimation methods can
be found in Charpentier, Fermanian and Scaillet [6], Choroś, Ibragimov and Permiakova [7] and
Ch. 5 of Joe [25].

In this paper, we will make use of two estimators for C: a parametric estimator Cλ̂ and a
semi-parametric estimator Ĉ. We do not specify the estimator λ̂, but require it to satisfy a rather
non-restrictive convergence assumption to be stated below. The semi-parametric estimator Ĉ is
defined as

Ĉ(u) = Fn

(
Qθ̂1

(u1), . . . ,Qθ̂d
(ud)

)
, u ∈ [0,1]d ,

where θ̂1, . . . , θ̂d denote appropriate estimators for θ1, . . . , θd , Qθ denotes the quantile func-
tion associated with Fθ , and Fn denotes the d-variate empirical df generated by the sample
X1, . . . ,Xn:

Fn(x) = 1

n

n∑
i=1

1{Xi ≤ x}, x ∈ R
d .

Here, Xi ≤ x is short-hand notation for “Xij ≤ xj for all j = 1, . . . , d”. Note that in view of the
representation (2) of the copula C and our parametric assumption on the marginal dfs of F , the
estimator Ĉ is a natural one; cf. Segers [44], Example 3.4.

Under the null hypothesis, both Ĉ and Cλ̂ estimate the true copula C, while only Ĉ correctly
estimates C when the null hypothesis does not hold. Thus, the asymptotic discrepancy between
the two estimators provides a natural starting point for a GOF test. With that in mind, we define

ηn(u) = √
n
[
Ĉ(u) − Cλ̂(u)

]
, u ∈ [0,1]d . (3)

Our first result will be a theorem describing the asymptotic behavior of ηn, but first we establish
some notation and state the necessary assumptions about the various estimators introduced above,
as well as about the parametric families C and F .

Let Cn denote the empirical df generated by the (unobserved) copula sample (F1(Xi1),

. . . ,Fd(Xid))T, i ∈ {1, . . . , n}. That is,

Cn(u) = 1

n

n∑
i=1

1
{
F1(Xi1) ≤ u1, . . . ,Fd(Xid) ≤ ud

}
, u ∈ [0,1]d .
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Note that we can then write

Ĉ(u) = Cn

(
Fθ1

(
Q

̂θ1
(u1)

)
, . . . ,Fθd

(
Q

̂θd
(ud)

))
, u ∈ [0,1]d .

We also define

αn(u) = √
n
[
Cn(u) − C(u)

]
, u ∈ [0,1]d , (4)

so that αn is the classical empirical process associated with the df C. The asymptotic behavior
of αn is well known, see, for example, Neuhaus [37]: we have αn ⇒ BC in the Skorohod space
D([0,1]d), where “⇒” denotes weak convergence and BC is a C-Brownian bridge, that is, a
mean-zero Gaussian process on [0,1]d with covariance structure

E
[
BC(u)BC

(
u′)] = C

(
u ∧ u′) − C(u)C

(
u′).

Here, u ∧ u′ := (u1 ∧ u′
1, . . . , ud ∧ u′

d)T.
The assumptions needed for our first result are listed below, followed by the result itself.
A1. There exist a p-variate random vector ζ 0 and m-variate random vectors ζ 1, . . . , ζ d such

that (
αn,

√
n(λ0 − λ̂),

√
n(θ1 − θ̂1), . . . ,

√
n(θd − θ̂d)

) ⇒ (BC, ζ 0, ζ 1, . . . , ζ d) (5)

in D([0,1]d) ×R
p × (Rm)d .

A2. The mappings

(u,λ) 	→ ∇Cλ(u) = (
C

(1)
λ (u), . . . ,C

(d)
λ (u)

)T :=
(

∂Cλ(u)

∂u1
, . . . ,

∂Cλ(u)

∂ud

)T

and

(u,λ) 	→ .
Cλ(u) = ( .

C
(1)
λ (u), . . . ,

.
C

(p)
λ (u)

)T :=
(

∂Cλ(u)

∂λ1
, . . . ,

∂Cλ(u)

∂λp

)T

are continuous on (0,1)d × �.
A3. The mapping

(x, θ) 	→ .
Fθ (x) = ( .

F
(1)
θ (x), . . . ,

.
F

(m)
θ (x)

)T :=
(

∂Fθ (x)

∂θ1
, . . . ,

∂Fθ (x)

∂θm

)T

is continuous on R×�, the mapping (u, θ) 	→ Qθ (u) is bounded on compact subsets of (0,1)×
�, and the mapping (u, θ) 	→ .

Fθ (Qθ (u)) is continuous on (0,1) × �.

Theorem 2.1. Let ηn be the process defined in (3), and let 0 < ε < τ < 1. Under Assumptions
A1–A3,

ηn(u) ⇒ BC(u) +
d∑

j=1

C(j)(u)
.
Fθj

(
Qθ j

(uj )
)T

ζ j + .
C(u)Tζ 0

=: η(u) (6)
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in D([ε, τ ]d), where C(j) and
.
C are short-hand notation for C

(j)
λ0

and
.
Cλ0 .

Remark 2.2. Heuristically, the limiting process η consists of a C-Brownian bridge BC plus dm

additive terms “contributed by” the estimation of the m-dimensional parameters θ1, . . . , θd , plus
p additive terms “contributed by” the estimation of the p-dimensional parameter λ0. Since the
distribution of η clearly depends on the underlying family C, as well as the (unknown) true values
of θ1, . . . , θd and λ0, Theorem 2.1 is far from suitable for distribution-free testing.

Remark 2.3. The convergence in (6) does not necessarily hold in the space D([0,1]d) under the
stated assumptions. For example, in the case m = 1, consider the parametric family F = {Fθ :
θ ∈ (0,∞)}, with

Fθ(x) = 1 − √
1 − x/θ, x ∈ (0, θ).

Note that Fθ is a beta distribution with shape parameters fixed at 1 and 1/2, and a free scale
parameter θ > 0. Also note that Fθ satisfies Assumption A3. However, for any θ > 0, the expres-
sion

.
Fθ

(
Qθ(u)

) = 1

2θ

(
1 − u − 1

1 − u

)
is unbounded near u = 1 and hence the process η is in general not well-defined on the closed
hypercube [0,1]d , so the convergence in (6) cannot hold in D([0,1]d).

3. Transforming η into a standard Wiener process

As we observed in the previous section, the empirical process ηn cannot directly be used as a
basis for distribution-free testing, since its limiting process η depends on the underlying family C
and unknown parameter values. We will remedy this problem by transforming η into a standard
d-variate Wiener process. The transformation itself will depend on C and parameter values, but
the distribution of the resulting process will not, which will facilitate asymptotically distribution-
free testing. We first introduce some notation and assumptions.

Recall that

BC
d= VC − CVC(1),

with VC a C-Wiener process on [0,1]d , that is, a mean-zero Gaussian process with covariance
E[VC(u)VC(u′)] = C(u ∧ u′). We can thus alternatively express the limiting process η in (6) as

η(u) = VC(u) − C(u)VC(1) +
d∑

j=1

C(j)(u)
.
Fθ j

(
Qθ j

(uj )
)T

ζ j + .
C(u)Tζ 0, (7)

for u ∈ (0,1)d . Hence, we see that η is of the form

η(u) = VC(u) +
1+dm+p∑

i=1

Ki(u)Zi, u ∈ (0,1)d , (8)
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where the Zi are some random variables, and the Ki are deterministic functions on (0,1)d de-
fined by

K1(u) = C(u),

K1+(j−1)m+i (u) = C(j)(u)
.
F

(i)
θ j

(
Qθ j

(uj )
)
, j = 1, . . . , d, i = 1, . . . ,m, (9)

K1+dm+i (u) = .
C(i)(u), i = 1, . . . , p.

We note that (8) is analogous to the bivariate form (23) in Can et al. [4]. In that paper, a trans-
formation of such processes into a standard bivariate Wiener process was described, which was
an application of the “innovation martingale transform” idea developed in Khmaladze [26–28].
This idea has been applied to various statistical problems in the literature over the last couple of
decades; see, for example, McKeague, Nikabadze and Sun [35], Nikabadze and Stute [38], Stute,
Thies and Zhu [48], Koenker and Xiao [31,32], Khmaladze and Koul [29,30], Delgado, Hidalgo
and Velasco [11] and Dette and Hetzler [12]. We will develop a suitable innovation martingale
transform to construct a standard d-variate Wiener process on [0,1]d from the process η in (8).

The approach here is novel in the sense that direct use of the data naturally leads to processes
on the unit hypercube [0,1]d , whereas in other applications of the martingale transform in mul-
tivariate contexts, the data are first transformed to [0,1]d by an arbitrary transformation which
influences the statistical properties of the procedures (see, for example, Khmaladze [28] and
Einmahl and Khmaladze [15]).

We first state the necessary assumptions and establish some notation.
A4. For each λ ∈ �, the copula Cλ has a strictly positive density cλ on (0,1)d , and the map-

pings

(u,λ) 	→ ∇cλ(u) = (
c
(1)
λ (u), . . . , c

(d)
λ (u)

)T :=
(

∂cλ(u)

∂u1
, . . . ,

∂cλ(u)

∂ud

)T

and

(u,λ) 	→ .
cλ(u) = ( .

c
(1)
λ (u), . . . ,

.
c
(p)
λ (u)

)T :=
(

∂cλ(u)

∂λ1
, . . . ,

∂cλ(u)

∂λp

)T

are continuous on (0,1)d × �.
Now, with the functions Ki as defined in (9), let us denote

ki(u) = dKi(u)/dC(u), i = 1, . . . ,1 + dm + p, (10)

so that

k1(u) = 1,

k1+(j−1)m+i (u) = .
F

(i)
θj

(
Qθ j

(uj )
) ∂

∂uj

log cλ0(u)

+ ∂

∂uj

.
F

(i)
θj

(
Qθj

(uj )
)
, j = 1, . . . , d, i = 1, . . . ,m,
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k1+dm+i (u) = ∂

∂λi

log cλ(u)|λ=λ0, i = 1, . . . , p.

Let k(u) denote the column vector consisting of k1(u), . . . , k1+dm+p(u). We will also write
k(u, θ ′

1, . . . , θ
′
d ,λ′) for the vector k(u) with true parameter values θ1, . . . , θd , λ0 replaced by

arbitrary values θ ′
1, . . . , θ

′
d ∈ �, λ′ ∈ �.

Finally, given 0 < δ < 1/2, let

Sδ(t) = [δ,1 − δ/2]d−1 × [t,1 − δ/2], t ∈ [δ,1 − δ/2),

and introduce matrices

Iδ(t) =
∫

Sδ(t)

k(s)k(s)T dC(s), t ∈ [δ,1 − δ/2). (11)

We also define

Iδ

(
t, θ ′

1, . . . , θ
′
d,λ′) =

∫
Sδ(t)

k
(
s, θ ′

1, . . . , θ
′
d ,λ′)k

(
s, θ ′

1, . . . , θ
′
d,λ′)T dCλ′(s),

t ∈ [δ,1 − δ/2). (12)

Note that we use 1 − δ/2 rather than 1 − δ in the definition of Sδ(t), in order to avoid potential
problems with the matrices Iδ(t) becoming nearly singular as t approaches 1 − δ. Also note that
in the nomenclature of likelihood theory, k is the vector of score functions for the underlying
copula model (extended by the constant function 1 in the first component), and Iδ(t) is a partial
Fisher information matrix constructed from these functions.

Our next assumption is:
A5. The matrices Iδ(t, θ

′
1, . . . , θ

′
d,λ′) in (12) are well-defined and invertible for all 0 < δ <

1/2, t ∈ [δ,1 − δ/2), θ ′
1, . . . , θ

′
d ∈ �, λ′ ∈ �.

Given 0 < δ < 1/2, let δ denote the point (δ, . . . , δ)T ∈ (0,1)d , and given points u,v ∈ [0,1]d
with uj ≤ vj for j = 1, . . . , d , let [u,v] denote the hyperrectangle [u1, v1]× · · ·× [ud, vd ]. Also,
given a > 0, let au denote the point (au1, . . . , aud)T.

We are now ready to state our transformation result. In what follows, the integrals with respect
to dη can be interpreted as d-dimensional Riemann-Stieltjes integrals defined per sample path;
see Theorem 1.2(c) of Towghi [49] for the relevant existence result.

Theorem 3.1. Let η be the limiting process appearing in Theorem 2.1 and let 0 < δ < 1/2.
If Assumptions A4–A5, restricted to the true parameter values θ1, . . . , θd , λ0, hold, then the
process

W(u) = 1

(1 − 2δ)d/2

[∫
[δ,δ+(1−2δ)u]

1√
c(s)

dη(s)

−
∫

[δ,δ+(1−2δ)u]
k(s)T

(
I−1
δ (sd)

∫
Sδ(sd )

k
(
s′)dη

(
s′))√

c(s)ds
]

(13)

is a standard Wiener process on [0,1]d .
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Remark 3.2. The transformation in (13) “annihilates” the terms following VC in (8) to produce
a C-Wiener process on [δ,1 − δ]d , which is then normalized and scaled to the entire hypercube
[0,1]d , so that the end result is indeed a standard Wiener process on [0,1]d . In the next section,
we will describe how the transformation of Theorem 3.1 facilitates asymptotically distribution-
free testing for C.

4. Goodness-of-fit testing: Null hypothesis

Recall the empirical process ηn defined in (3). In Theorem 2.1, we have derived its weak limit η

as n → ∞, and in Theorem 3.1 we have described a transformation that turns η into a standard
Wiener process on [0,1]d . In this section, we will apply the same transformation (or rather, its
empirical version, with unknown parameters replaced by estimators) to ηn, and we will show
that the resulting process converges weakly to a standard Wiener process. This is the first main
result of this paper.

Applying transformation (13) to ηn, with unknown parameters replaced by estimators, we
obtain the following empirical process on [0,1]d :

Wn(u) = 1

(1 − 2δ)d/2

[∫
[δ,δ+(1−2δ)u]

1√
ĉλ(s)

dηn(s)

−
∫

[δ,δ+(1−2δ)u]
k̂(s)T

(̂
I−1
δ (sd)

∫
Sδ(sd )

k̂
(
s′)dηn

(
s′))√

ĉλ(s)ds
]
. (14)

Here, k̂(·) and Îδ(·) are short-hand notations for k(·, θ̂1, . . . , θ̂d , λ̂) and Iδ(·, θ̂1, . . . , θ̂d, λ̂), re-
spectively.

Before stating the convergence result on Wn, we introduce some further notation and assump-
tions. Given a hyperrectangle [a,b] ⊂ R

d and a function ϕ : [a,b] → R, let V[a,b](ϕ) denote the
total variation of ϕ on [a,b] in the sense of Vitali; see, for example, Owen [40], Section 4 for a
definition. Also, given I ⊂ {1, . . . , d} and x ∈ R

d , let |I | denote the cardinality of I , and let xI

denote the point in R
|I | obtained by discarding all coordinates xj of x for j /∈ I . Moreover, given

disjoint subsets I1, I2, I3 ⊂ {1, . . . , d} with I1 ∪ I2 ∪ I3 = {1, . . . , d}, let ϕ(xI1;aI2,bI3) denote
the function on [aI1,bI1] obtained by fixing the j th argument of ϕ at aj for j ∈ I2 and at bj for
j ∈ I3.

We consider an alternative concept of “total variation” on [a,b], as follows:

V HK
[a,b](ϕ) :=

∑
I1,I2,I3⊂{1,...,d}, I1 �=∅

I1+I2+I3={1,...,d}

V[a,b]
(
ϕ(xI1;aI2,bI3)

)
, (15)

with I1 + I2 + I3 denoting a disjoint union. In other words, V HK
[a,b](·) sums the Vitali variations

over the hyperrectangle [a,b] and over all of its “faces” where the j th coordinate is fixed at
aj or bj , for at least one j ∈ {1, . . . , d}. Note that V HK

[a,b] is a variant of the so-called Hardy–
Krause variation for multivariate functions; cf. Owen [40], Def. 2. For 0 < δ < 1/2 and functions
ϕ : [δ,1 − δ]d →R, we will write V HK

δ instead of V HK
[δ,1−δ]d , for brevity.
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Let us also denote

γ (u) = 1√
c(u)

, γ̂ (u) = 1√
ĉλ(u)

, �γ (u) = γ̂ (u) − γ (u), u ∈ (0,1)d .

Similarly, we will denote �ki = k̂i − ki for i = 1, . . . ,1 + dm+p, with the ki as defined in (10).
We introduce the final assumption needed for our convergence result:

A6. For any 0 < δ < 1/2, we have V HK
δ (γ ) < ∞ and V HK

δ (�γ ) = oP (1). Also, V HK
δ (ki) < ∞

and V HK
δ (�ki) = oP (1) for i = 1, . . . ,1 + dm + p.

Under assumption A1, a sufficient (but not necessary) set of conditions for A6 is: (i) the ex-
istence and continuity of the mixed derivative ∂γ /∂u1 . . . ∂ud on [δ,1 − δ]d × �, (ii) the ex-
istence and continuity of the mixed derivative ∂ki/∂u1 . . . ∂ud on [δ,1 − δ]d × �d × �, for
i = 1, . . . ,1 + dm + p, and (iii) the analogous statements to (i) and (ii) for the functions γ and
ki restricted to each lower-dimensional “face” of the hypercube [δ,1 − δ]d .

Theorem 4.1. Let 0 < δ < 1/2. Under Assumptions A1–A6, the process Wn in (14) converges
weakly to a standard Wiener process in D([0,1]d).

Remark 4.2. Theorem 4.1 is analogous to Theorem 2.1 in that it describes the asymptotic behav-
ior of an empirical process constructed from the data X1, . . . ,Xn. However, unlike the process
ηn, the asymptotic behavior of Wn is distribution-free: it converges to a standard Wiener pro-
cess. Thus a test for the null hypothesis can now be performed by assessing how the observed
path of Wn compares to the “usual” statistical behavior of a standard Wiener process. Since this
comparison can be done through many different functionals of Wn, we can construct a multitude
of asymptotically distribution-free tests. In Section 6, we demonstrate through simulations and a
real-world data analysis how such tests can be conducted.

Remark 4.3. The statement and proof of Theorem 4.1 also applies, with obvious modifications,
in the case C = {C0}, where C0 denotes a fully specified copula. Thus, the test process Wn can
also be used for testing null hypotheses of the form C = C0. This will also be demonstrated in
the simulations of Section 6.

5. Goodness-of-fit testing: Contiguous alternatives

We now consider testing C ∈ C = {Cλ : λ ∈ �} when the true copula of the underlying sample
does not lie in C but approaches it as the sample size grows.

So let us assume that, for each n ≥ 1, we have an i.i.d. sample

X(n)1 = (X(n)11, . . . ,X(n)1d)T, . . . ,X(n)n = (X(n)n1, . . . ,X(n)nd)T (16)

generated from a d-variate df F(n) with continuous margins F1, . . . ,Fd and copula C(n). We
assume that the marginal dfs are independent of n, and (as in the previous sections) they are all
members of some parametric family F = {Fθ : θ ∈ �}, so that there are θ1, . . . , θd ∈ � with
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Fj = Fθj
for j = 1, . . . , d . Regarding the sequence of copulas C(1),C(2), . . . , we assume the

following:
B0. There exists λ0 ∈ � such that

[
dC(n)

dCλ0

]1/2

= 1 + 1

2
√

n
hn, n = 1,2, . . . ,

for a sequence of functions h1, h2, . . . supported on [δ,1 − δ]d , for some 0 < δ < 1/2. The
functions hn satisfy ∫

[0,1]d
(hn − h)2dCλ0 → 0 as n → ∞,

for some function h with∫
[0,1]d

h2 dCλ0 ∈ (0,∞),

∫
[0,1]d

kihdCλ0 = 0,

where the functions ki, i = 1, . . . ,1 + dm + p, are as defined in (10).
Note that for each n ≥ 1, the distribution of the sample in (16) on (Rd)n is given by the n-

fold product measure Fn
(n) = F(n) × · · · × F(n), whereas if the underlying copula was equal to

Cλ0 , this distribution would of course be Fn
0 = F0 × · · · × F0, with F0 denoting the df with

margins F1, . . . ,Fd and copula Cλ0 . It follows from Oosterhoff and van Zwet [39] that condition
B0 is sufficient to make the sequence {Fn

(n)} contiguous with respect to {Fn
0 }, in the sense that

limn→∞ Fn
0 (An) = 0 implies limn→∞ Fn

(n)(An) = 0, for any sequence of measurable sets An ⊂
(Rd)n.

Our first result in this section will establish the asymptotic behavior of ηn in (3) in the present
setting. We define, analogously to (4),

αn(u) = √
n
[
Cn(u) − C(n)(u)

]
, u ∈ [0,1]d ,

where Cn is the empirical df generated by the (unobserved) copula sample

(
F1(X(n)11), . . . ,Fd(X(n)1d)

)T
, . . . ,

(
F1(X(n)n1), . . . ,Fd(X(n)nd)

)T
,

and we state the following analogue of Assumption A1 in Section 2:
B1. There exist a p-variate random vector ζ a and m-variate random vectors ζ 1, . . . , ζ d such

that

(
αn,

√
n(λ0 − λ̂),

√
n(θ1 − θ̂1), . . . ,

√
n(θd − θ̂d)

) ⇒ (BCλ0
, ζ a, ζ 1, . . . , ζ d)

in D([0,1]d) ×R
p × (Rm)d .

The following result is the analogue of Theorem 2.1, and its proof, which we omit, follows
along similar lines.
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Theorem 5.1. Let ηn be the process defined in (3), and let 0 < ε < τ < 1. Under Assumptions
B0–B1 and A2–A3,

ηn(u) ⇒ BCλ0
(u) +

d∑
j=1

C
(j)
λ0

(u)
.
Fθj

(
Qθj

(uj )
)T

ζ j + .
Cλ0(u)Tζ a

+
∫

[0,u]
h(s)dCλ0(s)

=: ηa(u) +
∫

[0,u]
h(s)dCλ0(s)

in D([ε, τ ]d).

Next, we establish the asymptotic behavior of the test process Wn in (14) in the present setting.
If we let Wa denote the process W in (13), with η replaced by ηa , then Wa is still a standard
Wiener process on [0,1]d , since the change of η to ηa does not affect the proof of Theorem 3.1.
This, together with Theorem 5.1 above, yields the following analogue of Theorem 4.1, which
shows that under the sequence of contiguous alternatives, Wn converges to a standard Wiener
process plus a deterministic shift term.

Theorem 5.2. Under Assumptions B0–B1 and A2–A6, the process Wn in (14), with δ as in
Assumption B0, converges weakly to W̃ := W + S in D([0,1]d), where

S(u) = 1

(1 − 2δ)d/2

∫
[δ,δ+(1−2δ)u]

g(s)
√

cλ0(s)ds,

with

g(s) = h(s) − k(s)TI−1
δ (sd)

∫
Sδ(sd )

k
(
s′)h(

s′)dCλ0

(
s′), s ∈ [δ,1 − δ]d . (17)

In order to judge how “sensitive” the test process Wn is to the sequence of alternatives
F(1),F(2), . . . , we first recall the notion of distance in variation for probability measures. Given
two such measures P and P̃ defined on some sigma-algebra B, the distance in variation between
P and P̃ is defined as

d(P, P̃ ) = sup
B∈B

∣∣P(B) − P̃ (B)
∣∣.

If Ln denotes the log-likelihood ratio log(dFn
(n)/dFn

0 ), then

d
(
Fn

(n),F
n
0

) = Fn
(n)(Ln > 0) − Fn

0 (Ln > 0). (18)
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Moreover, we have

Ln
d→

⎧⎪⎪⎨
⎪⎪⎩

N

(
−1

2
‖h‖2,‖h‖2

)
under Fn

0 ,

N

(
1

2
‖h‖2,‖h‖2

)
under Fn

(n),

(19)

where N(μ,σ 2) denotes the normal distribution with mean μ and variance σ 2, and

‖h‖ :=
(∫

[0,1]d
h2 dCλ0

)1/2

; (20)

see Oosterhoff and van Zwet [39] for the first statement in (19) and, for example, Ch. 6 of van der
Vaart [50] for the second statement. Combining (18) and (19), we see that

d
(
Fn

(n),F
n
0

) → ν(h) := 2�

(
1

2
‖h‖

)
− 1

as n → ∞, with � denoting the standard normal cdf.
The following result is the second main result of the paper. It establishes asymptotic optimality

of the test process Wn.

Theorem 5.3. Let Q denote the distribution of a standard Wiener process W on D([0,1]d), and
let Q̃ denote the distribution of the process W̃ defined in Theorem 5.2. Then,

log

(
dQ̃

dQ

)
∼

⎧⎪⎪⎨
⎪⎪⎩

N

(
−1

2
‖h‖2,‖h‖2

)
under Q,

N

(
1

2
‖h‖2,‖h‖2

)
under Q̃.

Hence, d(Q̃,Q) = ν(h).

Remark 5.4. The result shows that the limiting distance in variation of the processes Wn un-
der the null and the contiguous alternatives is the same as that of the samples: ν(h). In fact, the
respective distributions of the log-likelihood ratio log(dQ̃/dQ) under the two measures are iden-
tical to the limiting distributions of log(dFn

(n)/dFn
0 ). Hence, the process Wn is asymptotically

as good as the data themselves for testing purposes. Indeed, for a given sequence of alternatives
satisfying Assumption B0, consider the test that rejects H0 if

(1 − 2δ)d/2
∫

[0,1]d
ĝ
(
δ + (1 − 2δ)s

)√
ĉλ

(
δ + (1 − 2δ)s

)
dWn(s)

≥ ‖̂h‖�−1(1 − α),

with ĝ and ‖̂h‖ denoting the obvious estimators of g in (17) and ‖h‖ in (20). Then under reg-
ularity assumptions the probability of a type I error converges to α as n → ∞, and the power
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converges to 1 − �(�−1(1 − α) − ||h||). According to the Neyman-Pearson Lemma, this limit-
ing power is equal to that of the most powerful level-α tests for a simple null (picked from our
H0) against the simple hn-alternatives. Hence, for the more general problem of testing the com-
posite null hypothesis C ∈ C against the composite hn-alternatives, we have an asymptotically
uniformly most powerful test. This optimality shows that our approach can favorably compete in
terms of power with any other approach in the literature.

6. Simulations and data analysis

In this section, we present the results of a simulation study and a data analysis in order to illustrate
the applicability of our approach in finite samples. All computations are performed in R. The code
to implement the simulations and the data analysis is available from the authors upon request.

6.1. Simulation study

We consider four widely used bivariate copula models: Clayton, Gumbel, Normal and Stu-
dent’s t . We demonstrate how one might test for the goodness-of-fit of these models, both in
parametric and fully specified form, using our approach.

More specifically, the models we consider are the following:

• Clayton: Cλ(u, v) = (u−λ + v−λ − 1)−1/λ, λ ∈ (0,∞)

• Gumbel: Cλ(u, v) = exp{−[(− logu)λ + (− logv)λ]1/λ}, λ ∈ (1,∞)

• Normal:

Cλ(u, v) =
∫ �−1(u)

−∞

∫ �−1(v)

−∞
1

2π
√

1 − λ2
exp

(
−x2 − 2λxy + y2

2(1 − λ2)

)
dudv,

λ ∈ (−1,1)

• t3:

Cλ(u, v) =
∫ T −1

3 (u)

−∞

∫ T −1
3 (v)

−∞
1

2π
√

1 − λ2

(
1 + x2 − 2λxy + y2

3(1 − λ2)

)−5/2

dudv,

λ ∈ (−1,1)

Here, �−1 denotes the quantile function of the standard normal distribution, and T −1
3 denotes

the quantile function of the univariate t distribution with 3 degrees of freedom. For computational
ease, the degrees of freedom parameter of the t copula is fixed at 3, which leaves only one
parameter λ to be estimated. We will also consider testing for the fully specified copula models
Clayton(2), Gumbel(2), Normal(0.5) and t3(0.5).

To test for Clayton and Clayton(2) models under the null hypothesis, we generate 1000 sam-
ples of size n = 200 from the bivariate distribution with Exponential(1) margins and Clayton(2)
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copula. To test for Gumbel and Gumbel(2) under the null hypothesis, we generate 1000 samples
of size n = 200 from the bivariate distribution with Lomax(3,1) margins and Gumbel(2) copula.
Recall that for α > 0 and σ > 0, the Lomax(α, σ ) distribution has the cdf

F(x) = 1 −
(

1 + x

σ

)−α

, x > 0,

so it is a shifted Pareto distribution with tail parameter α and scale parameter σ . To test for
Normal and Normal(0.5) models under the null hypothesis, we generate 1000 samples of size
n = 200 from the bivariate normal distribution with standard normal margins and correlation
coefficient 0.5. Finally, to test for t3 and t3(0.5) models under the null hypothesis, we generate
1000 samples of size n = 200 from the bivariate distribution with standard normal margins and
t3(0.5) copula.

From each simulated sample, we compute the test process Wn in (14) on a 100 × 100 grid G
of equally spaced points covering (0,1)2, taking δ = 0.001. Parameter estimates are computed
through maximum likelihood (ML) estimation. For the parametric copula models, ML estimates
are computed for the entire bivariate distribution, while for the fully specified copula models,
ML estimates are computed separately for the two marginal parameter sets. Note that Assump-
tion A1 of Section 2 holds for these estimators, which follows from arguments similar to those
for asymptotic normality of MLEs. Assumptions A2–A6 are smoothness assumptions that are
straightforward to verify for the considered models.

To compare the observed paths of Wn to a standard Wiener process, two functionals are com-
puted from each path of Wn, namely:

κn = max
(x,y)∈G

∣∣Wn(x, y)
∣∣, (Kolmogorov–Smirnov type statistic)

ω2
n = ‖G‖2

∑
(x,y)∈G

Wn(x, y)2, (Cramér–von Mises type statistic)

where ‖G‖ denotes the mesh length of the grid G, that is, 1/100. To create benchmark distribution
tables for these statistics, we also simulate 10,000 true standard Wiener process paths on the grid
G and compute the same functionals for each path. We denote these functionals by κ and ω2.

For each model, we construct PP-plots to compare the empirical distributions of κn and ω2
n

with the theoretical distributions of κ and ω2 (as inferred from the 10,000 simulated Wiener
process paths). The results are shown in Figure 1. We observe a very good match of empirical
and limiting distributions for both statistics, especially in the upper right corners of the plots,
which are important for testing. These results suggest that Theorem 4.1 yields good finite-sample
approximations. This is confirmed by the observed fractions of Type I errors (i.e., empirical sizes)
at the 5% significance level, given in Table 1. Note that all rejection counts are consistent with
draws from a Binomial(1000,0.05) distribution.

We emphasize here that due to the distribution-free nature of our approach, the critical values
of the test statistics need to be computed only once. The critical values of κn and ω2

n at commonly
used significance levels are given in Table 2.
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Figure 1. PP-plots for the Kolmogorov-Smirnov and Cramér-von Mises type test statistics computed for
the four parametric models (top) and the four fully specified models (bottom).
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Table 1. Number of rejections for 1000 samples at the 5% significance level under the various null hy-
potheses

Clayton Gumbel Normal t3 Clayton(2) Gumbel(2) Normal(0.5) t3(0.5)

κn 41 46 51 52 45 46 46 58
ω2

n 53 43 43 49 53 47 57 48

To observe the behavior of the test statistics under the alternative hypothesis, we focus on the
Clayton and Gumbel models. To test for the Clayton and Clayton(2) models under the alterna-
tive hypothesis, we generate 1000 samples of size n = 200 from the bivariate distribution with
Exponential(1) margins and Gumbel(2) copula. Note that the Gumbel(2) copula has the same
Kendall’s tau as Clayton(2), namely 1/2. To test for the Gumbel and Gumbel(2) models under
the alternative hypothesis, we generate 1000 samples of size n = 200 from the bivariate distribu-
tion with Lomax(3,1) margins and Clayton(2) copula. From each sample, we construct the test
process Wn on the grid G and compute the two test statistics κn and ω2

n as before. The resulting
rejection frequencies at 5% significance level are shown in Table 3. These numbers confirm that
tests based on our approach have high power, even with a moderate sample size of 200.

6.2. Data analysis

We consider a data set consisting of log-concentrations of seven metallic elements (uranium [U],
lithium [Li], cobalt [Co], potassium [K], caesium [Cs], scandium [Sc], titanium [Ti]) in 655 water
samples collected near Grand Junction, Colorado in the late 1970s. In Cook and Johnson [8], the
pairwise dependence structures of U-Cs, Co-Ti and Cs-Sc log-concentrations were investigated,
and it was found that the Clayton copula, or a two-parameter extension of it, provides a better fit
(in terms of likelihood values) to each of these pairs than the normal copula, under the assumption
of normal marginal distributions. This two-parameter extension of the Clayton copula is defined
as:

Cλ1,λ2(u, v)

= (1 + λ2)
(
u−λ1 + v−λ1 − 1

)−1/λ1 + λ2
(
2u−λ1 + 2v−λ1 − 3

)−1/λ1 (21)

− λ2
(
2u−λ1 + v−λ1 − 2

)−1/λ1 − λ2
(
u−λ1 + 2v−λ1 − 2

)−1/λ1 ,

Table 2. Critical values of κn and ω2
n at various significance levels

10% 5% 1%

κn 2.100 2.362 2.865
ω2

n 0.526 0.708 1.186
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Table 3. Number of rejections for 1000 samples at the 5% significance level under the various alternative
hypotheses

Testing for: Clayton Gumbel Clayton(2) Gumbel(2)
Sampled from: Gumbel(2) Clayton(2) Gumbel(2) Clayton(2)

κn 787 956 1000 768
ω2

n 857 938 999 761

for parameters λ1 > 0 and λ2 ∈ [0,1]. Note that when λ2 = 0, the expression (21) reduces to the
usual Clayton copula with parameter λ1.

For our analysis, we focus on the pair Co-Sc (which was not investigated in Cook and John-
son [8]), since the assumption of normal margins seems most plausible for the Co and Sc log-
concentrations; see normal QQ-plots in Figure 2. Also see Figure 3 for a scatter plot of the Co-Sc
log-concentrations as well as a scatter plot of the rank-transformed data.

Under the assumption of normal margins, we test for four parametric copula families: Clayton,
Frank, Gumbel, and the two-parameter family described in (21), which we will call the Cook-
Johnson copula. Recall that the bivariate Frank family of copulas is given by

Cλ(u, v) = −1

λ
log

(
1 + (e−λu − 1)(e−λv − 1)

e−λ − 1

)
, λ ∈ R,

with C0(u, v) = uv. Following the methodology described in Section 6.1, we compute the test
process Wn and the corresponding test statistics κn and ω2

n for each of these four models. For
the observed values of the test statistics, we compute p-values from the benchmark distribution
tables constructed from the true bivariate standard Wiener process. The results are given in Ta-

Figure 2. Normal QQ-plots for Co and Sc log-concentrations.
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Figure 3. Scatter plots for Co and Sc log-concentrations (left) and normalized ranks of Co and Sc log-con-
centrations (right).

ble 4. We observe that all models except Frank are rejected at 5% significance level, and Clayton
and Cook-Johnson models in particular are rejected very strongly.

The model with normal margins and Frank copula yields maximum likelihood estimates of
μ̂Co = 1.025 and σ̂Co = 0.136 for the mean and standard deviation of Co log-concentrations,
μ̂Sc = 1.021 and σ̂Sc = 0.178 for the mean and standard deviation of Sc log-concentrations, and
λ̂ = 6.589 for the Frank copula parameter. The estimated value of λ suggests moderate positive
dependence, corresponding to a Kendall’s τ of 0.544 and Spearman’s ρ of 0.743. Direct sample
estimates for these coefficients are 0.535 and 0.718, respectively. The contour plot of the fitted
Frank copula density, together with the scatter plot of the rank-transformed data, can be seen in
Figure 4.

7. Proofs

The proofs of Theorems 2.1 and 3.1 can be found in an online appendix. We present the proofs
of Theorems 4.1 and 5.3 below.

Table 4. p-values for various copula models for the Co-Sc log-concentrations, under assumption of
marginal normality

Clayton Frank Gumbel C-J

κn 0.0000 0.1664 0.0318 0.0000
ω2

n 0.0000 0.1281 0.0278 0.0000
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Figure 4. Contour plot of the fitted Frank copula density, superimposed on the scatter plot of the rank–
transformed Co and Sc log-concentrations.

Proof of Theorem 4.1

By Theorem 2.1 and Skorohod’s representation theorem (Billingsley [2], Theorem 6.7), there is
a probability space where probabilistically equivalent versions of ηn and η are defined, and these
satisfy ‖ηn − η‖[δ,1−δ]d → 0 a.s., with ‖ · ‖S := supS | · | for S ⊂ [0,1]d . We will show that in
this probability space,

‖Wn − W‖[0,1]d
P→ 0, (22)

with W as defined in (13). In view of Theorem 3.1, this will suffice for the proof.
Throughout the proof, we will let Aδ(u) denote the set [δ, δ + (1 − 2δ)u] for u ∈ [0,1]d . Note

that (22) will follow from∥∥∥∥
∫

Aδ(u)

1√
ĉλ(s)

dηn(s) −
∫

Aδ(u)

1√
c(s)

dη(s)

∥∥∥∥[0,1]d
P→ 0 (23)

and ∥∥∥∥
∫

Aδ(u)

k̂(s)T

(̂
I−1
δ (sd)

∫
Sδ(sd )

k̂
(
s′)dηn

(
s′))√

ĉλ(s)ds

−
∫

Aδ(u)

k(s)T

(
I−1
δ (sd)

∫
Sδ(sd )

k
(
s′)dη

(
s′))√

c(s)ds

∥∥∥∥[0,1]d
P→ 0. (24)

We will prove (23) first. Let �n := ηn − η. Then (23) will follow from∥∥∥∥
∫

Aδ(u)

�γ (s)dη(s)

∥∥∥∥[0,1]d
P→ 0,

∥∥∥∥
∫

Aδ(u)

γ̂ (s)d�n(s)

∥∥∥∥[0,1]d
P→ 0. (25)
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Applying integration by parts (Henstock [24], Theorem 3) to the first integral term in (25), we
obtain the following bound:∣∣∣∣

∫
Aδ(u)

�γ (s)dη(s)

∣∣∣∣ ≤
∑

v∈VAδ(u)

∣∣�γ (v)η(v)
∣∣ + ‖η‖Aδ(u)V

HK
Aδ(u)(�γ )

≤ ‖η‖δ

(
2d‖�γ ‖δ + V HK

δ (�γ )
)
, (26)

where VAδ(u) denotes the set of the 2d vertices of the hyperrectangle Aδ(u), and ‖ · ‖δ is short-
hand notation for ‖ · ‖[δ,1−δ]d . Now, Assumptions A2–A3 ensure that η is continuous (hence
bounded) on [δ,1 − δ]d , A4 ensures that |�γ | is oP (1) uniformly over [δ,1 − δ]d , and A6
ensures that V HK

δ (�γ ) is oP (1) as well. It follows that the far right-hand side of (26) vanishes in
probability, and the first convergence in (25) is proved. The second convergence in (25) follows
from a similar integration by parts argument:∣∣∣∣

∫
Aδ(u)

γ̂ (s)d�n(s)

∣∣∣∣ ≤ ‖�n‖δ

(
2d‖γ̂ ‖δ + V HK

δ (γ̂ )
)
,

where the right-hand side is oP (1) since ‖�n‖δ is oP (1) and ‖γ̂ ‖δ as well as V HK
δ (γ̂ ) are OP (1)

terms.
We have thus established (23), and it remains to prove (24). For ease of notation, we let

H(s) = k(s)TI−1
δ (sd)

∫
Sδ(sd )

k
(
s′)dη

(
s′),

Hn(s) = k(s)TI−1
δ (sd)

∫
Sδ(sd )

k
(
s′)dηn

(
s′),

Ĥ (s) = k̂(s)T̂I−1
δ (sd)

∫
Sδ(sd )

k̂
(
s′)dη

(
s′),

Ĥn(s) = k̂(s)T̂I−1
δ (sd)

∫
Sδ(sd )

k̂
(
s′)dηn

(
s′).

Then (24) can be written succinctly as∥∥∥∥
∫

Aδ(u)

(
Ĥn(s)

√
ĉλ(s) − H(s)

√
c(s)

)
ds

∥∥∥∥[0,1]d
P→ 0,

which can be proved by showing

∥∥H(
√

ĉλ − √
c)

∥∥
δ

P→ 0,
∥∥(Ĥn − H)

√
ĉλ

∥∥
δ

P→ 0. (27)

The first convergence in (27) follows easily from the continuity (hence boundedness) of H over
[δ,1 − δ]d and the continuity of

√
cλ(u) over (u,λ) ∈ [δ,1 − δ]d ×�. As for the second conver-

gence in (27), since ‖√ĉλ‖δ = OP (1), we need to show that ‖Ĥn − H‖δ
P→ 0. We will do this
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by proving

‖Hn − H‖δ
P→ 0, ‖Ĥn − Hn‖δ

P→ 0. (28)

Consider the first convergence in (28). We have

‖Hn − H‖δ =
∥∥∥∥k(s)TI−1

δ (sd)

∫
Sδ(sd )

k
(
s′)d�n

(
s′)∥∥∥∥

δ

,

with �n = ηn − η, as before. The term |k(s)TI−1
δ (sd)| is component-wise bounded on [δ,1 − δ]d

by continuity, so we need to show that

sup
t∈[δ,1−δ]

∣∣∣∣
∫

Sδ(t)

ki

(
s′)d�n

(
s′)∣∣∣∣ P→ 0, i = 1, . . . ,1 + dm + p. (29)

Applying integration by parts as before, we obtain∣∣∣∣
∫

Sδ(t)

ki

(
s′)d�n

(
s′)∣∣∣∣ ≤ ‖�n‖δ

(
2d‖ki‖δ + V HK

δ (ki)
)
,

where the right-hand side is oP (1) since ‖ki‖δ < ∞, V HK
δ (ki) < ∞ and ‖�n‖δ = oP (1). Hence

(29) is established and it remains to prove the second convergence in (28).
By virtue of the first convergence in (28), and an analogous result for Ĥn and Ĥ , it will suffice

to prove ‖Ĥ − H‖δ
P→ 0. Note that

∣∣Ĥ (s) − H(s)
∣∣ ≤ ∣∣̂k(s)T̂I−1

δ (sd) − k(s)TI−1
δ (sd)

∣∣ ·
∣∣∣∣
∫

Sδ(sd )

k
(
s′)dη

(
s′)∣∣∣∣

+ ∣∣̂k(s)T̂I−1
δ (sd)

∣∣ ·
∣∣∣∣
∫

Sδ(sd )

(̂
k
(
s′) − k

(
s′))dη

(
s′)∣∣∣∣, (30)

where absolute values should be interpreted component-wise, as usual. Consider the first term on
the right-hand side of (30). Since the mapping(

s, θ ′
1, . . . , θ

′
d ,λ′) 	→ k

(
s, θ ′

1, . . . , θ
′
d,λ′)

is continuous over [δ,1 − δ]d × �d × �, the difference∣∣̂k(s)T̂I−1
δ (sd) − k(s)TI−1

δ (sd)
∣∣

is oP (1) uniformly over s ∈ [δ,1 − δ]d . Moreover, an integration by parts argument as before
yields that ∣∣∣∣

∫
Sδ(sd )

ki

(
s′)dη

(
s′)∣∣∣∣ ≤ ‖η‖δ

(
2d‖ki‖δ + V HK

δ (ki)
)
,
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for i = 1, . . . ,1 + dm + p, where the right-hand side is OP (1). So the first summand on the
right-hand side of (30) is oP (1) uniformly over s ∈ [δ,1 − δ]d . The second summand there can
be handled similarly: the term |̂k(s)T̂I−1

δ (sd)| is OP (1), and integration by parts yields∣∣∣∣
∫

Sδ(sd )

�ki

(
s′)dη

(
s′)∣∣∣∣ ≤ ‖η‖δ

(
2d‖�ki‖δ + V HK

δ (�ki)
)

for i = 1, . . . ,1 + dm + p, where the right-hand side is oP (1).
Both convergences in (27) are thereby established, which in turn proves (24). �

Proof of Theorem 5.3

We have, from the Cameron-Martin theorem (see, e.g., Theorem 5.1 of Lifshits [33]), that

log

(
dQ̃

dQ

)
= (1 − 2δ)d/2

∫
[0,1]d

g
(
δ + (1 − 2δ)u

)√
cλ0

(
δ + (1 − 2δ)u

)
dV (u)

− (1 − 2δ)d

2

∫
[0,1]d

g2(δ + (1 − 2δ)u
)
cλ0

(
δ + (1 − 2δ)u

)
du,

with V = W under Q and V = W̃ under Q̃, and g as defined in (17). This immediately yields

log

(
dQ̃

dQ

)
∼

⎧⎪⎪⎨
⎪⎪⎩

N

(
−1

2
‖g‖2,‖g‖2

)
under Q,

N

(
1

2
‖g‖2,‖g‖2

)
under Q̃,

with ‖g‖ as in (20), with the convention that g = 0 outside of [δ,1 − δ]d . Using the fact that

d(Q̃,Q) = Q̃
[
log(dQ̃/dQ) > 0

] − Q
[
log(dQ̃/dQ) > 0

]
,

we also obtain d(Q̃,Q) = ν(g) = 2�( 1
2‖g‖) − 1.

Thus it remains to show that ‖g‖ = ‖h‖, which is equivalent to

2
∫

[δ,1−δ]d
k(s)T

(
I−1
δ (sd)

∫
Sδ(sd )

k
(
s′)h(

s′)dCλ0

(
s′))h(s)dCλ0(s)

=
∫

[δ,1−δ]d

[
k(s)T

(
I−1
δ (sd)

∫
Sδ(sd )

k
(
s′)h(

s′)dCλ0

(
s′))]2

dCλ0(s). (31)

For ease of notation, let E1 and E2 denote the left- and right-hand sides of (31), respectively.
Also let S−

δ (t) = [δ,1 − δ/2]d \ Sδ(t) for t ∈ [δ,1 − δ/2) and define

H(t) =
∫

S−
δ (t)

k(s)h(s)dCλ0(s), t ∈ [δ,1 − δ/2).
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We have

E1 = 2
∫

[δ,1−δ]d

[∫
Sδ(sd )

k
(
s′)T

h
(
s′)dCλ0

(
s′)]I−1

δ (sd)k(s)h(s)dCλ0(s)

= −2
∫

[δ,1−δ]d

[∫
S−

δ (sd )

k
(
s′)T

h
(
s′)dCλ0

(
s′)]I−1

δ (sd)k(s)h(s)dCλ0(s)

= −2
∫ 1−δ

δ

[∫
S−

δ (sd )

k
(
s′)T

h
(
s′)dCλ0

(
s′)]I−1

δ (sd)

×
[∫

[δ,1−δ]d−1
k(s)h(s)cλ0(s)ds1 . . .dsd−1

]
dsd

= −2
∫ 1−δ

δ

H(sd)TI−1
δ (sd)dH(sd),

where the second equality above follows from∫
[δ,1−δ/2]d

k(s)h(s)dCλ0(s) = 0,

which is a consequence of Assumption B0. Now, denoting G(t) = I−1
δ (t)H(t) and applying in-

tegration by parts, we obtain

E1 = −2
∫ 1−δ

δ

G(sd)T dH(sd) = 2
∫ 1−δ

δ

H(sd)T dG(sd).

By the product rule of differentiation, we can write

dG(sd) = [(
I−1
δ

)′
(sd)H(sd) + I−1

δ (sd)H′(sd)
]

dsd ,

where derivatives should be interpreted component-wise. Using the identity

(
I−1
δ

)′
(sd) = −I−1

δ (sd)I′
δ(sd)I−1

δ (sd),

we obtain

E1 = −2
∫ 1−δ

δ

H(sd)TI−1
δ (sd)I′

δ(sd)I−1
δ (sd)H(sd)dsd

+ 2
∫ 1−δ

δ

H(sd)TI−1
δ (sd)H′(sd)dsd

= −2
∫ 1−δ

δ

H(sd)TI−1
δ (sd)I′

δ(sd)I−1
δ (sd)H(sd)dsd − E1.
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It follows that

E1 = −
∫ 1−δ

δ

H(sd)TI−1
δ (sd)I′

δ(sd)I−1
δ (sd)H(sd)dsd

=
∫ 1−δ

δ

H(sd)TI−1
δ (sd)

[∫
[δ,1−δ/2]d−1

k(s)k(s)Tcλ0(s)ds1 . . .dsd−1

]

· I−1
δ (sd)H(sd)dsd

=
∫

[δ,1−δ]d
H(sd)TI−1

δ (sd)k(s)k(s)TI−1
δ (sd)H(sd)dCλ0(s)

=
∫

[δ,1−δ]d
[
k(s)TI−1

δ (sd)H(sd)
]2

dCλ0(s)

= E2,

as desired. Thus (31) is established. �
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