Supporting Information for

Photo- and Thermal Isomerization of (TP)Fe(CO)Cl₂ [TP = Bis(2-diphenylphosphinophenyl)phenylphosphine]

Ping Li, Bas de Bruin, Joost N. H. Reek and Wojciech I. Dzik*

Homogeneous, Supramolecular and Bio-Inspired Catalysis, van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Content List

1. IR spectrum of decay of species C
 1.1 Figure S1. IR spectra during the decay of isomer C in CH₂Cl₂ at 298 K.

2. X-ray, DFT and UV-Vis structural data
 2.1 Table S1. Details of the X-ray crystal structures
 2.2 Table S2. Optimized geometries for all possible isomers as well as the X-ray established isomer A and B.
 2.3 Table S3. Comparison for the IR of ν(CO) from DFT calculation and experimental data.
 2.4 Table S4. Electronic transitions in the visible range as calculated with TD-DFT
 2.5 Figure S2. TD-DFT Calculated UV-Vis spectrum of species A
 2.6 Figure S3. TD-DFT Calculated UV-Vis spectrum of species B
 2.7 Figure S4. TD-DFT Calculated UV-Vis spectrum of species C
 2.8 Figure S5. UV-Vis spectrum of species A in CD₂Cl₂
 2.9 Figure S6. UV-Vis spectrum of species B in CD₂Cl₂
 2.10 Figure S7. UV-Vis spectrum of species C in CD₂Cl₂
 2.11 Chart S1. Frontier orbitals of A
 2.12 Chart S2. Frontier orbitals of B
 2.13 Chart S3. Frontier orbitals of C

3. Kinetic Studies for the Isomerization of B to A
 3.1 Scheme S1. Reaction model and equations for kinetic fittings
 3.2 Table S5. Summary of reaction rate constants obtained for B to A by global fit at different temperatures
3.3 Figure S8. Kinetic curves for the thermal isomerization of B to A in CD₂Cl₂ at 288 K.
3.4 Figure S9. Kinetic curves for the thermal isomerization of B to A in CD₂Cl₂ at 293 K.
3.5 Figure S10. Kinetic curves for the thermal isomerization of B to A in CD₂Cl₂ at 298 K.
3.6 Figure S11. Kinetic curves for the thermal isomerization of B to A in CD₂Cl₂ at 303 K.
3.7 Figure S12. Kinetic curves for the thermal isomerization of B to A in CD₂Cl₂ at 308 K.

4. **Kinetic Studies for the Isomerization of C to B**

4.1 Scheme S2. Reaction model and equations for kinetic fittings
Table S5. Summary of the reaction rate constants for the isomerization reactions obtained by curve fitting.
4.2 Figure S13. Kinetic curves for the thermal isomerization of C to B in CD₂Cl₂ at 270 K.
4.3 Figure S14. Kinetic curves for the thermal isomerization of C to B in CD₂Cl₂ at 273 K.
4.4 Figure S15. Kinetic curves for the thermal isomerization of C to B in CD₂Cl₂ at 276 K.
4.5 Figure S16. Kinetic curves for the thermal isomerization of C to B in CD₂Cl₂ at 279 K.
4.6 Figure S17. Kinetic curves for the thermal isomerization of C to B in CD₂Cl₂ at 282 K.
4.7 Figure S18. Arrhenius plot for the decay of isomer C to B at different temperatures.

5. **Photo Irradiation of Isomer A**

5.1 Figure S19. ³¹P NMR spectra recorded at 263 K during the photo irradiation of isomer A at 273 K.

6. **Kinetic Studies Under 1 atm of CO**

6.1 Figure S20. Kinetic curves for the thermal isomerization of B to A under Ar vs CO in CD₂Cl₂ at 298 K.
6.2 Figure S21. Kinetic curves for the thermal isomerization of C to B under Ar vs CO in CD₂Cl₂ at 273 K.

7. **Determination of quantum yield of the photochemical transition of A to B**

8. **Possible mechanism of photochemical formation of B**

8.1 Scheme S3. Proposed mechanism of photochemical formation of B from A
1. IR spectrum of decay of species C

1.1 Figure S1. IR spectral change during the decay of isomer C in CH$_2$Cl$_2$ at 298 K. (Sample was prepared at 273 K under irradiation)
2. X-ray, DFT, TD-DFT, and UV-Vis structural data

2.1 Table S1. Details of the X-ray crystal structures

<table>
<thead>
<tr>
<th></th>
<th>A·2CH₂Cl₂</th>
<th>B·CH₂Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C₃₅H₅₈Cl₆FeOP₃</td>
<td>C₄₄H₃₅Cl₄FeOP₃</td>
</tr>
<tr>
<td>fw</td>
<td>955.20</td>
<td>870.28</td>
</tr>
<tr>
<td>crystal colour</td>
<td>red</td>
<td>orange</td>
</tr>
<tr>
<td>crystal size (mm³)</td>
<td>0.30 × 0.10 × 0.08</td>
<td>0.30 × 0.25 × 0.20</td>
</tr>
<tr>
<td>T (K)</td>
<td>150(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P2₁/n (no. 14)</td>
<td>P2₁/c (no.14)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.9523(6)</td>
<td>10.7927(8)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>23.9480(14)</td>
<td>17.8559(13)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>18.0094(10)</td>
<td>21.3432(15)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>97.046(2)</td>
<td>103.716(2)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4259.9(4)</td>
<td>3995.8(5)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D_{calc} (g cm⁻³)</td>
<td>1.489</td>
<td>1.447</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.879</td>
<td>0.800</td>
</tr>
<tr>
<td>refl. measured / unique</td>
<td>81121 / 7531</td>
<td>49930 / 7217</td>
</tr>
<tr>
<td>parameters / restraints</td>
<td>525 / 12</td>
<td>478 / 0</td>
</tr>
<tr>
<td>F(000)</td>
<td>1952</td>
<td>1784</td>
</tr>
<tr>
<td>R1 / wR2 [I>2σ(I)]</td>
<td>0.0464 / 0.0926</td>
<td>0.0360 / 0.0833</td>
</tr>
<tr>
<td>R1 / wR2 (all refl.)</td>
<td>0.0746 / 0.1022</td>
<td>0.0501 / 0.0921</td>
</tr>
<tr>
<td>GOF</td>
<td>1.060</td>
<td>1.052</td>
</tr>
<tr>
<td>ρ_{min/max} (e Å⁻³)</td>
<td>-0.544 / 0.594</td>
<td>-0.624 / 0.739</td>
</tr>
</tbody>
</table>
2.2 Table S2. Optimized geometries for all possible isomers as well as the X-ray established isomer A and B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A(X-ray)</th>
<th>B</th>
<th>B (X-ray)</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe1–P1</td>
<td>2.165</td>
<td>2.1852</td>
<td>2.163</td>
<td>2.1639</td>
<td>2.235</td>
<td>2.176</td>
<td>2.266</td>
</tr>
<tr>
<td>Fe1–P2</td>
<td>2.253</td>
<td>2.2547</td>
<td>2.223</td>
<td>2.2212</td>
<td>2.251</td>
<td>2.256</td>
<td>2.261</td>
</tr>
<tr>
<td>Fe1–P3</td>
<td>2.251</td>
<td>2.2422</td>
<td>2.333</td>
<td>2.3369</td>
<td>2.216</td>
<td>2.267</td>
<td>2.263</td>
</tr>
<tr>
<td>Fe1–Cl1</td>
<td>2.347</td>
<td>2.3410</td>
<td>2.357</td>
<td>2.3308</td>
<td>2.334</td>
<td>2.343</td>
<td>2.317</td>
</tr>
<tr>
<td>Fe1–Cl2</td>
<td>2.369</td>
<td>2.3523</td>
<td>2.363</td>
<td>2.3499</td>
<td>2.360</td>
<td>2.336</td>
<td>2.356</td>
</tr>
<tr>
<td>Fe1–C1</td>
<td>1.731</td>
<td>1.743</td>
<td>1.771</td>
<td>1.790</td>
<td>1.775</td>
<td>1.733</td>
<td>1.767</td>
</tr>
</tbody>
</table>

2.3 Table S3. Comparison for the IR of ν(CO) from DFT calculation and experimental data.

<table>
<thead>
<tr>
<th>v(cm⁻¹)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>1972</td>
<td>2008</td>
<td>1988</td>
</tr>
<tr>
<td>Calculated</td>
<td>1955</td>
<td>1991</td>
<td>1974</td>
</tr>
</tbody>
</table>
2.4 Table S4. Electronic transitions in the visible range as calculated with TD-DFT.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\lambda_{\text{expt}}) (nm)</th>
<th>(\lambda_{\text{calc}}) (nm) {rel. intensity}</th>
<th>main excitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>482</td>
<td>484 {1415}</td>
<td>HOMO → LUMO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>435 {361}</td>
<td>HOMO-1 → LUMO+4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>401 {206}</td>
<td>HOMO-2 → LUMO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>388 {23}</td>
<td>HOMO-1 → LUMO+1</td>
</tr>
<tr>
<td></td>
<td>366</td>
<td>386 {342}</td>
<td>HOMO → LUMO+4</td>
</tr>
<tr>
<td>B</td>
<td>566</td>
<td>572 {712}</td>
<td>HOMO → LUMO+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 {424}</td>
<td>HOMO-1 → LUMO+1</td>
</tr>
<tr>
<td></td>
<td>362</td>
<td>426 {827}</td>
<td>HOMO-1 → LUMO+1</td>
</tr>
<tr>
<td>C</td>
<td>604</td>
<td>604 {108}</td>
<td>HOMO → LUMO+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>447 {109}</td>
<td>HOMO-1 → LUMO</td>
</tr>
<tr>
<td></td>
<td>364</td>
<td>430 {243}</td>
<td>HOMO-3 → LUMO+1</td>
</tr>
</tbody>
</table>

S6
2.5 Figure S2. TD-DFT Calculated UV-Vis spectrum of species A

2.6 Figure S3. TD-DFT Calculated UV-Vis spectrum of species B

2.7 Figure S4. TD-DFT Calculated UV-Vis spectrum of species C
2.8 Figure S5. UV-Vis spectrum of species A in CD$_2$Cl$_2$

![UV-Vis spectrum of species A in CD$_2$Cl$_2$]

2.9 Figure S6. UV-Vis spectrum of species B in CD$_2$Cl$_2$

![UV-Vis spectrum of species B in CD$_2$Cl$_2$]

2.10 Figure S7. UV-Vis spectrum of species C in CD$_2$Cl$_2$

![UV-Vis spectrum of species C in CD$_2$Cl$_2$]

The steep baseline is caused by condensation of mist on the windows of the UV-Vis cuvette.
2.11 Chart S1. Frontier orbitals of A

Orbital 200 (HOMO-2)

Orbital 201 (HOMO-1)

Orbital 202 (HOMO)

Orbital 203 (LUMO)

Orbital 204 (LUMO+1)

Orbital 205 (LUMO+2)

Orbital 207 (LUMO+4)

Orbital 212 (LUMO+9)
2.12 Chart S2. Frontier orbitals of B

Orbital 199 (HOMO-3)

Orbital 200 (HOMO-2)

Orbital 201 (HOMO-1)

Orbital 202 (HOMO)

Orbital 203 (LUMO)

Orbital 204 (LUMO+1)

Orbital 205 (LUMO+2)

Orbital 206 (LUMO+3)
Chart S3. Frontier orbitals of C

Orbital 199 (HOMO-3)

Orbital 200 (HOMO-2)

Orbital 201 (HOMO-1)

Orbital 202 (HOMO)

Orbital 203 (LUMO)

Orbital 204 (LUMO+1)

Orbital 205 (LUMO+2)

Orbital 206 (LUMO+3)
3. Kinetic Studies for the Isomerization of B to A

3.1 Scheme S1. Reaction model and equations for kinetic fittings

\[
[B] = [B]_0 e^{-kt} \quad \text{Equation (S1)}^9 \\
[A] = 100 - [B]_0 e^{-kt} \quad \text{Equation (S2)}^9
\]

3.2 Table S4. Summary of reaction rate constants obtained by global fit at different temperatures

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>288</th>
<th>293</th>
<th>298</th>
<th>303</th>
<th>308</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k \times 10^{3} \text{ S}^{-1})</td>
<td>1.21 ± 0.01</td>
<td>1.79 ± 0.01</td>
<td>2.91 ± 0.02</td>
<td>4.73 ± 0.03</td>
<td>8.14 ± 0.05</td>
</tr>
</tbody>
</table>
3.3 Figure S8. Kinetic curves for the thermal isomerization of B to A in CD$_2$Cl$_2$ at 288 K. $k = 1.21 \pm 0.01 \times 10^{-5}$ s$^{-1}$.

3.4 Figure S9. Kinetic curves for the thermal isomerization of B to A in CD$_2$Cl$_2$ at 293 K. $k = 1.79 \pm 0.01 \times 10^{-5}$ s$^{-1}$.
3.5 Figure S10. Kinetic curves for the thermal isomerization of B to A in CD$_2$Cl$_2$ at 298 K.

\[k = 2.91 \pm 0.02 \times 10^{-5} \text{ s}^{-1}. \]

3.6 Figure S11. Kinetic curves for the thermal isomerization of B to A in CD$_2$Cl$_2$ at 303 K.

\[k = 4.73 \pm 0.03 \times 10^{-5} \text{ s}^{-1}. \]
3.7 Figure S12. Kinetic curves for the thermal isomerization of B to A in CD$_2$Cl$_2$ at 308 K.

\[k = 8.14 \pm 0.05 \times 10^{-5} \text{ s}^{-1}. \]
4. Kinetic Plots for the Isomerization of C to B and A.

4.1 Scheme S2. Reaction model and equations for kinetic fittings

\[
[C] = [C]_0 e^{-(k_1 + k_2)t} \quad \text{Equation (S3)}^9
\]

\[
[B] = [C]_0 \frac{k_2}{k_3 - (k_1 + k_2)} \left[e^{-(k_1 + k_2)t} - e^{-k_3t} \right] + [B]_0 e^{-k_3t} \quad \text{Equation (S4)}^9
\]

\[
[A] = 100 - [C] - [B] = [C]_0 e^{-(k_1 + k_2)t} - [C]_0 \frac{k_2}{k_3 - (k_1 + k_2)} \left[e^{-(k_1 + k_2)t} - e^{-k_3t} \right] - [B]_0 e^{-k_3t} \quad \text{Equation (S5)}^9
\]

4.2 Table S5. Summary of the reaction rate constants for the isomerization reactions obtained by curve fitting.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>270</th>
<th>273</th>
<th>276</th>
<th>279</th>
<th>282</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1 \times 10^{-3})</td>
<td>0.32 ± 0.15</td>
<td>0.76 ± 0.44</td>
<td>0.06 ± 0.46</td>
<td>1.67 ± 0.82</td>
<td>0.63 ± 1.11</td>
</tr>
<tr>
<td>(k_2 \times 10^{-3})</td>
<td>6.65 ± 0.14</td>
<td>10.32 ± 0.43</td>
<td>19.23 ± 0.46</td>
<td>32.2 ± 0.99</td>
<td>57.04 ± 1.68</td>
</tr>
<tr>
<td>(k_3 \times 10^{-3})</td>
<td>0.14 ± 0.04</td>
<td>0.40 ± 0.17</td>
<td>0.75 ± 0.08</td>
<td>0.53 ± 0.06</td>
<td>0.76 ± 0.04</td>
</tr>
</tbody>
</table>
4.3 Figure S13. Kinetic curves for the thermal isomerization of C to B and A in CD$_2$Cl$_2$ at 270 K. $k_1 = 0.32 \pm 0.15 \times 10^{-5} \text{ s}^{-1}$, $k_2 = 6.65 \pm 0.14 \times 10^{-5} \text{ s}^{-1}$, $k_3 = 0.14 \pm 0.04 \times 10^{-5} \text{ s}^{-1}$.

4.4 Figure S14. Kinetic curves for the thermal isomerization of B to A in CD$_2$Cl$_2$ at 273K. $k_1 = 0.76 \pm 0.44 \times 10^{-5} \text{ s}^{-1}$, $k_2 = 10.32 \pm 0.43 \times 10^{-5} \text{ s}^{-1}$, $k_3 = 0.40 \pm 0.17 \times 10^{-5} \text{ s}^{-1}$.
4.5 Figure S15. Kinetic curves for the thermal isomerization of C to B and A in CD$_2$Cl$_2$ at 276 K. $k_1 = 0.06 \pm 0.46 \times 10^{-5}$ s$^{-1}$, $k_2 = 19.23 \pm 0.46 \times 10^{-5}$ s$^{-1}$, $k_3 = 0.75 \pm 0.08 \times 10^{-5}$ s$^{-1}$.

4.6 Figure S16. Kinetic curves for the thermal isomerization of C to B and A in CD$_2$Cl$_2$ at 279 K. $k_1 = 1.67 \pm 0.82 \times 10^{-5}$ s$^{-1}$, $k_2 = 32.2 \pm 0.99 \times 10^{-5}$ s$^{-1}$, $k_3 = 0.53 \pm 0.06 \times 10^{-5}$ s$^{-1}$.
4.7 Figure S17. Kinetic curves for the thermal isomerization of C to B and A in CD$_2$Cl$_2$ at 282 K. $k_1 = 0.63 \pm 1.11 \times 10^{-5} \text{ s}^{-1}$, $k_2 = 57.04 \pm 1.68 \times 10^{-5} \text{ s}^{-1}$, $k_3 = 0.76 \pm 0.04 \times 10^{-5} \text{ s}^{-1}$.

4.8 Figure S18. Arrhenius plot for the decay of isomer C to B at different temperatures.

If T = 298 K, $k = 4.53 \times 10^{-3} \text{ s}^{-1}$, then life-time of C at 298 K is $\tau_{1/2} = 90$ s; if T = 273 K, $k = 1.62 \times 10^{-5} \text{ s}^{-1}$, life-time of C at 273 K is $\tau_{1/2} = 6263$ s, that is 1.74 hour.
5. **Photo Irradiation of Isomer A**

The photo irradiation experiment was conducted with a solution of isomer A in CD$_2$Cl$_2$ under a 75 W halogen lamp. The sample was kept at 0 °C during the irradiation time. Cold bath at −78 °C was used to minimize the decay of the photo-excited species during the sample transfer to the NMR spectrometer. The 31P NMR spectra were measured at −10 °C after a certain time of irradiation. The total irradiation time was labeled on the corresponding spectrum in Figure S14.

Figure S19. 31P NMR spectra recorded at 263 K during the photo irradiation of isomer A at 273 K.
6. Kinetic Studies Under 1 atm of CO

Figure S20. Kinetic curves for the thermal isomerization of B to A under Ar vs CO in CD$_2$Cl$_2$ at 298 K. Reaction rate for B to A: $k_{Ar} = 2.91 \pm 0.02 \times 10^{-5}$ S$^{-1}$, $k_{CO} = 1.07 \pm 0.01 \times 10^{-5}$ S$^{-1}$.

Figure S21. Kinetic curves for the thermal isomerization of C to B under Ar vs CO in CD$_2$Cl$_2$ at 273 K. Reaction rate for C to B: $k_{Ar} = 1.03 \pm 0.06 \times 10^{-4}$ S$^{-1}$, $k_{CO} = 1.66 \pm 0.06 \times 10^{-4}$ S$^{-1}$.
7. Determination of quantum yield of the photochemical transition of A to B

Separate 0.4 mL samples of 2.2 mM solution of A in CD$_2$Cl$_2$ and 0.349 mM solution of trans-4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (trans-DCM) in CDCl$_3$ ($\Phi_{DCM}^{CHCl_3} = 0.28$)1 were transferred to a Young-valve NMR tube and were placed at exactly the same distance from the light source and irradiated with 525 nm light from a LED. Conversion to the respective photoproducts was measured by intergration of 1H NMR signals of A and B, and trans-(DCM) and cis-(DCM) respectively. The conversion of A was 11% after 6 seconds irradiation and the conversion of trans-(DCM) was 8.2% after 2 sec of irradiation.

Using the equation:2

$$\Phi = \frac{c \cdot V \cdot 6.023 \cdot 10^{23}}{I_0 \cdot t_{irr}}$$

Where: Φ = quantum yield; c = concentration of the photoproduct; V = solution volume; I_0 = incident light intensity; t_{irr} = irradiation time

Keeping the same volume of samples, we calculate the quantum yield of A at 525 nm:

$$\Phi_A = \frac{c_A \cdot t_{DCM}}{c_{DCM} \cdot t_A}$$
8. Proposed mechanism for photochemical formation of B

8.1 Scheme S3 Proposed mechanism of photochemical formation of B from A

TD-DFT shows that irradiation of A with visible light leads to charge transfer from the Fe-Cl π^* orbital of the chloride ligand trans to the central phosphorus donor. Therefore it is likely that the photochemical formation of B proceeds via initial dissociation of the chlorine radical trans to the central phosphine atom (P1). This should lead to the formation of a pentacoordinate species in which the TP ligand is coordinated in a mer- fashion. This species can further isomerise to the pentacoordinate fac- complex which can rebind the chlorine radical to form species B. Alternative attack of the chlorine radical on the pentacoordinate mer- species leading to E would be hindered by the phenyl group which explains the fact that E is not observed experimentally.
