
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Code Quality Metrics for the Functional Side of the Object-oriented Language
C#

Zuilhof, B.; van Hees, R.; Grelck, C.

Publication date
2019
Document Version
Final published version
Published in
SATTOSE 2019 : Seminar Series on Advanced Techniques & Tools for Software
Evolution
License
CC BY

Link to publication

Citation for published version (APA):
Zuilhof, B., van Hees, R., & Grelck, C. (2019). Code Quality Metrics for the Functional Side of
the Object-oriented Language C#. In A. Etien (Ed.), SATTOSE 2019 : Seminar Series on
Advanced Techniques & Tools for Software Evolution: Proceedings of the Seminar Series on
Advanced Techniques & Tools for Software Evolution (SATTOSE 2019) : Bolzano, Italy, July
8-10 Day, 2019 [12] (CEUR Workshop Proceedings; Vol. 2510). CEUR-WS. http://ceur-
ws.org/Vol-2510/sattose2019_paper_12.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:16 Jan 2022

https://dare.uva.nl/personal/pure/en/publications/code-quality-metrics-for-the-functional-side-of-the-objectoriented-language-c(c8806ed8-112d-4d61-9bb6-c4a65de4f50d).html
http://ceur-ws.org/Vol-2510/sattose2019_paper_12.pdf
http://ceur-ws.org/Vol-2510/sattose2019_paper_12.pdf

Code Quality Metrics for the Functional Side of the

Object-Oriented Language C#

Bart Zuilhof
University of Amsterdam
Amsterdam, Netherlands
bart zuilhof@hotmail.com

Rinse van Hees
Info Support

Veenendaal, Netherlands
rinse.vanhees@infosupport.com

Clemens Grelck
University of Amsterdam
Amsterdam, Netherlands

c.grelck@uva.nl

Abstract

With the evolution of object-oriented lan-
guages such as C#, new code constructs that
originate from the functional programming
paradigm are introduced. We hypothesize
that a relationship exists between the usage
of these constructs and the error-proneness.
Measures defined for this study will focus
on functional programming constructs where
object-oriented features are used, this often
affects the purity of the code. Built on these
measures we try to define a metric that re-
lates the usage of the measured constructs
to error-proneness. To validate the metric
that would confirm our hypothesis, we imple-
ment the methodology presented by Briand et
al. [BEEM95] for empirical validation of code
metrics. The results of this research granted
new insights into the evolution of software
systems and the evolution of programming
languages regarding the usage of constructs
from the functional programming paradigm in
object-oriented languages.

1 Introduction

The growing popularity of multi-paradigm language
Scala [Car] and the introduction of functional pro-
gramming (FP) features in significant object-oriented
(OO) languages such as Java [Ora] and C# [Mic], code

Copyright © by the paper’s authors. Copying permitted for
private and academic purposes.

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.orgProceedings of
the SATToSE.

evaluation for multi-paradigm languages have become
more significant. Landkroon has shown [Lan17] that
metrics from the OO paradigm and the FP paradigm
can be mapped to the multi-paradigm language Scala.
However, the integration of OO and FP features in-
troduces artifacts that are neither covered by OO-
inspired code metrics nor by FP-inspired code met-
rics. These constructs, such as usage of mutable class
variables in lambda functions whose execution might
be deferred, are not possible in the FP languages but
are used in a functional manner. To evaluate these
patterns, the metrics that are proposed for the OO
paradigm [BBM96, HKV07, McC76] and FP paradigm
[RT05, VdB95] might be unsuitable to give a valuable
indication of quality regarding the usage of these com-
bined constructs.
Measures that indicate complexity might have an intu-
itive relationship with error-proneness. But this does
not have any concrete meaning and usefulness since
you can not substantiate a predication by just intu-
ition. Therefore evidence must be provided that a
measure is useful, this can be done by proving there is
a relationship to an external attribute such as error-
proneness [BEEM95].
We follow the use of the term ‘measure’ as used by
Briand et al. [BEEM95]. Where the term ‘measure’
refers to an assessment on the size of an attribute of
the code.
The purpose of this research is to explore the relation-
ship between the usage of the FP-inspired constructs
and the error-proneness of the classes. Our approach
is defining measures that will cover the usage of these
constructs and empirically relate them to the error-
proneness of the corresponding class.

2 Background

Since version 3.0 a set of features were added to
C#, that are inspired by FP. Functions are now first-
class constructs, which enables higher-order functions.

1

mailto:bart_zuilhof@hotmail.com
mailto:rinse.vanhees@infosupport.com
mailto:c.grelck@uva.nl

Lambda functions provide a concise way of describing
an anonymous function. Pattern matching allows con-
cise and rich syntax for doing switch-case statements.
The concept of lazy evaluation, which comes along
with the LINQ1 query syntax, which was previously
only possible by using the Lazy<T>-keyword [Mic].
LINQ introduced syntax for list operations such as
map, filter and sort, which are basically higher order
functions as known from functional languages. This
syntax enables list mutations with concise syntax in
C# as shown in Listing 1.

1 Enumerable.Range(1, 10)

2 .Where(i => i % 2 == 0) //filter

3 .Select(i => i * 10) //map

4 .OrderBy(i => -i); //sort

5 // ["100", "80", "60", "40", "20"]

Listing 1: C# With LINQ

3 Problem Analysis

In the following code snippets, two basic implemen-
tations are presented which have the functionality to
get a list with vehicles that that start with ‘Red’. For
the first implementation (Listing 2) an imperative ap-
proach is chosen. The snippet has a Source Lines of
Code (SLOC) count of 11 and a Cyclomatic Complex-
ity of 3 since there are two branching points. This is
how the general complexity of the snippet translates
back into the values returned by the metrics.

1 List<string> vehicles = new List<string>()

2 {"Red Car", "Red Plane", "Blue Car"};

3

4 List<string> redVehicles =

5 new List<string>();

6 for (int i = 0; i < vehicles.Count; i++)

7 {

8 if (vehicles[i].StartsWith("Red"))

9 {

10 redVehicles.Add(vehicles[i]);

11 }

12 }

Listing 2: C# Without LINQ

The second implementation (Listing 4) LINQ li-
brary is used, which encourages the use of lambda-
expressions. The snippet has a SLOC count of 5 and a
cyclomatic complexity of 1 since there are no branch-
ing points. Even though the functionality and the log-

1Language Integrated Query, an uniform query syntax in C#
to retrieve data from different sources [Wag17]

ical complexity are the same with both snippets, the
cyclomatic complexity and SLOC differ drastically.

1 List<string> vehicles = new List<string>()

2 {"Red Car", "Red Plane", "Blue Car"};

3

4 List<string> redVehicles = vehicles

5 .Where(t => t.StartsWith("Red"))

6 .ToList();

Listing 3: C# With LINQ

1 int Foo(int x, int y)

2 {

3 if (x < 0)

4 x = 0;

5 if (y > 5)

6 y = 2;

7 return y - x;

8 }

Listing 4: C# With Temp

4 Candidate Measures

4.1 Number Of Lambda Functions Used In A
Class (LC)

Lambda functions in the context of OO languages are
a concise way to write anonymous functions inline.
Compared to a regular method, the parameter type,
return type can all be omitted. This might introduce
constructs which are harder to understand. An exam-
ple for this scenario is given in Listing 5.
To calculate the value for this measure, we traverse
the AST (abstract syntax tree). For each SyntaxNode
which has the type LambdaExpression, we raise the
counter for this measure.

1 List<int> numbers = new List<int>()

2 { 1, 2, 3 };

3 IEnumerable biggerThan2 = numbers

4 .Where(x => x > 2);

Listing 5: An Example Of A Lambda Expression

4.2 Source Lines of Lambda (SLOL)

Where simple lambda expressions might not be extra
information to reason about the execution, once the
lambda expression becomes most complex this might
not be the case. In listing 6 an example is given with a
multiline lambda expression. As curly braces are taken
included in the ‘source lines of code’-measure [HKV07],

2

we also include these curly braces when calculating the
span of the lambda expression. Therefore, the snippet
in Listing 6 has an ‘Source Lines of Lambda’-count of
1 + 1 + 4 = 6.

1 IEnumerable<int> bla = Enumerable

2 .Range(1, 10)

3 .Where(i => i % 2 == 0)

4 .Select(i => i * 10)

5 .OrderBy(i =>

6 {

7 return -i;

8 });

Listing 6: An Example Of A Multiline Lambda Ex-
pression

4.3 Lambda Score (LSc)

The density of the usage of lambda functions in a class
can give an indication of how functional a class is.
Our hypothesis for this measure is, that a relation-
ship exists between how functional a class is and the
error-proneness of the class. We calculate this lambda
density with Equation 1.

LSc =
SLOL

SLOC
(1)

Evaluating into 1 if each line of the classes is spanned
by a lambda expression, 0 if none of the lines are
spanned by a lambda expression.

4.4 Number Of Lambda Functions Using Mu-
table Field Variables In A Class (LMFV)

Sometimes it might be hard to predict when a lambda
function is executed, therefore, it might be hard to
reason about what value for the mutable field will be
used. An example for this scenario is given in List-
ing 7.
To calculate the value for this measure, we traverse
the AST. For each variable inside a lambda expres-
sion, we check if the variable is non-constant and field
scoped by using the semantic data model (SDM) of
the class. If this test passes, we increase the counter
for this measure.

1 class A

2 {

3 int _y = 2;

4 void F()

5 {

6 Func<int, bool> biggerThanY =

7 x => x > _y;

8 }

9 }

Listing 7: An Example Of A Lambda Expression With
A Reference To A Mutable Field Variable

4.5 Number Of Lambda Functions Using Mu-
table Local Variables In A Class (LMLV)

Sometimes it might be hard to predict when a lambda
function is executed, therefore, it might be hard to
reason about what value for the mutable local variable
will be used. An example for this scenario is given in
Listing 8.
To calculate the value for this measure, we traverse the
AST. For each variable inside a lambda expression, we
check if the variable is non-constant and local scoped
by using the semantic model of the class. If this test
passes, we increase the counter for this measure.

1 void F()

2 {

3 int y = 2;

4 Func<int, bool> greaterThanY =

5 x => x > y;

6 }

Listing 8: An Example Of A Lambda Expression With
A Reference To A Mutable Local Variable

4.6 Number Of Lambda Functions With Side
Effects Used In A Class (LSE)

We think that the combination of side effects in
lambda functions with e.g. parallelization or lazy eval-
uation is dangerous because it can be hard to reason
about when these side effects occur. An example for
this scenario is given in Listing 9.
To calculate the value for this measure, we traverse for
each class its AST. For each variable inside a lambda
expression, we check if local or field variables are being
mutated.

3

1 static int _y = 2;

2

3 Func<int, bool> f = x =>

4 {

5 _y++;

6 return x > _y;

7 };

Listing 9: An Example Of A Lambda Expression With
A Side Effect To A Mutable Field Variable

4.7 Number Of Non-Terminated Collection
Queries In A Class (UTQ)

By not terminating a collection query, it will be hard
to reason when the query will be executed. Since these
collection queries may contain functions that contain
side effects and use outside scope variables, the exe-
cution at different run-times can yield different and
unexpected results. An example for this scenario is
given in Listing 10.
To calculate the value for this measure we traverse the
AST and count how many IEnumarable<T> are initi-
ated.

1 List<int> nmbs = new List<int>()

2 { 1, 2, 3 };

3 int y = 2;

4 IEnumerable biggerThanY = numbers

5 .Where(x => x > y);

Listing 10: An Example Of A LINQ-Query That Is
Not Evaluated/Terminated

5 Methodology

To empirically validate a proposed metric according to
Briand et al [BEEM95] describes three assumptions
that should be satisfied namely:

1. The internal attribute A1 is related to the
external attribute A2 . The hypothesized re-
lationship between attribute A1 and A2 can be
tested if assumption 2 and assumption 3 are as-
sumed, by find a relationship between X1 and X2.

2. Measure X1 measures the internal attribute
A1. MeasureX1 will measure defined attributes of
the code such as mutable external variables used
in lambda functions. This measure X1 will be
assumed to measure A1, A1 will the internal at-
tribute such as purity of the lambda usages.

3. Measure X2 measures the external at-
tribute A2. Measure X2 will measure the error-
proneness A2 of a given class. The measure X2

used will be if the class contains a bug yes or no.

In Section 7 we elaborate on our approach to satis-
fying the above assumptions.

6 Dataset

For this study we analyzed the following projects:

• CLI The .NET Core command-line interface
(CLI) is a new cross-platform toolchain for devel-
oping .NET applications. The CLI is a foundation
upon which higher-level tools, such as Integrated
Development Environments (IDEs), editors, and
build orchestrators, can rest [Fou15b]. Analyzed
version: bf26e7976

• ML Machine Learning for .NET is a cross-
platform open-source machine learning framework
which makes machine learning accessible to .NET
developers. ML.NET allows .NET developers to
develop their own models and infuse custom ma-
chine learning into their applications, using .NET,
even without prior expertise in developing or tun-
ing machine learning models [Fou18]. Analyzed
version: b8d1b501

• AKK Akka.NET is a community-driven port of
the popular Java/Scala framework Akka to .NET.
Akka is a toolkit for building highly concurrent,
distributed, and resilient message-driven applica-
tions. Akka is the implementation of the Actor
Model. [Akk14]. Analyzed version: bc5cc65a3

• ASP ASP.NET Core is an open-source and
cross-platform framework for building modern
cloud based internet connected applications, such
as web apps, IoT apps and mobile backends.
ASP.NET Core apps can run on .NET Core or
on the full .NET Framework [Fou15a]. Analyzed
version: 5af8e170bc

• IS4 IdentityServer is a free, open source OpenID
Connect and OAuth 2.0 framework for ASP.NET
Core [Fou15c]. Analyzed version: da143532

• JF Jellyfin is a Free Software Media System that
puts you in control of managing and streaming
your media [Jel13]. Analyzed version: d7aaa1489

• ORA OpenRA is an Open Source real-time strat-
egy game engine for early Westwood games such
as Command & Conquer: Red Alert written in
C# using SDL and OpenGL [For09]. Analyzed
version: 27cfa9b1f

• DNS dnSpy is a debugger and .NET assembly ed-
itor. You can use it to edit and debug assemblies
even if you don’t have any source code available
[0xd16]. Analyzed version: 3728fad9d

• ILS ILSpy is the open-source .NET assembly
browser and decompiler. [ics09] Analyzed version:
72c7e4e8

• HUM Humanizer meets all your .NET needs

4

for manipulating and displaying strings, enums,
dates, times, timespans, numbers and quantities.
[Kha12] Analyzed version: b3abca2

• EF EF Core is an object-relational mapper
(O/RM) that enables .NET developers to work
with a database using .NET objects. It eliminates
the need for most of the data-access code that de-
velopers usually need to write [Fou14]. Analyzed
version: 5df258248

7 Evaluation Setup

7.1 Relating Functional Constructs to Error-
Proneness

Investigating the relationship between code metrics to
error-proneness is commonly done by creating a pre-
diction model for error-proneness based on code met-
rics [BBM96, BEEM95, GFS05, BMW02].

The logistic regression classification technique
[HJLS13] is often used to create such a predication
model [GFS05, Lan17, BBM96, LV97].

With a logistic regression model trained with the
data from our analysis framework, which processes
repositories, we explore the relationship between our
measured constructs to error-proneness.

7.1.1 Univariate

With a univariate logistic regression model, we can
evaluate, in isolation the predication model for error-
proneness based on the measured constructs. Using
the Equation 2 we construct a prediction model.

P (faulty = 1) =
eβ0+βlXl

1 + eβ0+βlXl
(2)

Where βlXl is the coefficient multiplied with the value
of the added measure.

7.1.2 Baseline

To show that our measures are useful regarding error-
proneness prediction, their inclusion must yield better
results than metrics that are being used in the indus-
try. This set of metrics will define the baseline for this
study. We use the union of a set of general code met-
rics with a set of object-oriented metrics. For general
code metrics we take Source Lines of Code (SLOC)
[NDRTB07], Cyclomatic Complexity (CC) [McC76]
and Comment Density [Son19].

The 00 metric suite used for this study was de-
fined by Chidamber [CK94]. For our baseline, we
implemented the metrics which showed any signifi-
cance in the study. The metrics suite contains the fol-
lowing metrics Weighted Methods per Class (WMC),
Dept of Inheritance Tree (DIT), Response For a Class

(RFC), Number of Children of a Class (NOC), Cou-
pling between Object Classes (CBO), Lack of Cohesion
of Methods (LCOM).

7.1.3 Multivariate

Besides looking if our univariate logistic regression
model gives an indication of good performance, we
can use multivariate logistic regression to test if we
can improve the model with the in-place OO metrics.
The baseline for the evaluation of the model will be
a multivariate logistic regression model based on our
baseline set of metrics. To see if we can achieve an in-
creased performance compared to our baseline model,
we substitute baseline dependent variable with candi-
date measures as l.

P (faulty = 1) =
eβ0+β1Xi+β2X2+...+βnXn+βlXl

1 + eβ0+β1Xi+β2X2+...+βnXn+βlXl

(3)

7.1.4 Model Validation

We choose to validate our model using cross-
validation, which is commonly used for the validation
of prediction models [Sto74, K+95]. We use the Hold-
out method for cross-validation. By default, holdout
cross-validation separates the data set into a train set
and a smaller test set. To compensate for the random-
ness of the division, we run the model fitting with mul-
tiple different selections of the training set and average
the results and assess the standard deviation. Based
on a classification report created for the hold-out set,
we assess the performance of the model. We use the
F1-score, which calculates the harmonic mean of the
precision and recall (F1-score) to assess our model per-
formance with Equation 4.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(4)

Since our data set is unbalanced, as seen in Table 1
one could choose to calculate the micro-average be-
tween the F1-scores for the ‘faulty-classes’-class and
the ‘non-faulty-classes’-class, where the support for
each class is weighted. However, since we want good
prediction performance in both classes we use the
macro-average instead which calculates the harmonic
mean between the two F1-scores [SL09].

7.2 Measuring Functional Constructs

By using the compiler platform SDK ‘Roslyn’ which
is created by the ‘.NET Foundation’ we can derive
AST’s and SDM’s from the classes of a given project.
By traversing the AST for each class using ‘Roslyn’s
implementation of the visitor pattern, we visit each

5

syntax node in depth-first order. Where needed we
can request additional data from the SDM during the
traversal, such as, what is the type and the level of
scope for a given variable. Using this method we can
calculate the values for all of our candidate measures.

7.3 Measuring Error-Proneness

To make an estimation on how error-prone a class is,
we make the assumption that if a class during the life-
time of a project was updated by a bugfix, the class
is error-prone. Unfortunately, the GitHub API does
not provide an easy way to identify bug-fixing com-
mits. From a GitHub repository, we can request all
the issues that were created regarding a bug. With
this information, we identify all commits that close an
issue by searching for issue closing keywords as de-
scribed in [Git19]. All commits that mention an issue
that was identified as a bug related issue, are marked
as bug-fix commits. We then extract the affected lines
from the metadata of the commit. Then derive with
which classes the affected lines intersect in the parent
version of the bug-fix commit by parsing the AST for
the updated file. We use the parent version of the bug-
fix commit since this is the version where the bug ex-
isted. Each of these intersected classes will be marked
as error-prone.

8 Results

In Table 1 descriptive stats are shown for the output
of our static analysis. The test projects have been
excluded for this our analysis since they are likely to
be modified in a bug-fixing commit to detect the bug
if it would occur again.

Table 1: Descritive Stats

Project Classes Bug-fixes Faulty classes
CLI [Fou15b] 328 54 24
ML [Fou18] 1404 27 18
AKK [Akk14] 1621 171 199
ASP [Fou15a] 3212 99 118
IS4 [Fou15c] 331 40 49
JF [Jel13] 1420 81 88
ORA [For09] 1990 227 149
DNS [0xd16] 5345 ?* 159
ILS [ics09] 1011 95 70
HUM [Kha12] 124 23 10
EF [Fou14] 1432 975 437

* During the runtime of research the labels in the
repository of dnSpy were deleted. Therefore, we are
unable to derive the bug-fix count.

Notable, the relationship of bug-fixing commits on
faulty classes can be either positive or negative. This
can be explained by that a set of the commits are
only updating configuration or non-csharp code files,
therefore, |BugFixes| > |FaultyClasses| is possi-
ble. The alternative scenario, one commit is able
to modify multiple classes, therefore, |BugFixes| <
|FaultyClasses| is possible. The variance in the ra-
tio of Classes

FaultyClasses between project is also notable,
this can be partly attributed during the lifetime of
a project. However, some projects contradict this hy-
pothesis. Where ILSpy is one of the older projects that
were analyzed, the ratio is not higher than e.g. the
AKKA.NET project. Even though, the ILSpy project
is more than twice as old.

To evaluate the measures in isolation, we fit and
evaluate a prediction model using univariate regres-
sion. In figure 1 we can see the macro-average F1-score
for each project in combination with each candidate
measure.

LSc LC SLOL LMFVLMLV UTQ LSE
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

F
1
-s

co
re

ID4
AKK
ASP
EF
CLI
ML

HUM
DNS
JF
ILS

ORA

Figure 1: F1-score Prediction Model: Univariate Re-
gression

In Figure 1 we see m1 as described in Section 4.1

6

perform well on the projects: ILSpy and JellyFin.
The univariate regression models created for the En-
tity Framework project, perform relatively bad com-
pared to the other projects. Notable, the SLOC mea-
sure performs the best as an isolated measure in the
Entity Framework project. Looking at the raw input
for the project, we see that only 1

5 of the classes use
lambda expressions, compared to other projects e.g.
AKKA.NET 1

3 . The fewer usage of lambda expres-
sions could influence the usability of our measures.
The Humanizer project seems to score an almost sta-
ble 0.48. When looking into the raw output data from
our static analysis we see only 1

9 classes in this project
uses lambda expressions. Therefore, this project might
not be functional enough for our measures to yield any
value.

To evaluate the value of our candidate measures
compared to our baseline, we create a multivariate re-
gression model based on K-Best features for each of
the projects. In Table 8 is shown how many out of 11
K-best models included the corresponding measure as
a feature.

Measure # Models
LSc 3
LC 6
SLOL 9
LMLV 4
LMFV 6
LSE 0
UTQ 0

Table 2: Inclusion Candidate Measures K-Best Model

Most notable is that 9 out of 11 projects include
the SLOL-measure as described in Section 4.2. The
one project where SLOL was excluded in the K-Best,
was the Humanizer project. As described earlier, the
project does not use a lot of the FP inspired constructs
and therefore, is not suitable for our measures. The
measure LSE counting the numbers of side-effects in
lambdas and UTQ, counting the number of untermi-
nated collection queries, both do not seem to yield an
interesting result. Even though these FP inspired con-
structs do occur in almost all projects, the amount of
occurrences is too limited to yield good value.

To do a comparison between our baseline model and
the selection of the K-best features model, the projects
are plotted in Figure 2.

0.5

0.52

0.54

0.56

0.58

0.6

F
1
-s

co
re

Baseline
Best-K features

Figure 2: F1-score Prediction Model: Multivariate Re-
gression

Looking at Figure 2 one can see that the worst-
performing project did not gain improvement in per-
formance. However, the first quartile had a perfor-
mance increase of 0.02. The best performing project
also has a 0.02 increase in performance.

9 Threats to validity

• Generalizability At this point in the research,
only 11 open-source projects were analyzed. For
the results of the research to be useful, substan-
tiated claims need to be made about the gener-
alizability of the results. Since we only processed
11 projects, we are unable to make any claims re-
garding that aspect. By analyzing a bigger corpus
of projects, one could make an easier distinction
on what different types of projects our proposed
measures yield value.

• Bug fixes vs Bugs To make an estimation on
how error-prone a class is, the assumption was
made that bug-fixes made in a class measure the
error-proneness of the class. However, there is
no way to guarantee that a class that was never
updated by a bug-fix is bug-free. Bugs might have
not been identified yet, or maybe bugs that were
never fixed by a bug-fix commit were accidentally
fixed during a refactoring.

10 Related work

Uesbeck [USH+16] did a control experiment where
the impact of lambdas in C++ on productivity,
compiler errors, percentage of time to fix the compiler
errors. The results show that the use of lambdas,
as opposed to iterators, on the number of tasks

7

completed was significant. ”The percentage of time
spent on fixing compilation errors was 56.37% for
the lambda group while it was 44.2% for the control
group with 3.5 % of the variance being explained by
the group difference.”. Where the groups consisted
of developers with different amount of programming
experience.
The increased time of fixing compiler error where
lambda functions were used, which seems likely to
be the result of lambda expressions being harder to
reason about. Which strengthens our hypothesis.
Finifter [FMSW08] shows how verifiable purity can
be used to verify high-level security properties. By
combining determinism with object-capabilities a new
class of languages is described that allows purity in
largely imperative programs.

11 Conclusion and Discussion

We investigated the evolution of the OO language C#
and what features inspired by the FP paradigm are
added. The development and introduction of the FP
inspired features seem to be going rapid and there
is no indication of the development slowing down.
This new declarative syntax enables more concise code
constructs. Therefore, enables the software engineer
to write more functionality with less code. How-
ever, these constructs are introduced without the con-
straints that would be present in FP languages. There-
fore, impure usages of concepts that were designed
pure, exist in the OO language C#. To cover the new
type of complexity introduced by these FP inspired
constructs and impure usages of these constructs, we
defined measures. The defined measures cover the fol-
lowing FP inspired constructs: lambda expression us-
ages and impure usages, in which the expression its
evaluation is affected by or affects the outside state.
Furthermore, we defined a measure to report the un-
terminated collection queries.

The candidate measure SLOL yielded promising re-
sults when used in a univariate prediction model for
all of the projects where FP inspired constructs were
actively used. To assess if we can improve our base-
line model, we swapped out the weaker metrics from
the baseline model with stronger metrics based on our
set of defined measures. We were able to achieve
a marginal improvement (F1-score 0.0-0.02) with re-
spect to different projects. For some projects, we were
able to achieve a small improvement in the predic-
tion model. On the contrary, the projects where a
low amount of FP inspired constructs was used, the
candidate measures did not yield value.

So we did find a correlation between our measures
and error-proneness. But the presence of this correla-

tion is too uncertain to make claims about causality.
As described earlier in the introduction the signifi-

cant OO languages seem to adopt more features from
the FP paradigm. Our hypothesis is that the set of
FP inspired features will become bigger and receive
a more FP-like syntax. The increase of performance
in our prediction models found in this research seems
marginal for now. But we hypothesize that their rele-
vance will increase in the future, based on the ongoing
evolution of OO languages and the increasing adoption
by developers of these FP inspired features.

References

[0xd16] 0xd4d. dnspy. https://github.com/

0xd4d/dnSpy, 2016.

[Akk14] AkkaDotNet. Akka.net. https:

//github.com/akkadotnet/akka.net,
2014.

[BBM96] Victor R Basili, Lionel C. Briand, and
Walcélio L Melo. A validation of object-
oriented design metrics as quality indi-
cators. IEEE Transactions on Software
Engineering, 22(10):751–761, 1996.

[BEEM95] Lionel Briand, Khaled El Emam, and
Sandro Morasca. Theoretical and empir-
ical validation of software product mea-
sures. International Software Engineer-
ing Research Network, Technical Report
ISERN-95-03, 1995.

[BMW02] Lionel C Briand, Walcelio L. Melo, and
Jurgen Wust. Assessing the applica-
bility of fault-proneness models across
object-oriented software projects. IEEE
transactions on Software Engineering,
28(7):706–720, 2002.

[Car] Pierre Carbonnelle. PYPL. http://

pypl.github.io/PYPL.html. Accessed:
2019-01-11.

[CK94] Shyam R Chidamber and Chris F Ke-
merer. A metrics suite for object oriented
design. IEEE Transactions on software
engineering, 20(6):476–493, 1994.

[FMSW08] Matthew Finifter, Adrian Mettler,
Naveen Sastry, and David Wagner.
Verifiable functional purity in java. In
Proceedings of the 15th ACM confer-
ence on Computer and communications
security, pages 161–174. ACM, 2008.

[For09] Chris Forbes. OpenRA. https://

github.com/OpenRA/OpenRA, 2009.

8

https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/akkadotnet/akka.net
https://github.com/akkadotnet/akka.net
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://github.com/OpenRA/OpenRA
https://github.com/OpenRA/OpenRA

[Fou14] .NET Foundation. Entityframework-
core. https://github.com/aspnet/

EntityFrameworkCore, 2014.

[Fou15a] .NET Foundation. Aspnetcore. https://
github.com/aspnet/AspNetCore, 2015.

[Fou15b] .NET Foundation. Cli. https://

github.com/dotnet/cli, 2015.

[Fou15c] .NET Foundation. Identity-
server4. https://github.com/

IdentityServer/IdentityServer4,
2015.

[Fou18] .NET Foundation. Machine learn-
ing. https://github.com/dotnet/

machinelearning, 2018.

[GFS05] Tibor Gyimothy, Rudolf Ferenc, and Ist-
van Siket. Empirical validation of object-
oriented metrics on open source software
for fault prediction. IEEE Transactions
on Software engineering, 31(10):897–910,
2005.

[Git19] GitHub. Closing issues us-
ing keywords. https://help.

github.com/en/articles/

closing-issues-using-keywords,
2019.

[HJLS13] David W Hosmer Jr, Stanley Lemeshow,
and Rodney X Sturdivant. Applied logis-
tic regression, volume 398. John Wiley &
Sons, 2013.

[HKV07] Ilja Heitlager, Tobias Kuipers, and Joost
Visser. A practical model for measuring
maintainability. In Proceedings of the 6th
International Conference on Quality of
Information and Communications Tech-
nology, pages 30–39. IEEE, 2007.

[ics09] icsharpcode. OpenRA. https://

github.com/icsharpcode/ILSpy, 2009.

[Jel13] Jellyfin. Jellyfin. https://github.com/

jellyfin/jellyfin, 2013.

[K+95] Ron Kohavi et al. A study of cross-
validation and bootstrap for accuracy es-
timation and model selection. In Ijcai,
volume 14, pages 1137–1145. Montreal,
Canada, 1995.

[Kha12] Mehdi Khalili. dnspy. https://github.

com/Humanizr/Humanizer, 2012.

[Lan17] Erik Landkroon. Code quality evaluation
for the multi-paradigm programming lan-
guage Scala, 2017. University of Amster-
dam.

[LV97] Filippo Lanubile and Giuseppe Visaggio.
Evaluating predictive quality models de-
rived from software measures: lessons
learned. Journal of Systems and Soft-
ware, 38(3):225–234, 1997.

[McC76] Thomas J McCabe. A complexity mea-
sure. IEEE Transactions on Software En-
gineering, (4):308–320, 1976.

[Mic] Microsoft. C# update notes.
https://docs.microsoft.com/

en-us/dotnet/csharp/whats-new/

csharp-version-history. Accessed:
2019-01-23.

[NDRTB07] Vu Nguyen, Sophia Deeds-Rubin,
Thomas Tan, and Barry Boehm. A
SLOC counting standard. In Cocomo
ii forum, volume 2007, pages 1–16.
Citeseer, 2007.

[Ora] Oracle. Java 8 update notes. https://

www.oracle.com/technetwork/java/

javase/8-whats-new-2157071.html.
Accessed: 2019-01-11.

[RT05] Chris Ryder and Simon J Thompson.
Software metrics: measuring Haskell.
In Proceedings of the Sixth Symposium
on Trends in Functional Programming,
pages 31–46, 2005.

[SL09] Marina Sokolova and Guy Lapalme. A
systematic analysis of performance mea-
sures for classification tasks. Information
Processing & Management, 45(4):427–
437, 2009.

[Son19] SonarQube. Metric definitions. https:

//docs.sonarqube.org/latest/

user-guide/metric-definitions/,
2019.

[Sto74] Mervyn Stone. Cross-validatory choice
and assessment of statistical predictions.
Journal of the Royal Statistical Society:
Series B (Methodological), 36(2):111–
133, 1974.

[USH+16] Phillip Merlin Uesbeck, Andreas Stefik,
Stefan Hanenberg, Jan Pedersen, and
Patrick Daleiden. An empirical study

9

https://github.com/aspnet/EntityFrameworkCore
https://github.com/aspnet/EntityFrameworkCore
https://github.com/aspnet/AspNetCore
https://github.com/aspnet/AspNetCore
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://github.com/IdentityServer/IdentityServer4
https://github.com/IdentityServer/IdentityServer4
https://github.com/dotnet/machinelearning
https://github.com/dotnet/machinelearning
https://help.github.com/en/articles/closing-issues-using-keywords
https://help.github.com/en/articles/closing-issues-using-keywords
https://help.github.com/en/articles/closing-issues-using-keywords
https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/ILSpy
https://github.com/jellyfin/jellyfin
https://github.com/jellyfin/jellyfin
https://github.com/Humanizr/Humanizer
https://github.com/Humanizr/Humanizer
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/

on the impact of C++ lambdas and
programmer experience. In Proceed-
ings of the 38th International Conference
on Software Engineering, pages 760–771.
ACM, 2016.

[VdB95] Klaas Van den Berg. Software measure-
ment and functional programming. Uni-
versity of Twente, 1995.

[Wag17] Bill Wagner. Language Integrated Query
(LINQ). https://github.com/dotnet/

cli, 2017.

10

https://github.com/dotnet/cli
https://github.com/dotnet/cli

	Introduction
	Background
	Problem Analysis
	Candidate Measures
	Number Of Lambda Functions Used In A Class (LC)
	Source Lines of Lambda (SLOL)
	Lambda Score (LSc)
	Number Of Lambda Functions Using Mutable Field Variables In A Class (LMFV)
	Number Of Lambda Functions Using Mutable Local Variables In A Class (LMLV)
	Number Of Lambda Functions With Side Effects Used In A Class (LSE)
	Number Of Non-Terminated Collection Queries In A Class (UTQ)

	Methodology
	Dataset
	Evaluation Setup
	Relating Functional Constructs to Error-Proneness
	Univariate
	Baseline
	Multivariate
	Model Validation

	Measuring Functional Constructs
	Measuring Error-Proneness

	Results
	Threats to validity
	Related work
	Conclusion and Discussion

