Supporting information

Conversion of CO\textsubscript{2} by non-thermal inductively-coupled plasma catalysis

Edwin Devid*[a], Maria Ronda-Lloret[b], Qiang Huang[a,c], Gadi Rothenberg[b], N. Raveendran Shiju[b], Aart Kleyn*[a]

[a] dr. E. J. Devid, dr. Q. Huang, Prof. dr. A. W. Kleyn
Center of Interface Dynamics for Sustainability
Institute of Materials, China Academy of Engineering Physics
596 Yinhe Road 7th section, Chengdu, Sichuan 610200, People’s Republic of China
E-mail: ejdevid@outlook.com; a.w.kleijn@contact.uva.nl

[b] M. Ronda-Lloret MSc., Prof. dr. G. Rothenberg, dr. N. Raveendran Shiju
Van ’t Hoff Institute for Molecular Sciences
Faculty of Science, University of Amsterdam
P.O. Box 94157, 1090 GD Amsterdam, The Netherlands

[c] Dr. Q. Huang
School of Optoelectronic Engineering
Chongqing University of Posts and Telecommunication
Chongqing 400065, People’s Republic of China
FIG. S1 (a) The catalyst holder, a component developed for our RF-ICP reactor to enable materials to interact fully with CO\textsubscript{2} plasma. Here the material inserted in the catalyst holder are two brass meshes. (b) A zoom-in image of the empty catalyst bed between the two meshes. (c) A microscope image of the dimensions of the brass mesh used for CO\textsubscript{2} splitting.

1. The effect of the RF frequency on CO\textsubscript{2} splitting

FIG. S2 (a) Image of 200 sccm CO\textsubscript{2} plasma at 300 W with a frequency of 13.56 MHz. The pressure in the RF-ICP reactor is 90.2 Pa and the CO\textsubscript{2} feed gas goes from the left to the right side.

(b) The CO\textsubscript{2} conversion and energy efficiency as function of the input power and SEI (Reaction conditions: 200 sccm CO\textsubscript{2}).

(c) Image of 200 sccm CO\textsubscript{2} plasma at 300 W with a frequency of 27.12 MHz. The pressure in the RF-ICP reactor is 92.3 Pa and the CO\textsubscript{2} feed gas goes from the left to the right side.
2. Effect of pretreatment air plasma on reactor wall before CO$_2$ splitting

![Graph](image1)

FIG. S3 The CO$_2$ conversion and energy efficiency as function of the input power. Reaction conditions: black lines display conversion at flow rates 100 and 200 sccm CO$_2$, the red lines display conversion at flow rate 100 and 200 sccm CO$_2$ after pretreatment with air plasma (200 sccm air) at 200 W for 45 min and then for 15 min at 300 W.

3. The effect of tuning the CO$_2$ flow on the CO$_2$ splitting process

![Graph](image2)

FIG. S4 The CO$_2$ conversion and energy efficiency as function of the input power. Reaction conditions: black line displays conversion at flow rate 200 sccm CO$_2$, orange line displays conversion at flow rate 100 sccm CO$_2$ and red line displays conversion at flow rate 50 sccm CO$_2$.
4. Effect of multiple brass and stainless steel mesh capsules in the reactor for CO₂ splitting

FIG. S5 (a) The CO₂ conversion and energy efficiency as function of the input power. Black line is reference conversion of an empty RF-ICP reactor. Red line is the conversion obtained via multiple stainless steel and brass mesh capsules.
(b). An image of the RF-ICP plasma reactor filled with four stainless steel and three brass mesh capsules exposed to CO₂ plasma (at 250 W and pressure of 79.2 Pa).

Reaction conditions: 200 sccm CO₂ and in FIG. S5b the CO₂ plasma flows from left side to the right side. For the experiment with using multiple metal mesh capsules an additional second vacuum pump (located at the side toward the QMS) is used to lower a bit the starting pressure (with 5 till 7 Pa) before the plasma driven CO₂ splitting is started.

5. XPS analyses of metal meshes before and after plasma driven CO₂ splitting

FIG. S6 XPS spectra of carbon about fresh versus plasma exposed metal meshes
FIG. S7 XPS spectra of copper about fresh versus plasma exposed metal meshes