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Abstract
Financial crises have repeatedly been coined as a potential application area in the recent
literature on constructing early warning signals through identifying characteristics
of critical slowing down on the basis of time series observations. To test this idea,
we consider four historical financial crises—Black Monday 1987, the 1997 Asian
Crisis, the 2000 Dot-com bubble burst, and the 2008 Financial Crisis—and investigate
whether there is evidence for critical slowing down prior to these market collapses.We
find statistical evidence for critical slowing down before Black Monday 1987, while
the results are mixed or insignificant for the more recent financial crises.

Keywords Time series · Bifurcations · Nonlinear dynamical systems · Critical
slowing down · Early warning signal · Financial instability

JEL Classification C14 · C53 · G01

1 Introduction

The recent financial crisis has intensified theoretical and empirical research on the
underlying instabilities of economic systems. Several papers have been concerned
with the development of early warning signals that could give policymakers and mar-
ket participants warnings on an upcoming financial crisis. In macroeconomics, most
contributions are based on “dynamic stochastic general equilibrium” (DSGE) mod-
els. These models seek to understand the economy under the assumption that the set
of prices will result from an overall equilibrium under perfectly rational behavior.
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Unfortunately, when the crisis came, some serious limitations of such macro-financial
models became apparent and they were unable to capture the observed large move-
ments in financial markets and the macroeconomy.

A good understanding of the dynamic behavior of macro-financial systems is still
lacking. Itmaybe that something ismissing from these conventional economicmodels,
preventing them from describing the behavior of financial markets more accurately.
In November 2010, the then president of the European central bank, J.-C. Trichet,
addressed the ECB Central Banking Conference stating that “macro-models failed
to predict the crisis and seemed incapable of explaining what was happening to the
economy in a convincing manner”, and moreover “In the face of the crisis, we felt
abandoned by conventional tools” (Trichet 2010). The lessons of the financial crisis
for macroeconomic and financial analysis are profound. They lead us to ask questions
such as: What are the determinants of crises? Can crises be predicted? Can crises be
avoided or ameliorated using early warnings?

During the last decades, a growing number of researchers have come to recog-
nize that economic systems should be considered as complex systems (Sornette 2009;
Scheffer et al. 2009, 2012; Ball 2012; Farmer et al. 2012; Hommes 2013; Hommes
and Iori 2015; Battiston et al. 2016). Unlike traditional economic theories under the
assumption of general equilibrium, they describe economic systems as disequilibrium
processes. From the complex systems point of view,market crashes aremainly endoge-
nously driven events resulting from complex interactions and nonlinear feedback. The
complexity approach offers new ways of thinking about the underlying mechanisms
causing market crashes and may offer potential for predicting such crashes. Hope that
this may work is also provided by examples of other disciplines where complexity the-
ory has already successfully been applied: ecology, physics, engineering, psychology,
biology, etc. Within those fields, tools for analyzing complex dynamical systems have
been developed, based on detecting signs of “critical slowing down” prior to critical
transitions. These tools are universal and model-free in that they can be applied to
observed univariate time series from a wide variety of complex systems, independent
of the systems’ details.

The main aim of this paper is to test the possibility, suggested by Scheffer et al.
(2009) and Battiston et al. (2016), among others, that financial crises are instances
of critical transitions, like those observed and studied in other complex systems. To
address this, we ask whether there is empirical evidence, indicating that financial time
series behave consistently with complexity theory, which predicts “critical slowing
down” prior to critical transitions (crises in this context). If this would be the case,
the consequences would be far-reaching, opening up possibilities to construct early
warning signals for financial crises based on complexity theory. In fact, it will turn
out that our results are mixed, suggesting that financial systems do not belong to the
universality class of ecological/physical/biological complex systems and indicating
that further research is required to identify the ways in which the mechanisms leading
to global instability within financial systems differ from those in natural systems. Note
that the angle we take in this research—to see whether financial systems behave as
‘usual’ complex systems—is rather different from, and therefore complements, related
recent work on, for instance, bubble detection (Phillips et al. 2011), development of
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financial stress indices (Hubrich and Tetlow 2015) and graphical analysis (Flood et al.
2016).

The “critical slowing down” approach to extracting early warning signals from
observed univariate time series is based on the slowing down of the dynamics of
a complex system as the control parameter approaches a critical parameter value at
which the current equilibrium loses stability. Several methods to extract signals of crit-
ical slowing down from time series data have been developed. Kleinen et al. (2003)
observed that power spectral properties changed as the earth system moved closer to
a bifurcation point in a hemispheric thermohaline circulation (THC) model. Held and
Kleinen (2004) used a trend in the decay rate of climate sub-systems as an indicator of
critical slowing down. The first-order autocorrelation function (AR(1)) obtained from
time series was used as a measure of the decay rate of the system. This method was
applied to the North Atlantic THC model, providing an early warning signal for the
climate system. Livina and Lenton (2007) developed another way of detecting criti-
cal slowing down by using detrended fluctuation analysis (DFA). This analysis was
originally developed by Peng et al. (1994) to detect long-range correlations in DNA
sequences. Livina and Lenton (2007) found an early warning signal for an upcoming
critical transition in the North Atlantic THC system by investigating model output,
as well as Greenland ice core paleotemperature data. The subsequent work by Dakos
et al. (2008) studied critical slowing down in a number of eight empirical paleoclima-
tological time series, for which they found increased autocorrelation prior to critical
transitions. Lenton et al. (2012) contributed to the early warning signal literature by
offering some general guidelines for choosing the parameter settings of the analysis.
They improved the robustness of DFA techniques and gave additional examples show-
ing evidence of critical slowing down in both paleodata and climatemodel output. Kefi
et al. (2013) expanded the theory of critical slowing down to a broader class of situ-
ations where a system becomes increasingly sensitive to perturbations even without
catastrophic transitions, making clear that critical slowing down could even be used
in a more general setting as an early warning signal. Not all studies draw positive
conclusions regarding the applicability of early warning indicators; Gsell et al. (2016)
studied early warning indicators prior to five well-documented case studies of fresh-
water critical transitions, but concluded that a priori knowledge about the mechanisms
underlying the critical transitions is required for successfullymonitoring earlywarning
indicators.

Encouraged by the successes of early warning signals in other complex systems,
some efforts have been made to explore the possibility of constructing early warn-
ings from economic and financial time series. For instance, Tan and Cheong (2014)
observed critical slowing down in the U.S. housing market. They detected strong early
warning signals associated with a sequence of coupled regime shifts during the period
of sub-prime mortgage loans transition and the sub-prime crisis. They also found
weaker signals during the Asian financial crisis and technology bubble crisis. Gres-
nigt et al. (2015) interpreted financial market crashes as earthquakes and proposed a
modeling frameworkwhich allows for creating probability predictions on a futuremar-
ket crash in the medium term. Huang et al. (2017) introduced an early warning method
for financial markets based on manifold learning. However, up until now, no evidence
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of early warning signals has been found in time series data of stockmarkets. 1 By using
the information dissipation length (IDL) as an indicator, Quax et al. (2013) detected
early warning signals prior to Lehman Brothers’ collapse in multivariate USD/EUR
interest rate swap (IRS) data. Liu et al. (2015) also reported an increase in a so-called
dynamic network marker in USD/EUR interest rate swaps. Note, however, that the
measures used in these studies are inherently multivariate, while here we specifically
focus on the univariate time series approach to the detection of critical slowing down.

In our study, four financial crises are analyzed: BlackMonday 1987, the 1997Asian
Crisis, the Dot-com Crash in 2000 and the 2008 Financial Crisis. Following Dakos
et al. (2008), the lag-1 sample autocorrelation and the variance are considered as early
warning indicators to examine whether financial systems slow down before the critical
time (the onset of the corresponding crisis) is reached. The lag-1 mutual information
is also considered, as it is a nonlinear extension of the lag-1 autocorrelation, and since
it is a univariate information theoretical measure of serial dependence, the natural
univariate counterpart of the IDL.

This paper is organized as follows. In Sect. 2, we provide some theoretical back-
groundof nonlinear dynamical systems andbifurcations underlying critical transitions.
We describe the data and early warning systems (EWS) methodology in Sects. 3 and
4, respectively. Subsequently, we analyze how the resulting early warning indicators
perform for financial time series. The results are presented and discussed in Sect. 5, and
we present some robustness checks. Section 6 provides a summary and conclusions.

2 Critical transitions

The mechanism driving critical transitions in complex systems mathematically is a
bifurcation, which is an abrupt qualitative change in the behavior of a dynamical
system when one or more control parameters change. Thompson et al. (1994) review
various types of bifurcations in dissipative dynamical systems. Critical transitions
are associated with a so-called dangerous bifurcation in which a stable equilibrium
loses stability as a control parameter passes a critical value (Sieber and Thompson
2012). Critical transitions observed in complex systems are specifically associated
with such dangerous bifurcations (Thompson et al. 1994; Sieber and Thompson 2012).
Figure 1 illustrates the typical scenario considered. For a range of values of the control
parameter � there are three equilibria, one of which is unstable and two of which are
stable.When the system starts in the upper stable equilibriumand the control parameter
� is increased, the upper stable equilibrium branch merges with the unstable branch
at a critical value of the parameter, at which the stable and unstable equilibria both
disappear. Hence, beyond the critical parameter value there no longer is an upper stable
equilibrium; the state variable accelerates downwards, moving quickly to the vicinity
of the lower stable equilibrium. This type of bifurcation in which a stable and unstable
equilibrium annihilate is known as a saddle-node bifurcation, while the fast transition

1 An exception is Guttal et al. (2016), who carried out a study similar to ours independently, but with
different choices of user-set parameters. In Sect. 5, we briefly compare our mutual findings.
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Fig. 1 A saddle-node bifurcation. The red lines indicate stable equilibria of the state variable x as a function
of the control parameter � and the green dotted line an unstable equilibrium. The solid arrows indicate
whether the state variable is moving up or down in the state space, depending on the control parameter and
the state x. The stable top equilibrium branch meets the unstable equilibrium branch at a critical parameter
value � crit . If the system starts in the upper stable equilibrium, and the control parameter is subsequently
increased, slowly or in steps, to just beyond the critical parameter value � crit , this induces a critical transition
of the state variable to the lower stable equilibrium. (Color figure online)

of the state variable to a new stable state when the control parameter is moved beyond
the critical value is known as a critical transition.

The control parameter is a parameter affecting the dynamics of the state variable,
which is either constant or changing slowly or in small steps, so that the state variable
may be considered to be fast relative to the control variable (separation of time scales).
For instance, the interest rate set by the central bank can be considered a control
parameter affecting financial market dynamics, and hence the long-term behavior of
markets due to a change in the number and/or stability of the equilibria. Slow variables
(as opposed to parameters) can sometimes also play the role of a control parameter
for the dynamics of the fast variables. Think, for instance, of slow changes in sea
water temperature, which may affect shorter-term local weather phenomena through
changes in evaporation and precipitation. So generally speaking, the control parameter
can either be a parameter or a slowly changing variable and need not be exogenous
to the system, and a change in the control parameter affects the long-term dynamical
behavior of the (fast) variables.

When referring to the long-term behavior of the system, we call the stable equi-
librium states (fixed point) attractorsand the unstable equilibrium states (fixed point)
repellers. Note that if after a critical transition the control parameter is reversed, the
system typically does not jump back to the old attractor immediately, but remains close
to the new attractor (hysteresis). Another phenomenon can occur if the state of the
system is affected by noise (i.e., a sequence of small shocks). In that case, due to some
exceptionally large shock, or a sequence of smaller shocks in the same direction, the
system may undergo a so-called noise-induced early transition from one attractor to
another attractor, already before the control parameter has reached the critical value.
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Fig. 2 Critical transitions induced by a saddle-node bifurcation (Source: Lenton 2011). Panels a, b and c
describe the critical slowing down as an early warning indicator that the system lost resilience on the way
to the critical point. Local minima represent stable attractors, while the position of the ball represents the
present state of the system. a Far from bifurcation: small variance and fast fluctuations. b Approaching the
bifurcation: larger but slower fluctuation with increasing variance; c at the bifurcation point: irreversible
transition to a new local minimum

Empirically a gradual increase in the control parameter toward the critical value is
in principle detectable, since the parameter change induces an effect known as critical
slowing down; as the control parameter approaches the critical parameter value, the
systembecomes progressively slow in responding to small shocks away from the stable
equilibrium, giving rise to an increase in the autocorrelation as well as the variance
of the state variable (Kuehn 2011; Wagener 2013). In the presence of multiple state
variables, the same holds for the largest eigenvalue of the linearized dynamics around
the equilibrium, so one can in principle still infer critical slowing down of the system
based on a single observed state variable or a linear combination of state variables.
Critical slowing down is illustrated in Fig. 2. Panels a, b and c of Fig. 2 show the
behavior of a dynamical system approaching a saddle-node bifurcation. The local
minima of the potential well represent stable attractors, and the ball shows the present
state of the system. While approaching the bifurcation point (the critical parameter
value � crit), the local minimum on the right becomes shallower, and the recovery of
the ball in response to small perturbations is increasingly slowing down. When the
local minimum finally disappears, the ball quickly rolls into the minimum on the left,
that is, the system undergoes a critical transition from the right equilibrium to the left
equilibrium.

Early warning signals for impending critical transitions can be constructed bymon-
itoring early warning indicators, which are measures for the characteristic recovery
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time of the system, based on univariate time series observations from the system. In the
EWS literature, it is typically assumed that the observed time series are generated by
a smooth first-order autoregressive discrete time nonlinear dynamical system driven
by white noise, where � represents a control parameter, that is,

Xt = F(Xt−1, �) + G(Xt−1, �)� t , (1)

where Xt is a (possibly vector-valued) state of the system at time t ∈ Z, F(Xt−1, �)
specifies the deterministic part of the system,whileG(Xt−1, �)� t models the stochastic
part with � t a white noise process. A fixed point corresponds with an equilibrium state
X of the deterministic ‘skeleton’ (i.e., the system without the noise term), satisfying
X = F(X, �) . Fixed points can either be locally stable, in the case of which it is called
an attracting Þxed pointor a locally unstable repelling Þxed point.

Consider the upper stable equilibrium in Fig. 2, while the control parameter is
approaching the critical value. By increasing the control parameter � , the system
approaches the saddle-node bifurcation, which is the instability threshold where the
largest eigenvalue of the Jacobian matrix DF� ( X̄) of the steady state crosses the unit
circle at +1. This induces a critical transition of the system to a new stable state. This
scenario is described in detail in Rahmstorf (2001), Lenton et al. (2008) and Sieber
and Thompson (2012). It offers ways to empirically provide early warnings before
the critical transition actually happens. By investigating the statistical properties of
statistical early warning indicators of the system approaching a critical transition, one
may even predict the time of the transition in advance, up to some forecast error.

Before discussing the data and the early warning indicators used in this paper, we
note that in the literature also attempts have been made to develop alternative early
warning systems to monitor the risk of financial systems, following the so-called sig-
nal approach, which employs binomial/multinomial logit/probit models (Berg and
Patillo 1999; Kolari et al. 2002; Bussière and Fratzscher 2006), multivariate proba-
bility models (Demyanyk and Hasan 2010), Markov switching models (Abiad 2003,
2007), binomial tree approaches (Davis and Karim 2008). However, these models had
limited capacity to give warnings ahead of the financial crisis in 2008, which encour-
ages pursuing alternative approaches. In what follows, by exploring early warning
indicators prior to some crises in financial history, we will assess whether statistical
evidence for critical slowing down would have been obtained in the approach of a
number of historical crises, based on univariate financial time series, along the lines
(Dakos et al. 2008) did this for paleoclimate data.

3 Data

The approach requires univariate time series with clear critical transitions from one
level to another. Since stock market (log) prices rather than returns can display sharp
downward drops during crises, the analysis focuses on (log) prices rather than themore
commonly analyzed (log) returns. Moreover, returns typically have autocorrelations
close to zero and never close to one. Therefore, we focus on analyzing time series of
daily stock market log prices here. Four financial crises are considered: BlackMonday
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Table 1 Summary of events and time series used in the analysis

Label Crisis Critical point Time series

(1) Black Monday 13 Oct.1987 S&P 500 index

(2) Asian Crisis 01 Oct.1997 Hang Seng index

(3) Dot-com crash 24 Mar.2000 NASDAQ composite

(4) 2008 Financial crisis 12 Sep.2008 S&P 500 index

(5) 2008 Financial crisis 12 Sep.2008 TED spread

(6) 2008 Financial crisis 12 Sep.2008 VIX

(October 19, 1987), the Asian Crisis, the Dot-com Bubble and the 2008 Financial
Crisis. Although the direct causes of these crises are different, they share the common
characteristic that the corresponding stock prices for these events displayed similar
sharp collapses during the respective crises.

A particular time series is studied for each crisis. For instance, the Standard & Poor
500 (S&P 500) index is used to study Black Monday 1987 and the 2008 financial
crisis. Since the Hongkong Hang Seng index is more likely to be associated with
critical slowing down in the Asian stock markets, we use Hang Seng index to analyze
theAsianCrisis. TheDot-comBubblewas an information technology crisis whichwas
boosted by the rapid growth of equity values in the internet sector. Hence, we choose
the NASDAQ Composite, related with technology companies and growth companies,
as the time series to be analyzed. The most recent 2008 financial crisis was followed
by a credit crisis. In addition with the S&P 500, we analyze critical slowing down
in the TED spread, since it is an indicator of perceived credit risk. Moreover, as the
volatility index of the S&P 500, the VIX is also considered. Some further details on
the events, such as the critical point in time associated with the collapses, are provided
in Table 1.

Daily time series data of the stock indices—the S&P 500, the NASDAQComposite
and the Hang Seng index—were downloaded from Thomson Reuters Datastream for
the period fromMay 1986 untilMay 2011. The TED spread is defined as the difference
between the three-month LIBOR and the three-month T-bill interest rate. These data
sets were also obtained from datastream. The volatility index (VIX) was obtained
from the online Chicago Board Options Exchange (CBOE) database2 (http://www.
cboe.com/micro/vix/historical.aspx).

Since the optimal sample size to be analyzed prior to the crises is unknown, we
decided to use two sample sizes: 200 and 500 trading days, in combination with
moving estimation windows of 100 and 250, respectively (see below for details).
Moving estimation windows of fewer than 100 observations we deemed too short to
obtain reliable estimates of the time-varying AR coefficient, mutual information and
variance, and a total sample size of over 500 trading days (about two years) too long
for capturing local trends in time. The critical transition points are determined by

2 The largest US options exchange and creator of listed options, which offers equity, index and ETF options,
including proprietary products, such as S&P 500 options (SPX) and options on the CBOE volatility index
(VIX)
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visual inspection aided by original records in international newspapers and/or online
articles. We use the maximum value of the stock index in the corresponding period
to define the critical point in time, at which the decline started. This explains why,
for instance, October 13, 1987, is reported as the critical point for the crash of Black
Monday 1987, rather than Black Monday (October 19, 1987) itself. Since the random
growth in stock index data is in relative terms and not absolute, logarithms of the data
are taken, thus linearizing the exponential growth present in the original prices series,
as well as stabilizing the variance of the residuals that will be analyzed (Lütkepohl
and Xu 2012).

4 Methodology

4.1 Detrending

In order to achieve mean-stationarity of the data, the first step is to remove the trend
pattern from the original time series. The fluctuations obtained after detrending are fur-
ther analyzed by calculating persistence indicators, as described in the next subsection.
Subtracting a moving average is the most commonly used technique for detrending
(Dakos et al. 2008). Here we follow this approach using a weighting scheme based
on Gaussian kernel smoothing, thus allowing data near the given time point to receive
larger weights.

Consider the case where we wish to inspect the last T observations {zt }T
t=1 prior

to a crisis (as noted above we will consider T = 200 and 500), where z denotes the
logarithm of original price index with fixed time-step � t = 1 trading day. This time
series is detrended by smoothing across time using a Gaussian kernel function

G(s) = 1√
2� �

e− s2

2� 2 , (2)

so that the moving average is given by

MAt =
� T

r =1 G(r − t)zr
� T

r =1 G(r − t)
, t = 1, . . . , T. (3)

Note that the smoothing step involves only the T observations prior to the critical event
(the associated decline of which starts at t = T + 1). The ‘residuals’ or detrended
fluctuations are obtained by subtracting the moving average from the logarithm of the
original time series, that is,

yt = zt − MAt , t = 1, . . . T, (4)

which by construction fluctuates around 0. In this step also, only observations prior to
the critical event are used to construct the de-trended time series {yt }T

t=1. Below we
refer to these detrended time series using as the ‘residuals’ (from the trend removal
step) as well as the ‘detrended fluctuations’ interchangeably.
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In nonparametric regression, the choice of the bandwidth � involves a bias-variance
trade-off. A large bandwidth would lead to over-smoothed, biased, estimates of the
local mean in which details of the trend are washed out, and the magnitude of peaks
and troughs is underestimated. Conversely, using a too small bandwidth will result in
using only a few local data points, which will lead to a large variance of the detrended
signal. The aim is to choose the bandwidth in such a way that we filter out the slower
trends from the data while keeping the details of the fluctuations around the local
equilibrium value. In this paper, we will focus on the results obtained for a bandwidth
� of 10 trading days; later we also discuss the results obtained for a range of � -values
in a robustness check.

4.2 Leading indicators

After having obtained the detrended fluctuations {yt }T
t=1, the early waring indicators

are estimated using a moving estimation window across time allowing to inspect
trends. An increase in autocorrelation and variance is expected in the case of critical
slowing down. Three measures for persistence are considered: the AR(1) coefficient,
the lag-1 Mutual Information (MI(1)) and the Standard deviation (SD). The AR(1)
and SD measures are well-established (Livina and Lenton 2007; Dakos et al. 2008)
and the most commonly applied statistics in DFA; we add the MI(1) measure here as
a straightforward nonlinear generalization of the AR(1) measure.
AR(1) indicatorWhen approaching a critical transition, the system becomes increas-
ingly persistent, meaning that consecutive observations of the fluctuations around
equilibriumof the systembecome increasingly similar to each other. The lag-1 autocor-
relation can be shown to increase as the parameter approaches a critical parameter value
(Scheffer et al. 2009), and it is widely applied in the literature on critical transitions to
monitor critical slowing down. It can be estimated using a first-order autoregressive
model, given by

yt = e−� � t yt−1 + � t , (5)

which is known as an AR(1) model. In Eq. (5), yt is the observed detrended fluctuation
at time t , � t = t j +1 − t j = 1 trading day, � t is a zero mean innovation, � indicates
the magnitude of the recovery rate and � = e−� � t is the AR(1) coefficient (the lag 1
autoregressive coefficient). In a saddle-node bifurcation scenario, � tends to zero (�
to 1) on the way to the bifurcation point. Recall, however, that a noise-induced critical
transition may actually occur before � reaches 1, so to see whether a system behaves
as a ‘usual’ complex system we should not necessarily expect to observe an increase
in the autocorrelation all the way to 1, but just a preferable significant increase in the
autocorrelation.

The random disturbances in Eq. (5) are assumed to be white noise with zero mean.
Therefore, the first-order autocorrelation coefficient � is approximated as constant
in a local time window of length n. We estimate � by ordinary least-square (OLS)
regression of the model

yt = � yt−1 + � t . (6)
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over the set of indices t = j − n + 1, . . . , j , j = n, . . . , T . As j increases, the local
window slides from left to right, and a time series of estimated AR(1) coefficients is
obtained, varying with the index j . An increase in this time-varying AR(1) coefficient
is expected when the system approaches a saddle-node bifurcation.

Besides the smoothing bandwidth, the estimation window size n also is a very
important parameter, the choice of which is also a trade-off. A smaller window size
allows us to track short-term changes in the time-varying autocorrelation. However,
taking a too small window size with very few observations will make the estimation of
autocorrelation less precise. Following Dakos et al. (2008), we use half the size of the
analyzed time series T as the sliding window size n, i.e., n = T/ 2, and since we use
two different sample sizes (T = 200 and 500), this gives us two different estimation
window sizes: n = 100 and 250.
Mutual Information indicatorWhile the AR(1) indicator captures linear relationships,
the mutual information (MI) takes into account also nonlinear correlations. This mea-
sure is included here as a natural extension of the first-order AR(1) parameter usually
employed. In information theory, the MI measures the dependence between two ran-
dom variables. It quantifies the amount of information shared between two random
variables. It determines how similar the joint probability density p(X, Y) is to the
product of marginal densities, p(X) p(Y). The more the dependent X and Y are, the
more the information X and Y carry about each other; this amount of information is
quantified by their MI.

The time delayed mutual information between a variable measured at time t and
time t − 	 is given by

I (Xt , Xt−	 ) =
�

p(xt , xt−	 )(	) log
p(xt , xt−	 )

p(xt ) p(xt−	 )
dxt dxt−	 , (7)

where the time 	 is the lag. The marginal probability density functions are p(xt )
and p(xt−	 ), and p(xt , xt−	 ) is the joint probability density function of the variable
measured at time t and the same variable measured at time t − 	 . In this paper, the
lag-1 (	 = 1) MI indicator is estimated based on the observations in the moving
window. The R package “tseriesChaos” is used to estimate the MI, which implements
the method proposed by Hegger et al. (1999) where the integral in Eq. (7) is replaced
with the corresponding sum. We follow Quax et al. (2013) and discretize the data into
h = 10 bins.
Standard deviation indicatorAn increased slowing down induces an increased ampli-
tude when approaching the critical parameter. This corresponds with an increase in
the SD indicator (Scheffer et al. 2009), which we estimate as the sample standard
deviation within the window,

�St.Dev. j =

��
�
�
�

1

n − 1

j�

t= j −n+1

(yt − µ̂ j )2, j = n, . . . , T. (8)

The time-dependent variance estimate produced by the moving window procedure
also is a very commonly used early warning indicators preceding a critical transition.
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In particular, Carpenter and Brock (2006) and Biggs et al. (2009) have advocated its
use by noting that the variance seems to be more robust than the AR(1) coefficient as
an EWS and more easy to generalize to multivariate cases.

4.3 Establishing trends

For each indicator observed across time, i.e., AR(1), MI(1) and SD, following Dakos
et al. (2008) we test the trend over time for significance using Kendall’s rank correla-
tion 
 (Kendall’s tau) between the time-varying indicator and the time variable. This
nonparametric statistical measure for the degree of concordance between two pairs of
ordinal variables is given by


̂ = C − D
N

,

where C is the number of concordant pairs, D is the number of discordant pairs, and
N = n(n − 1)/ 2 is the total number of different pair combinations. The quantity 

is in the range [− 1, 1]. If Kendall’s 
 is close to 1, the agreement between the two
rankings is perfect. A high value of Kendall’s 
 suggests a strong trend. In the presence
of critical slowing down, one expects to find a significant upward trend as indicated
by a significantly positive value of Kendall’s 
 .

In our analysis, we use two ways to assess the significance of the trend. We first
report the ‘naive’ pvalues of the observed trends, ignoring the temporal dependence of
the observed subsequent values of the indicators. Since this assumption is likely to be
violated due to partial overlap of prices in the estimation windows, we subsequently
re-assess the statistical significance in a more sophisticated way, by employing a
bootstrap method that corrects for the dependence in the observed indicators as the
moving estimation window moves forward.

5 Results

The evidence for critical slowing down is evaluated in two steps. Firstly, we investi-
gate the early warning signals before real critical transitions. By using six historical
time series, we examine four well-known extreme financial events in history—Black
Monday 1987, the Asian Crisis, the Dot-com Bubble and the 2008 Financial Crisis.
Secondly, we control the rate of false positives (i.e., the likelihood of spurious early
warnings) by estimating the probability of obtaining a similar or more extreme trend in
the indicator by chance, using a bootstrap method. In the end, we perform a robustness
check with respect to changing the parameters set by the user in the analysis.
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5.1 Financial time series

We analyze time series associated with the following four financial crises. Due to
space considerations, we provide and discuss graphs only for pre-crisis sample size
T = 200; we later provide t-statistics for the trends in the indicators also for T = 500.
Black Monday 1987During a single day, October 19, 1987, the Dow Jones Industrial
Average (DJIA) index lost nearly 22%. By the end of that month, most of the major
exchanges had dropped by more than 20%. Stock markets around the world crashed,
beginning in HongKong, spreading to Europe, and hitting the USA after other markets
had declined by a significantmargin. This eventmarked the beginning of a global stock
market decline, making “Black Monday” one of the most dramatic days in recent
financial history.

Figure 3 shows the time-varying early warning indicators during about half a year
preceding “BlackMonday” based on the Standard & Poor’s 500 index (S&P 500) time
series. The original time series in Fig. 3a is the logarithm of the daily S&P 500 index.
The time series displayed starts 200 trading days before the crash and ends 100 days
after it. Stock markets raced upward during the first half of 1987, but experienced a
great depreciation in the last few months. The vertical dashed line indicates Black
Monday which we identify with (the start of) the critical transition. Since we are
interested in EWSs before the critical transition, the time-varying indicators are strictly
based on the data before the dashed line. To facilitate explanation, we align the x-axis
of the critical transition with 0 to clearly distinguish the days before and after it. The
red graph corresponds to the smoothed time series obtained by the Gaussian kernel
smoother. The two-headed arrow shows the width of the moving window. Figure 3b
shows the residuals, that is, the detrended time series used to estimate the earlywarning
indicators.

Figure 3c–e shows the time-varying early warning indicators, AR(1), MI(1), and
SD. They show that the great crash on “BlackMonday” is preceded by overall upward
trends in these indicators. All of these positive trends are confirmed by a positive
Kendall rank correlation coefficient 
 . The (naive) p values corresponding to the
trends of the indicators strongly suggest an increase in the indicators during the period
preceding the critical transition, suggesting that the S&P 500 time series indeed slows
down before the critical transition. As noted above, wewill apply a bootstrap technique
to obtainpvalues that take into consideration temporal dependence of the time-varying
indicators.
The Asian CrisisUsing the same techniques, we examine the Hang Seng time series.
Figure 4 shows the analysis of early warning indicators around one and a half year
before theAsianCrisis. Panel (a) displays the logarithm of dailyHang Seng index from
November 1995 to July 1998. This time series increases in the beginning but collapses
around mid-1997, which illustrates the Asian financial crisis in July 1997. The Asian
Crisis exhibited a series of currency devaluations along with stock market declines.
The currency market first failed in Thailand because its government no longer pegged
their local currency, the Thai Baht, to the US dollar. The currency crisis rapidly caused
stock market declines spreading throughout South Asia. Thailand, South Korea and
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Fig. 3 Early warning indicators for “Black Monday” based on the S&P 500 time index, pre-crisis sample
size T = 200. aLogarithm of the daily S&P 500 index. b Residuals time series. cAR(1) indicator. d MI(1)
indicator. eSD indicator. The vertical dashed line in (a) indicates the critical transition. The double-headed
arrow shows the width of the moving window used to compute the indicators shown in panels (c), (d) and
(e). The red graph denotes the smoothed time series used for filtering. (Color figure online)

Indonesia were most affected by the crisis. As a result of the crisis, the stock markets
in Japan and most of Southeast Asia fluctuated dramatically.

Figure 4 has a similar format as Figure 3. The smooth red curve in panel (a) shows
themoving average used for filtering. The dashed arrow shows thewidth of themoving
window, which is again half the size of the analyzed time series length. Panel (b) shows
the residuals used to estimate the early warning indicators. The results for the Asian
crisis, at least for T = 200 (n = 100), are mixed; there is a significant positive trend
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Fig. 4 Early warning indicators for the Asian Crisis based on the Hang Seng index, pre-crisis sample size
T = 200. a Logarithm of the daily Hang Seng index. b Residuals time series. c AR(1) indicator. d MI(1)
indicator. e SD indicator. The vertical dashed line in (a) marks the critical transition. The double-headed
arrow in Panel (a) shows the width of the moving window used to compute the indicators shown in (c), (d)
and (e). The red graph denotes the smoothed time series used for filtering. (Color figure online)

in the SD indicator (panel (e)), but the AR(1) andMI(1) indicators shown in panels (c)
and (d) show a significant downward trend before the critical transition of July 1997.
The Dot-com BubbleFigure 5 presents the analysis of early warning indicators from
n = 100 trading days before the Dot-com bubble collapse. Boosted by the rise of
commercial growth of the internet, the NASDAQ Composite index experienced a
speculative bubble, as shown in Fig. 5a. It peaked around the year 2000, the latter part
followeda typical boomandbust cycle;when thebubble “burst,” the stockprices of dot-
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Fig. 5 Earlywarning indicators for theDot-combubble based on theNASDAQComposite index (T = 200).
a Logarithm of the daily NASDAQ index. b Residuals time series. c AR(1) indicator. d MI(1) indicator.
e SD indicator. The vertical dashed line in (a) indicates the critical transition. The double-headed arrow
shows the width of the moving window used to compute the indicators shown in (c), (d) and (e). The red
graph denotes the smoothed time series used for filtering. (Color figure online)

com companies fell dramatically. Some companies went out of business completely,
such as Pets.com. Some others survived but their stocks declined by more than 80%,
such as Cisco and Amazon.com.

As for the Asian Crisis, the analysis of the early warning indicators shows mixed
results for the NASDAQ index before the Dot-com bubble. The bubble collapse is
preceded by an overall upward trend in the standard deviation, but a downward trend
in the AR(1) and MI(1) estimates.
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Fig. 6 Early warning indicators for the 2008 financial crisis using the S&P 500 index (I.) TED spread (II.)
and VIX (III.). Pre-crisis sample size T = 200. For each of the analyses, a Logarithm of the daily original
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lines in panels (a) indicate the critical transition. The dashed arrows show the width of the moving window
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used for filtering. (Color figure online)

The 2008 Financial CrisisThe financial crisis of 2008 is known as the most severe
financial crisis since theGreat Depression of the 1930s. It was triggered by the bursting
of US housing bubble, which peaked approximately in 2005–2006. Banks began to
give out more loans than ever before to potential home owners. When the housing
bubble finally burst in the latter half of 2007, the secondarymortgagemarket collapsed
and over 100 mortgage lenders went bankrupt during 2007 and 2008. Several major
financial institutions failed, including Lehman Brothers, Merrill Lynch, Washington
Mutual, Citigroup. The world wide economies experienced a great recession and stock
markets around the world declined.

Figure 6a–c shows the early warning indicators around one year before the 2008
financial crisis based on three different time series, the S&P 500, the TED spread and
the VIX. The VIX is a commonly used estimated time series index of the implied
volatility of S&P 500 over the next 30 days.

The analyses show mixed results. For the S&P 500 index (I.), the AR(1) and MI(1)
indicators as well as the SD indicator show a downward trend. The analysis of the TED
spread (II.) shows strong upward trends in the AR(1) andMI(1) indicators, suggesting
a slowing down before the critical transition around the time Lehman Brothers went
bankrupt. However, for the same period, the SD indicator shows a downward trend.
The analysis of the VIX (III.) shows significant downward trends in the AR(1) and
MI(1) indicators preceding the 2008 critical transition. Also the SD indicator has a
significant downward trend.

A summary of the naive p values is provided in Table 2. The trends observed in the
AR(1),MI(1) and SD indicators preceding the crises are all either significantly positive

123



1218 C. Diks et al.

Table 2 Studies of early warning indicators for critical transitions in different time series for various sample
sizes T , window lengths n; 
 is the estimated Kendall’s 
 coefficient

Extreme event Time series 


AR(1) MI SD

T = 200, n = 100, � = 10

Black Monday S&P 500 0.776∗∗∗ 0.654∗∗∗ 0.392∗∗∗
Asian Crisis Hang Seng − 0.289∗∗∗ − 0.240∗∗∗ 0.777∗∗∗
Dot-com NASDAQ − 0.667∗∗∗ − 0.737∗∗∗ 0.497∗∗∗
2008 Financial Crisis S&P 500 − 0.636∗∗∗ − 0.746∗∗∗ − 0.760∗∗∗

TED spread 0.492∗∗∗ 0.129∗ − 0.861∗∗∗
VIX − 0.600∗∗∗ − 0.392∗∗∗ − 0.742∗∗∗

T = 500, n = 250, � = 10

Black Monday S&P 500 − 0.565∗∗∗ − 0.724∗∗∗ 0.100∗∗
Asian Crisis Hang Seng 0.385∗∗∗ − 0.034 0.462∗∗∗
Dot-com NASDAQ − 0.559∗∗∗ − 0.197∗∗∗ − 0.355∗∗∗
2008 Financial Crisis S&P 500 − 0.557∗∗∗ − 0.42∗∗∗ 0.758∗∗∗

TED spread − 0.383∗∗∗ 0.769∗∗∗ 0.331∗∗∗
VIX − 0.513∗∗∗ − 0.169∗∗∗ − 0.388∗∗∗

∗∗∗Significant at 1% level, ∗∗significant at 5% level, ∗significant at 10% level

or significantly negative. The only cases where all indicators are significantly positive
are Black Monday with sample size T = 200 and the Asian Crisis for T = 500.
Overall these results are highly significant, but often with the unexpected negative
sign. This may be related to the fact that only naive p values were reported so far.

5.2 Bootstrap time series

Above we have reported the results based on naive p values, which ignores the depen-
dence among the sequentially observed values of the indicators. To take this into
account, for each empirically observed value ofKendall’s 
 we also calculateKendall’s

 for a large number of bootstrap time series. This allows us to assess a p value cor-
rected for serial dependence. The observed bootstrap distribution of tau values is used
to assess the likelihood that the observed value of the trend statistic in the original data
has occurred by chance in the absence of an actual trend, taking into account temporal
dependence. The corrected p value is the estimated probability, in the absence of a
trend, that a 
 value equal to or larger than that obtained from the original time series
is observed among the bootstrap replications.

Dakos et al. (2008) applied a bootstrap of the residuals from the smoothing step.
However, this treats the residuals as being independent, which doesn’t seem to be
realistic in cases where there is autocorrelation in the residuals. Instead, we therefore
decided to bootstrap the log returns of the original prices time series. Bootstrap log
price time series (levels) are then easily obtained again by taking cumulative sums.
The motivation for this approach is that log returns are known to be hardly correlated.
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Table 3 Likelihood of obtaining
trend statistic estimates by
chance, estimated by the fraction
of bootstrap estimated trend
statistics (Kendall 
 -values)
being larger than the trend
statistic of the original residual
records. Number of bootstrap
replications B = 1000, � = 10

Crisis AR(1) MI Std. dev.

T = 200 (n = 100)

Black Monday (S&P 500) 0.045∗∗ 0.052∗ 0.309

Asian Crisis (Hang Seng) 0.668 0.634 0.241

Dot-com (NASDAQ) 0.900 0.969 0.062∗
2008 Crisis (S&P 500) 0.866 0.975 0.948

2008 Crisis (TED Spread) 0.193 0.450 0.974

2008 Crisis (VIX) 0.872 0.744 0.971

T = 500 (n = 250)

Black Monday (S&P 500) 0.838 0.952 0.439

Asian Crisis (Hang Seng) 0.251 0.519 0.222

Dot-com (NASDAQ) 0.825 0.576 0.683

2008 Crisis (S&P 500) 0.833 0.767 0.052∗
2008 Crisis (TED Spread) 0.702 0.018∗∗ 0.331

2008 Crisis (VIX) 0.825 0.578 0.710

∗∗∗Significant at 1% level, ∗∗5% level, ∗10% level

Preliminary comparisons of the returns bootstrap with the residuals bootstrap showed
that the latter is slightly less conservative (i.e., leads to smaller p values, with the
possible risk of over-rejection due to ignoring the dependence mentioned above).
Since refinements of the log returns bootstrap, such as, for instance, taking into account
GARCH(1,1) effects, gave very similar results as the log returns bootstrap, we decided
to only report the results for the log returns bootstrap in this paper.

The probability P(
 ≥ 
 ∗) of obtaining an equally large or larger trend statistic by
chance is estimated by the bootstrap p value, which is the fraction of bootstrap trend
statistics with trend at least as high as the trend statistics based on the original time
series. These p values are indicated by percentages in Fig. 7. For the AR(1) and MI(1)
indicators, the (one-sided) p values are 4.5 and 5.2%, respectively, meaning that the
bootstrap p values after taking into account temporal dependence in the indicators are
4.5 and 5.2%. Therefore, the trends in the AR(1) indicator for the S&P500 index prior
to Black Monday are significant at the conventional 5% significance level, and for the
MI(1) indicator at the 10% level. For the SD indicator, the bootstrap p value is 30.9%,
i.e., insignificant at the conventional significance levels of 10, 5% or less.

Table 3 shows the likelihood of obtaining the observed or a larger trend statistic esti-
mate by chance, as estimated by the fraction of bootstrapped trend statistic Kendall’s

 being larger than or equal to the trend statistic of the original residual records. The
results shown in Table 3; the pvalues can be interpreted as the probability of observing,
by chance, a trend in the respective indicator that is as large or larger than the trend in
the indicator for the observed time series data.

First focusing on the smaller sample size (n = 100, top panel), one can observe
evidence of a positive trend in the AR(1) indicator, and to a lesser extent in the MI(1)
indicator, prior to the 1987 BlackMonday crash.We also observe someweak evidence
for a positive trend in the SD indicator prior to the burst of the Dot-com bubble. If
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we strictly focus on results that are significant at the 5% level of significance or
smaller, the only remaining significant result is a positive trend in theAR(1) coefficient
prior to the 1987 Black Monday crash. In this respect, our results do not strongly
confirm the finding of Guttal et al. (2016) that the SD indicator increases significantly
before financial crises. Note, however, that our results also do not contradict theirs;
the difference in significance may be attributed to the use of a different set of crises,
and differences in pre-crisis sample size T , estimation window n, smoothing window
size � , and details of the bootstrap methods used. Also note that Guttal et al. (2016)
obtained their results for estimation window sample size n = 500 (about two years),
which, as indicated above, we a priori considered unrealistically large to detect trends
in the indicators reliably, as we expected those trends to develop on smaller time
scales (of several months, up to half a year, say). For the larger sample size (n = 250,
bottom panel), we observe a marginally significant positive trend in the SD indicator
before the 2008 Crisis based on the S&P 500 time series, and a very significant (at
the 2% significance level) positive trend in the MI(1) for the same crisis based on the
TED spread. This latter result deserves some further attention, in particular because
the results obtained for MI(1) and AR(1) are very similar for all results reported in
Tables 2 and 3, except for the TED spread prior to the 2008 crisis for n = 250.

At first sight, one may be tempted to conclude that the MI(1) indicator apparently
is able to pick up some nonlinear dependence within the time series that the AR(1)
indicator is not able to pick up. However, visual inspection of the time series of
residuals from the smoothing step (Fig. 8, panel b) raised our concern that the trend
may have been caused primarily by changes in the sample marginal distribution as
the estimation window was moved forward. Figure 9 shows the histograms of the first
and second half of the pre-crisis TED spread residuals. The histograms show that the
residuals have a more fat-tailed distribution in the first half of the pre-crisis period
than in the second half. This is confirmed by the excess kurtosis, which is 6.90 for the
first half and only 0.22 for the second half of the pre-crisis residuals.

It is known that although theoretically the mutual information is invariant under
changes in the marginal distribution of the time series considered, the estimation
of the mutual information involves a discretization step (binning) which in practice
affects the estimates. Typically (and also in the algorithm as implemented in the R
package “tseriesChaos” we used), the bins are taken equally sized between the largest
and smallest observed values. Now imagine the case where the data are normally
distributed versus the case where the data are leptokurtic (i.e., the distribution has
fatter tails and the density is more peaked near the center of the distribution, relative
to the normal). If we use the same number of bins in both cases (10 here), the bins
near the mode of the distribution will be much fuller for the leptokurtic data than for
normal data, and vice versa for the bins in the tails. This may well affect the MI(1)
estimates.

We therefore wish to check whether the small p value observed based on the TED
Spread for n = 250 is not just a result of the marginal distribution changing as the
moving window moves forward, while the marginal distribution of the bootstrap-
based residual time series is (by construction) constant over time. To test this, in
an additional numerical experiment we modified the algorithm for the estimation of
MI(1) by adding a preliminary step; we transformed the marginal distribution of each
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