Mixed Phosphatetrahedranes

Jupp, A.R.; Slootweg, J.C.

DOI
10.1002/anie.202004514

Publication date
2020

Document Version
Final published version

Published in
Angewandte Chemie, International Edition

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):
Mixed Phosphatetrahedranes
Andrew R. Jupp* and J. Chris Slootweg*

Keywords: phosphorus · strained molecules · tetrahedranes

Tetrahedranes, (CR)_4, are aesthetically pleasing yet synthetically challenging derivatives of the simplest platonic hydrocarbon.\(^1\) They are highly strained and offer potential as high energy-density materials. The parent tetrahedrane, (CH)_4, is predicted to be isolable\(^2\) despite its considerable strain energy (G3(MP2) = 136.8 kcal mol\(^{-1}\)\(^\circ\))\(^3\) yet it is still unknown experimentally. In 1978, Maier and co-workers were able to exploit the steric shielding of tert-butyl groups on each carbon vertex to access (CtBu)_4 for the first time, and the kinetic stabilization from the bulky substituents was dubbed the “corset effect”\(^4\). The challenging synthesis was ultimately carried out by irradiation of the tetrakis(tert-butyl)cyclopentadienone and elimination of CO. The tetrakis(trimethylsilyl)tetrahedrane (C(SiMe_3)_4) was later synthesized by isomerization of the cyclobutadiene derivative.\(^5\)

The parallels between carbon and phosphorus are well established. Phosphorus has been called the “carbon-copy” since the two elements have similar electronegativities and the CH fragment is isolobal with the P atom.\(^6\) This phenomenon has given rise to the field of phospha-organic chemistry, where phosphorus can be conceptually substituted into organic compounds to afford intriguing compounds such as phosphaalkenes (R_2C=PR)\(^7\) and phosphaalkynes (R=CP).\(^8\)

Tetrahedranes, however, are the one class of molecule where it is more rational to consider them as carbon-based versions of the phosphorus compounds instead of vice versa. P_4 (strain energy: G3(MP2) = 16.0 kcal mol\(^{-1}\))\(^3\) is the molecular form of elemental phosphorus known as white phosphorus, and was first discovered 350 years ago by the alchemist Hennig Brand.\(^9\) The incorporation of CR groups in place of the P atoms on the vertices of the P_4 tetrahedron would give a series of mixed phosphatetrahedranes, as shown in Figure 1 (where R = tBu is used). Although both the all-phosphorus and all-carbon tetrahedral species P_4 and (CR)_4 (R = tBu, SiMe_3)\(^5\) have been known for a long time, the reports highlighted here describe the first examples of mixed P/C tetrahedrane species.

Cummins and co-workers have successfully synthesized monophosphatetrahedrane P(CtBu)_3.\(^10\) Their approach relied on the generation of the transient 1,2,3-tris(tert-butyl)cyclopropenylphosphinidene (Scheme 1), which undergoes an intramolecular [1+2]-cycloaddition reaction to afford the target product. Initial attempts at phosphinidene generation were based on photolysis of the anthracene-substituted species, which did indeed form a small amount of the phosphatetrahedrane, but also large amounts of unidentified side products. As a change of tack, the authors converted the anthracene derivative to the corresponding secondary phosphine halide by sequential treatment with triflic acid (trifluoromethanesulfonic acid, HOTf) and tetramethylammonium fluoride (TMAF). Dehydrohalogenation of this fluorophosphine by the strong base lithium tetramethylpiperidide (Li[TMP]) afforded the desired compound almost exclusively.
by 31P NMR spectroscopy. The low isolated yield of 19% was attributed to the volatility of the product.

Tri-tert-butylphosphatetrahedrane is a waxy colorless solid with a melting point of ca. 31 °C. The 31P NMR spectrum displays a diagnostic resonance at −488.0 ppm (C6D6), which is typical of highly strained phosphorus compounds (P: δ31P[H] = −520 in C6D6). Single crystals suitable for X-ray diffraction experiments were grown by sublimation, and confirmed the structure as the phosphatetrahedrane with very acute C-P-C bond angles of only 47.1(4)° (average). The product has reasonable thermal stability. No decomposition is observed after heating at 75 °C for 45 minutes in C6D6, but 3 hours of heating at 130 °C in [D8]toluene induces partial conversion to a dimeric form with a house structure.11 Irradiation of the phosphatetrahedrane at 254 nm led to rapid decomposition to a range of products, including the dimer with a diphosphate structure. P(C2Bu)3 is also susceptible to dimerization in the presence of Lewis acids; for example, the use of 10 mol% triphenylborane afforded a [2+2] dimer of tri-tert-butylphosphacyclobutadiene (δ31P[H] = −47.6) and diphosphahousene (δ31P[H] = 55.5, −167.0; JPP = 171 Hz) in a 4:1 ratio.

A completely different strategy was employed by Wolf and co-workers for the synthesis of di-tert-butylphosphatetrahedrane, which was accessed by the nickel-catalyzed dimerization of the corresponding phosphaalkyne, P≡C(Bu)2 (Scheme 2).12 The P2(C2Bu)3 molecule was isolated as a pyrophoric, yellow oil in up to 55% yield (δ31P[H] = −468.2 in C6D6). No single-crystal X-ray structure of the diphosphatetrahedrane was obtained, but a structure of this species in the coordination sphere of a Ag+ cation confirmed the tetrahedral geometry. The pure compound has a melting point of −32 °C, above which it converts into its known ladderane-type dimer (δ31P[H] = −23.1; Scheme 2, top).

A thorough mechanistic investigation revealed the formation of P2(C2Bu)3 using Ni0 precatalyst A bearing three carbonyl ligands and an N-heterocyclic carbene (NHC; specifically 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidine (IMes) or 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidine (IPr, sometimes abbreviated as IDipp; Scheme 2, bottom)). Displacement of two of the carbonyl ligands by P≡C(Bu)2 (δ31P[H] = −68.1) affords the catalytically active nickelphosphacyclopropene B (δ31P[H] = 92.1 (IMes) and 93.2 (IPr)). A second phosphaalkyne reacts with the bound phosphaalkyne via a head-to-tail dimerization to afford the 1,3-diphosphacyclobutadiene in the coordination sphere of the transition metal (C; isolated with iPr1,ImMe (1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidine), δ31P[H] = 47.0). Although the four-membered P2C2 ring has been observed before,13 in this particular system the steric clash of the tert-butyl groups with the bulky NHC ligand promotes the isomerization of the four-membered ring into the tetrahedrane derivative (D), as supported by DFT calculations. The tetrahedral compound is finally displaced by another equivalent of phosphaalkyne to afford the product and regenerate B. This synthetic protocol could be extended using the adamantyl-substituted phosphaalkyne P≡CAd to afford P2(C2Ad)2 (δ31P[H] = −479.8), and even the heterodimer P2(C2Bu)(C2Ad) (δ31P[H] = −473.8) could be identified.

These mixed phosphatetetrads P(C2Bu)3 and P2(C2Bu)2 (R = Bu, Ad), synthesized by completely independent methods, bridge the all-carbon and all-phosphorus tetrahedrane species that have been known for decades. It also raises the tantalizing question of whether the currently unknown combination, P2CR, can be synthesized. It is noteworthy that the mixed tetrahedrane species P5As has been previously synthesized by Cummins and co-workers, which features the necessary P5 moiety.14 Furthermore, given the incredibly rich activation chemistry of P5,15 it will be very interesting to see how these strained species are exploited towards the development of new synthetic routes to a wide array of organophosphorus compounds in the future.

Acknowledgements

This work was supported by the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (NWO/CW) by a VIDI grant (J.C.S.) and a VENI grant (A.R.J.). J.C.S. acknowledges the Alexander von Humboldt Foundation for a Humboldt Research Fellowship for Experienced Researchers.

Conflict of interest

The authors declare no conflict of interest.

Manuscript received: March 27, 2020
Version of record online: May 11, 2020