Auditible secure network overlays for multi-domain distributed applications

Cushing, R.; Koning, R.; Zhang, L.; de Laat, C.; Grosso, P.

Publication date
2020

Document Version
Final published version

Published in
IFIP Networking 2020 Conference and Workshops

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):
Auditable secure network overlays for multi-domain distributed applications

Reginald Cushing
University of Amsterdam
Amsterdam, The Netherlands
r.s.cushing@uva.nl

Ralph Koning
University of Amsterdam
Amsterdam, The Netherlands
r.koning@uva.nl

Lu Zhang
University of Amsterdam
Amsterdam, The Netherlands
l.zhang2@uva.nl

Cees de Laat
University of Amsterdam
Amsterdam, The Netherlands
delaat@uva.nl

Paola Grosso
University of Amsterdam
Amsterdam, The Netherlands
p.grosso@uva.nl

Abstract—The push for data sharing and data processing across organisational boundaries creates challenges at many levels of the software stack. Data sharing and processing rely on the participating parties agreeing on the permissible operations and expressing them into actionable contracts and policies. Converting these contracts and policies into a operational infrastructure is still a matter of research and therefore begs the question how should a digital data market place infrastructure look like? In this paper we investigate how communication fabric and applications can be tightly coupled into a multi-domain overlay network which enforces accountability. We prove our concepts with a prototype which shows how a simple workflow can run across organisational boundaries.

Index Terms—overlay network, marketplace, cryptography, actors, auditing.

I. INTRODUCTION

Data sharing across organisational boundaries has the potential to open up new insights, as well as to create novel business opportunities. Digital Data Marketplace (DDMs) [1] [2] are emerging as architectures to support this mode of interactions. They rely on the participating parties agreeing on the permissible operations (market transactions) and expressing them into actionable contracts and policies. Converting these contracts and policies into an operational infrastructure is still a matter of research and therefore begs the question how should a digital data market place infrastructure look like?

For better accounting and enforcement of policies, the application and network can not be observed in isolation of each other. Network accountability has often been limited to nodes on the network [3]. Our approach is to tie the application and network into an overlay where activity on the network can be observed as functions of the applications. This enhanced observation allows to create an additional plane to the traditional data and control plane. We call this plane the audit plane which can observe the application and network activities and verify the actions. We show this in a working prototype.

This research is partly funded by the DL4LD project. https://dl4ld.nl

Annex to ISBN 978-3-903176-28-7 © 2020 IFIP

II. DEFINING THE ACTORS

The complexity of such a system can be better understood by describing a DDM as a group of actors with specific roles. An actor is a uniquely identifiable entity in the system that has certain functions, is reactive as well as proactive i.e. function calls can be a result of a reaction to a message from another actor or a result of an internal routine. To further categorise actors into roles, we can segregate them into layers. The lower layers deal with connectivity while higher layers deal with policies. In our scenario an actor or actors are part of one of the layers and communicate with other actors in different layers (Figure 1) or domains to facilitate and coordinate market applications.

Fig. 1. Roles of actors in a DDM can be categorised into layers. The lower the level the closer to infrastructure the actor roles are. E.g. Layer 0 deal with having the capabilities to setup virtual resources such as storage, compute and setting up VPN network connections.

III. TRANSACTION-BASED SECURE NETWORK OVERLAY

An operational infrastructure is composed mainly of actors from layers 3, 2, 1. The main purpose of a network overlay is to bring together these actors. In network terminology actors are synonymous to nodes on the network thus a network node can be considered the implementation of an actor. For the rest of this paper actor and node are used interchangeably. Addressing on the network is done using public/private keys where the
public key is the address of the node and the private key is only known to the node. The advantages of this cryptographic addressing mechanism are twofold: First, nodes are not tied to IP addresses and thus can be dynamically allocated to different physical locations. Second, communications from nodes are signed by their private keys which can be verified by any node in the network since the address (public key) is used to verify the signatures. The latter is important since a core function of the network is creating an audit trail of activity on the network and audits need to verify to whom communications belong. Unlike other addressing schemes such as IP, these cryptographic addresses are non-transferable i.e. the same address can not be reused for different nodes at any point in time which strengthens traceability since any actions signed by a node can always be traced back to that node. Name services are responsible to translate public key address to actual IP endpoints to allow communication to proceed over lower protocols. Another side effect feature of such addressing is that nodes can sign each others keys creating a web of trust between nodes that can easily be verified by following the signatures.

Nodes on the network expose functions which can be called by other nodes. The function routes takes the form:

```
publickey/modulename/functionname
```

Registries assist in the discovery of the functions exposed on the network. Since such registries can pose an attack vector in a multi-domain architecture, part of the agreed consortium rules dictate how many registries per domain are hosted on the network and what consensus method is used to agree on a registry query e.g. all registries must return the same result to a query for that query to be deemed valid or a majority have to agree on a result.

Data actors are responsible for exposing the shareable data collections. The cryptographic addressing scheme allows for cryptographic keys assigned to particular datasets. The owner of the dataset is the node that possesses the private key for the collection. The dataset addresses are the bases of application transactions whereby the application’s data movement is listed as a transaction between nodes on the overlay. Data object can thus be given unique addresses in the form:

```
publickey : datahash
```

In this case the address points to the unique data collection and the data hash identifies a data object within the collection e.g. a file. Since the address is the public key, any recipient of the data can check data signatures done by the data collection owner’s private key.

Communication between nodes is of two main types, signal and data. signalling is done through messaging (Figure 2) to invoke functions on other nodes. Data communication is done through dedicated connections per application transaction. For example, to open a connection between two data nodes, the application will perform the signalling to the responsible nodes that manage the endpoints. Obviously, not all applications are authorised to just open connections, for this reason signing and verification nodes are responsible to issue signatures for applications. These signatures are used by the control actors to perform the required actions such as open connections, copy data, etc.

Applications on the network are a list of transactions which represent the dataflows of an application. Figure 3 shows how a typical workflow application can be realised into a set of transactions which are applicable on the overlay network. The workflow application is organised into a pattern to conform to an agreed archetype (these patterns are agreed upon at the policy layer). The application combined with the archetype results in a list of transactions. A transaction would instruct copying of data between nodes of different domains and instruct computations to be performed on the different domains. Transactions are used as instructions to drive the network. Since transactions are made of identifiable source, destination and application, every transaction can be tracked, monitored and audited. This level of granularity of auditing allows to build an audit trail of applications on the network.

Auditing is a major concept in our overlay. Auditor actors are able to sign application transactions. Signatures are produced according to their internal policies (from layer 5). The overlay can have auditor nodes from different domains in which case transactions get multiple signatures. The signed transactions act as an verification and authorisation layer which the lower control layer will use to effect transactions. For example, an application include a transaction to move data from A to B, auditors check if this action conforms with pre-agreed policies in which case the transaction is signed. The actors in the control layer will then provision a network connection from A to B and move the data. In the case where
attackers disagree on signatures, the consensus mechanism
decided by the consortium dictates the outcome e.g. majority
auditors sign or all auditors need to sign. To prevent audit
logs from being tempered with, independent auditor nodes are
responsible to maintain separate databases that can be cross-
referenced to detect tempering.

IV. Prototype

To prove our approach we implemented an overlay proto-
type with the concepts introduced in section III that we
showcased for the first time during the 2019 SuperCompu-
ing conference in Denver. Our current prototype shows a
secure execution environment that can be used in a multi-
domain DDM. In particular, we focus on orchestrating virtual
infrastructure such that it only allows the agreed application
transactions to occur and to provide detailed logging that is
used during the runtime stage of the auditing process.

All nodes expose their functions on a message queue. The
function path described in Section III is used as a message
routing key thus enabling the responsible node to react to
messages directed to it specifically. In our prototype we assign
names to certain node roles. Most importantly we introduce
the following node types:

- **Bucket node** are data nodes which are Docker containers
 that contain either Data (data buckets) or Compute objects
 (compute buckets). A bucket allows a dataset to be
directly addressable using the public key.
- **Controller node** manages the life cycle of buckets i.e.
 creation, deletion and VPN connections between buckets.
 Each domain has at least one controller.
- **Planner node** is the node responsible for the planning
 and execution of the application transactions. This is a
 Docker container with a also a unique address. Each
 application has has a single Docker container as its
 planner thus each application has a unique address.
- **Auditor node** is a node responsible for authorisation
 through signatures of actions such as application transac-
tions. The auditor is Docker container which monitors the
 communication of the overlay and signs requests. Each
domain has at least one Auditor.

By logging the state and the connectivity of the buckets
and other nodes, the auditor can analyse the different logs
for inconsistencies e.g. a transaction not being part of an
application or a transaction happening outside its allowed time
window. When inconsistencies occur, the auditor raises alerts,
lower the confidence in the secure execution of the application,
or abort the execution causing the application to fail. In this
case, its up to the partners to find the underlying problem or
disagreement and to resolve it.

To maintain a temper resistant audit log, the prototype
borrows some ideas from blockchain. Each auditor maintains
a linked list of logs using hashes. A set of logs is called a
block. Periodically, a new block entry is created by hashing
the previous set of logs and including the hash in the next list
entry. The list of hashes means that a modification to a log
entry will break the hashing. Still nothing stops a malicious
attempt to temper with the log to modify the whole database.
For this reason new block hashes are announced to the auditors
which they will include them into their own logs. With this
approach logs from different auditors can be cross-referenced
for tempering.

Figure 4 depict a running prototype with a hello world
workflow. The workflow consists of two data image inputs a
compute and an image output. The archetype of this workflow
dictates that a third party domain will do the computation
thus compute, and two data inputs are transferred to a third
domain for computation and the output is copied out. The
demo depicts the detection of data being tempered which is
detected by transaction signatures failing verification. Other
scenarios include low auditor approval on transaction signa-
tures, malicious planner trying pass on extra transactions and
rogue application on the network.

V. Conclusions and Future Work

In this paper we showed how tying and application with
the network into an overlay enhances the information that is
observed. This was done by decomposing workflow applica-
tions into a list of network transactions that are mapped to
the physical network through the overlay. Accountability is
ameliorated through cryptographic addressing whereby actions
on the network are always signed. Multi-domain logging using
linked lists of hashes reduces the risk of domains tempering
with their logs which further increases transparency on the
network. Here we focused mainly on the data exchange part
of the system, the compute part opens other challenges such
as validation which we are looking at for future work.

REFERENCES

marketplaces for industry 4.0: a survey and gap analysis,” in Working
E. Vierkant, E. Lopez-Escobar, and R. Silverstone, E-conomics: Strategies
accountability for distributed systems,” in Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles, ser. SOSP
’07. New York, NY, USA: Association for Computing Machinery,
1294279