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Abstract

Optimal risk sharing arrangements have been substantially studied in the literature,

from the aspects of generalizing objective functions, incorporating more business con-

straints, and investigating different optimality criteria. This paper proposes an insur-

ance model with multiple risk environments. We study the case where the two agents

are endowed with the Value-at-Risk or the Tail Value-at-Risk, or when both agents

are risk-neutral but have heterogeneous beliefs regarding the underlying probability

distribution. We show that layer-type indemnities, within each risk environment, are

Pareto optimal, which may be environment-specific. From Pareto optimality, we get

that the premium can be chosen in a given interval, and we propose to allocate the

gains from risk sharing equally between the buyer and seller.

Keywords and phrases: Risk management; Optimal insurance; Multiple risk environ-

ments; Value-at-Risk; Tail Value-at-Risk; Heterogeneous beliefs; Environment-specific

layer indemnities.

1 Introduction

This paper studies an optimal (re)insurance contract design problem, where there are different

indemnity environments. In the insurance market, indemnity contracts are often allowed to

1Corresponding author.
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depend on an exogenous realization of mutually exclusive possible events, or the so-called triggers;

such triggers are not necessarily a function of the underlying loss. Examples include multiple-peril

and index-linked insurances; they are also common in the market for catastrophe (CAT) bonds

and other risk-linked securities (see, e.g., Cummins, 2008). In this paper, we focus on insurance

contracts, while our model applies also to an optimal reinsurance setting.

Multiple-peril insurance contract bundles together different coverages arising from various

mutually exclusive perils. For instance, a homeowner insurance policy package may include

coverages due to fire and smoke, theft, lightning strikes, as well as windstorms and hail. Another

instance would be the federally subsidized multiple-peril crop insurance (MPCI) program operated

by the Federal Crop Insurance Corporation in the United States (see, e.g., Smith and Baquet,

1996). Index-linked insurance contract usually writes on a single-peril, with various coverage

levels among different realized values of certain index, such as the Catastrophe Loss Index (CLI);

such a contract is expected to be increasingly more prevalent in the currently pressing climate

change. Both multiple-peril and index-linked insurance contracts have a characteristic of mutually

exclusive and verifiable triggers; after an independent third party confirms that the one and only

one trigger is met, insurance company provides an indemnity coverage to the insured for that

particular trigger. Multiple indemnity environments are also observed in cyber insurance policies

with exclusions, such as, criminal activity, disregard for computer security, act of terrorism or

war, and so on.

There have been only a few studies where the optimal indemnity is not a function only of the

underlying loss, but can also depend on other exogenous risk factors. For instance, Mahul and

Wright (2003) show that indemnity functions depend not only on the underlying loss, but also

on other factors such as the individual yield and/or price for crop revenues. Moreover, Dana and

Scarsini (2007) and Chi and Wei (2020) show that optimal indemnities can depend on exogenous

background risk. In all three papers, it is thus shown that exogenous events may influence the

optimality of indemnity contracts. It requires us to study conditional probability distributions of

losses, which is studied empirically by Ker and Coble (2003) for crop insurance. Albrecher and

Cani (2019) show that if the Value-at-Risk (VaR) is used for holding capital of the insurer, then

randomized reinsurance contracts can be optimal by “creating” a random event that triggers a

non-coverage of the indemnity. In such contracts, there is a trigger that leads to no coverage

for the insurer. For instance, if the reinsurer faces default risk, then limited liability enables the

reinsurer not to fully pay the reinsurance indemnity. In this manner, there is for the insurer

an exogenous event that yields an adjustment in the recovery of the indemnity. This exogenous

event is allowed to be correlated with the underlying loss that the insurer seeks reinsurance for. In

this paper, we propose a very general setting where there is an exogenous event that can trigger

different indemnity contracts.

Originally, optimal (re)insurance contract theory focuses on the unilateral maximization of

the utility of the insurer, where there is a given premium principle for (re)insurance (Borch,

1960a; Arrow, 1963). With preferences based on risk measures, this is more recently studied by
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Balbás et al. (2011) and Tan et al. (2020). A bilateral bargaining approach is proposed by Raviv

(1979) and Aase (2009) for the case where both the insurer and the reinsurer are endowed with

expected utilities. This is extended by Boonen et al. (2016) to a class of comonotonic additive

risk measures. In such a setting, Pareto optimal indemnities have been characterized by Asimit

and Boonen (2018) as the contract profile that minimizes the sum of risk measures. We extend

this approach in this paper to the case with multiple indemnity environments. Thus, our focus

in this paper is on Pareto optimality, which implies that there is no profile of contracts that is

better for both agents, and strictly better for at least one agent.

The primary risk holder (buyer) approaches an insurance seller, and bargains for such an

optimal contract in this bilateral setting. The two agents seek to find an acceptable profile of

indemnity contracts and the corresponding premium paid by the buyer to the seller. Moreover,

we allow the insurer to include a compensation (a bonus) in the case that the trigger for insurance

coverage is not met, and thus no indemnities need to be covered. In particular, we show optimal

indemnity profiles that yield Pareto optimality. The corresponding premiums are usually non-

uniquely determined by Pareto optimality alone.

Pareto optimality leads to a rather specific structure on the profile of indemnity contracts,

while the corresponding premium can be chosen in a flexible manner. In particular, like Asimit

and Boonen (2018), optimal indemnities follow from a sum-minimization. Here, risk is perceived

by the agents with the indemnity environment being also unknown. We first show Pareto optimal

insurance indemnity contracts in the case that the agents use the VaR or the Tail Value-at-Risk

(TVaR), or the agents are risk-neutral but have heterogeneous beliefs regarding the underlying

probability distribution. In the case that the VaR is used by both agents, then Pareto optimality

leads stop-loss or dual stop-loss type indemnities, within each risk environment. On the other

hand, when both agents use TVaR or when both agents are risk-neutral and have heterogeneous

beliefs, then layer-type indemnities, within each environment, are optimal.2 The corresponding

parameters may depend on the specific indemnity environment. In particular, the effect on these

optimal indemnity profiles by environment probabilities are rigorously investigated. As a second

step, the premium can be chosen in a flexible manner, and thus we allow for reciprocal reinsurance

contracts as in Borch (1960b); in particular, we propose to allocate the gains from risk sharing

equally between the buyer and seller, which coincides with the Nash-bargaining solution.3

This paper is set out as follows. Section 2 defines the Pareto optimality problem with multiple

indemnity environments. Pareto optimal solutions of this problem in the case that the two agents

are endowed with VaR or TVaR are shown in Sections 3 and 4, respectively. A constructive exam-

ple is provided in Section 5. In the case that the two agents are risk-neutral but are endowed with

heterogeneous beliefs regarding the underlying probability distribution, Pareto optimal insurance

2In absence of multiple indemnity environments, optimal risk sharing with heterogeneous beliefs and risk-neutral

insurance agents have been studied by Boonen and Ghossoub (2019).
3The use of game-theoretic arguments to understand insurance transactions is also proposed by Dutang et al.

(2013).
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contracts are studied in Section 6. Section 7 discusses the selection of an insurance premium.

Finally, Section 8 concludes. The proofs are delegated to the appendices.

2 Problem Formulation

Let (Ω,F ) be a measurable space, and let P be a probability measure on (Ω,F ). We consider a

one-period economy, where a primary risk holder is endowed with a loss X, which is payable at a

fixed future reference time T > 0. The risk X is defined on (Ω,F ), and we assume that the loss

X is a non-negative random variable with 0 < EP [X] <∞.

The primary risk holder, or buyer, intends to share the loss at time T with another party, or

seller, and accepts to pay a premium at time 0. Both parties agree to achieve an optimality in

terms of their risk positions by choosing appropriate amounts of indemnity and premium at the

present (time 0). However, unlike classical risk sharing problems, this paper considers a setting

such that the indemnity level depends upon an external factor, which cannot be influenced by

both parties, yet can be precisely observed and measured at time T . We will provide a practical

example in Section 5.

To this end, let Y , defined on the same measurable space (Ω,F ), be the trigger to characterize

the exogenous environment such that the sample space Ω is partitioned into finitely many, more

precisely m + 1, disjoint subsets, which are given by {ω ∈ Ω : Y (ω) = k}, for k = 0, 1, . . . ,m.

Moreover, for any ω ∈ Ω, if Y (ω) = 0, then X(ω) = 0. For each remaining environment

k = 1, . . . ,m, the loss (X|Y = k) is risky, in the sense that P (X > 0|Y = k) > 0. Thus, we

explicitly assume that the random variables X and Y are not independent.

If the realized environment is non-risky, i.e. given that Y = 0, since the loss becomes void,

no indemnity transfer is required. We assume that, instead, a bonus b ∈
[
0, b
]

(also called an

experience refund in the insurance industry) will then be paid by the seller to the buyer at time

T , where b ≥ 0.4 Moreover, if the realized environment is risky, i.e. given that Y = k, for some

k = 1, . . . ,m, the buyer will transfer Ik (X) to the seller at time T , where Ik (·) is called an

indemnity function. Note that both parties have to agree at time 0 on a bonus b and a profile

of indemnity functions (I1, . . . , Im) since the exogenous environment is not realized until time T .

Moreover, the buyer also agrees to pay the seller a premium π ≥ 0 at time 0. We refer to a tuple

(b, (I1, . . . , Im) , π) as a contract .

Any admissible profile of indemnity functions is composed of risk transfers that are comono-

tonic within the risky environment Y :

I := {(I1, . . . , Im) : 0 ≤ Ik ≤ Id, Ik and Rk are non-decreasing for all k = 1, . . . ,m} ,

where Id denotes the identity function and Rk, k = 1, . . . ,m, is called a retention function, which

4In practice, b is usually a fraction of the premium, which is a partial return of the premium to the insurance

buyer in the case that there are no losses at all in the industry. In this paper we model the bonus as a decision

variable.
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is defined by Rk : = Id − Ik. For each k = 1, . . . ,m, the first condition is motivated by the

fact that the indemnity loss Ik (X) paid by the seller is at least non-negative and is at most the

loss X; the second condition precludes ex post moral hazard from both parties, as suggested by

Huberman et al. (1983). Note that the realization of Y at time T is not affected by decisions

of any of the two parties at time 0. For each admissible bonus b ∈
[
0, b
]

and indemnity profile

I := (I1, . . . , Im) ∈ I, the realized risk positions of the buyer and seller are respectively given by:

B(b,R;X,Y ) := −b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}, (2.1)

and

S(b, I;X,Y ) := b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}, (2.2)

where R := (R1, . . . , Rm), and IA is an indicator function of an event A. Notice that, due to the

exogenous environment, by definition, the risk positions of the buyer and seller are not necessarily

monotonic functions with respect to the underlying loss X.

Let ρ1 and ρ2 be two risk measures for the buyer and seller respectively to order their risk

preferences at time 0. Together with the agreed premium payment, the post-transfer risk positions

of the buyer and seller are respectively given by ρ1 (B(b,R;X,Y ) + π) and ρ2 (S(b, I;X,Y )− π).

Unless otherwise specified, the following assumption holds throughout this paper.

Assumption 2.1. The risk measures ρ1 and ρ2 are:

� translational invariant: for any m ∈ R and Z ∈ X , ρi(Z +m) = ρi(Z) +m;

� monotonic: for any Z1, Z2 ∈ X with Z1 ≤ Z2, P-a.s., ρi
(
Z1

)
≤ ρi

(
Z2

)
;

� such that ρi(0) = 0 and ρi (X) <∞,

where X is the linear space of finite random variables.

It is well-known that the VaR and the TVaR under the probability measure P satisfy the

conditions in Assumption 2.1. These two risk measures will be recalled and discussed in Sections

3 and 4.

To ensure the risk sharing being viable, both buyer and seller expect that it does not create

any extra risk at time 0. In other words, the following individual rationality constraints have to

be held:

ρ1 (B(b,R;X,Y ) + π) ≤ ρ1 (X) and ρ2 (S(b, I;X,Y )− π) ≤ ρ2 (0) = 0.

Together with translation invariance, these can be rewritten as additional premium constraints:

ρ2 (S(b, I;X,Y )) ≤ π ≤ ρ1 (X)− ρ1 (B(b,R;X,Y )) . (2.3)

Therefore, the joint admissible set A of contracts contains any bonus b ∈
[
0, b
]
, indemnity profile

(I1, . . . , Im) ∈ I, and premium π ≥ 0 such that (2.3) holds. Notice that the joint admissible set
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A is non-empty; in particular, no risk sharing is feasible: b = 0, I1(X) = · · · = Im(X) = 0, and

π = 0.

At time 0, both parties negotiate to choose the design of bonus, indemnity profiles, and

premium payments in the admissible set A. We require that such a contract is Pareto optimal,

which implies it is impossible to find another contract that reduces the post-transfer risk position

of either of them, without increasing the risk position of counterparty. Pareto optimality is

formally defined as follows.

Definition 2.1. A bonus, indemnity profile, and premium payment tuple (b∗, (I∗1 , . . . , I
∗
m) , π∗) ∈[

0, b
]
× I × [0,∞) is called Pareto optimal in A, if (b∗, (I∗1 , . . . , I

∗
m) , π∗) ∈ A, and there is no

admissible tuple (b, (I1, . . . , Im) , π) ∈ A such that

ρ1 (B(b,R;X,Y ) + π) ≤ ρ1 (B(b∗,R∗;X,Y ) + π∗) ;

ρ2 (S(b, I;X,Y )− π) ≤ ρ2 (S(b∗, I∗;X,Y )− π∗) ,

with at least one of the two inequalities being strict.

It holds that (b∗, (I∗1 , . . . , I
∗
m) , π∗) ∈ A is Pareto optimal if and only if (b∗, (I∗1 , . . . , I

∗
m) , π∗) ∈

SG, where

SG := argmin
(b,(I1,...,Im),π)∈A

ρ1

(
B(b,R;X,Y )

)
+ρ2

(
S(b, I;X,Y )

)
, (2.4)

which follows by similar arguments as in Theorem 3.1 of Asimit and Boonen (2018).5 Since the

objective function of the minimization problem in (2.4) does not depend on premium π, this

problem can be solved sequentially by:

Step 1: solving minb∈[0,b],(I1,...,Im)∈I ρ1

(
B(b,R;X,Y )

)
+ρ2

(
S(b, I;X,Y )

)
;

Step 2: for each optimal b∗ ∈
[
0, b
]

and (I∗1 , . . . , I
∗
m) ∈ I from Step 1, choose π∗ ≥ 0 such that

(2.3) holds, i.e.,

ρ2 (S(b∗, I∗;X,Y )) ≤ π∗ ≤ ρ1 (X)− ρ1 (B(b∗,R∗;X,Y )) .

Notice that in Step 1, we omit the constraint:

ρ2 (S(b, I;X,Y )) ≤ ρ1 (X)− ρ1 (B(b,R;X,Y )) .

This is because an optimizer of the minimization problem in Step 1 must satisfy this constraint.

Indeed, with the optimal b∗ ∈
[
0, b
]

and (I∗1 , . . . , I
∗
m) ∈ I, it holds

ρ1

(
B(b∗,R∗;X,Y )

)
+ ρ2

(
S(b∗, I∗;X,Y )

)
≤ ρ1

(
B(0,X;X,Y )

)
+ ρ2

(
S(0,0;X,Y )

)
= ρ1 (X) ,

5Asimit and Boonen (2018) assume law invariance of the preferences; that is, the preferences are only functions

of distributions of random variables. But this assumption is not needed in the proof of the result herein. Also note

that Asimit and Boonen (2018) do not assume convexity of the preferences. Under convexity of the preferences,

it is well-known that the Pareto optimal frontier can be obtained as solutions of the minimization of all weighted

sums of risk measures, where the weights are positive (see Miettinen, 1999). If the preferences are translation

invariant, then Asimit and Boonen (2018) show that it is sufficient to set the weights equal to 1 for both agents.
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where R = X and I = 0 is defined as Rk = Id and Ik = 0 for all k = 1, . . . ,m, respectively.

The main objective of this paper is Step 1: the structure of the indemnities in Pareto optimal

contracts. Section 7 will discuss Step 2: selecting the premium.

One might conjecture that any optimizer of the minimization problem in Step 1 satisfies

I∗1 = · · · = I∗m. If this is the case, then the Pareto optimal risk sharing exercise with multiple

indemnity environments proposed in this paper reduces to the classical problem with a single

indemnity environment, with a simple extension of bonus inclusion. We will however demonstrate

that for the cases of VaR and TVaR this conjecture is not true. We provide counterexamples in

Sections 3.1 and 5, in which we show that there exists an optimizer of the minimization problem

in Step 1 such that I∗i 6= I∗j for some i 6= j. Another interesting question is under what condition

should all Pareto optimal contracts be different among risky environments; this will be addressed

in Section 6.

Remark 2.1. In the recent literature on optimal risk sharing in insurance, there have been roughly

two approaches towards Pareto optimality. First, Cai et al. (2017), Jiang et al. (2018), and Lo

and Tang (2019) assume that the premium follows from a premium principle, i.e. a given function

of the insurance indemnity. Then, the only variable that is determined by Pareto optimal risk

sharing is the indemnity function. Second, Asimit and Boonen (2018), as well as Asimit et al.

(2020), study Pareto optimal risk sharing in which the contract is given by the pair (I, π): an

indemnity function and a corresponding premium. The premium is then part of the contract that

is determined by Pareto optimal risk sharing. This paper follows the second approach.

3 Pareto Optimality with VaR Preferences

In this section, assume that the risk preferences ρ1 and ρ2 of the buyer and seller are both

characterized by the VaR under the probability measure P. The VaR under the probability

measure P is given by

VaRγ(Z) := inf{z ∈ R : P(Z > z) ≤ γ}, where γ ∈ (0, 1).

In particular, practical values of γ are close to 0 in banking and insurance regulation.

Let α ∈ (0, 1) and β ∈ (0, 1) be the respective risk tolerance levels of the buyer and seller.

The minimization problem solving all Pareto optimal bonus and profiles of indemnity functions

is given by:

min
b∈[0,b];

(I1,...,Im)∈I

VaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)
+VaRβ

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

)
.

(3.1)

The risk positions of buyer and seller both involve mutually exclusive loss components herein.

Hence, with the mutual exclusivity, we apply a modification argument (see, e.g., Chi (2012) and
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Cheung et al. (2015a, 2015b)) to identify a sub-class of optimal solutions for the minimization

problem in (3.1), which has the least finite number of parameters to be determined. However,

the modification arguments herein are largely extended from the canonical one, which combines

with the definition of VaR, as well as balancing between retained and indemnity losses when a

modification is carried out.

To this end, denote the objective function in the minimization problem (3.1) as F . Define a

subset of the admissible indemnity profiles as

I1 := {(I1, . . . , Im) ∈ I : for each k = 1, . . . ,m, there exists a dk ∈ [0, ess sup (X)]

such that Ik (x) = (x− dk)+ or Ik (x) = x− (x− dk)+},

where ess sup (X) is the essential supremum of random variable X under probability measure

P, and (x)+ = max{x, 0}. For the sake of a clear exposition of our results, we assume that

ess sup (X) <∞, but our results also hold true in the case that ess sup (X) =∞ and we replace

[0, ess sup (X)] by [0,∞) as the range of X. The following theorem provides a functional form of

some Pareto optimal indemnities with the VaR, and its proof is delegated to Appendix A.

Theorem 3.1. Let ρ1 = VaRα and ρ2 = VaRβ. For any b ∈
[
0, b
]

and (I1, . . . , Im) ∈ I, there

exists an (Ĩ1, . . . , Ĩm) ∈ I1 such that F (b, (Ĩ1, . . . , Ĩm)) ≤ F (b, (I1, . . . , Im)).

Theorem 3.1 states that any admissible indemnity profile (I1, . . . , Im) is suboptimal to

an indemnity profile (Ĩ1, . . . , Ĩm) ∈ I1, with the same bonus b, where the indemnity profile

(Ĩ1, . . . , Ĩm) ∈ I1 is composed of the stop-loss or dual stop-loss risk transfers. Due to such a sub-

optimality result, the minimization problem (3.1), which is infinite-dimensional, can be reduced

to a finite dimensional one:

min
b∈[0,b];

θ1,...,θm∈{−1,1};
d1,...,dm∈[0,ess sup(X)]

FB (b, θ1, d1, . . . , θm, dm) + FS (b,−θ1, d1, . . . ,−θm, dm) , (3.2)

where, for any b ∈
[
0, b
]
, φ1, . . . , φm ∈ {−1, 1}, and d1, . . . , dm ∈ [0, ess sup (X)],

FB (b, φ1, d1, . . . , φm, dm)

:= VaRα

(
−b× I{Y=0} +

m∑
k=1

(
(X − dk)+ I{φk=−1} + (X − (X − dk)+) I{φk=1}

)
I{Y=k}

)
,

and

FS (b, φ1, d1, . . . , φm, dm)

:= VaRβ

(
b× I{Y=0} +

m∑
k=1

(
(X − dk)+ I{φk=−1} + (X − (X − dk)+) I{φk=1}

)
I{Y=k}

)
.

By (2.4) it follows that all these solutions of this finite dimensional minimization problem consti-

tute Pareto optimal bonuses and profiles of indemnity functions. As we alluded in Section 2, we

shall provide a counterexample in Section 5 that there exists an optimizer such that I∗i 6= I∗j for

some i 6= j under the case of VaR; see also the subsection below.
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3.1 Explicit Optimal Indemnities

In this subsection, the effect on the Pareto optimal indemnity profile by the probabilities of

exogenous risky environment is studied under the VaR preferences. In order to do so, the finite

dimensional problem (3.2) is first solved explicitly, under some conditions for technical tractability,

in the following proposition, and its proof is delegated to Appendix B.

Proposition 3.1. Let P (Y = 0) = 0, b = 0, m = 2. Denote p := P (Y = 1) ∈ (0, 1), and thus

P (Y = 2) = 1− p ∈ (0, 1). Denote FX|Y (·|1) and FX|Y (·|2) as conditional distribution functions

of the loss, given that Y = 1 and Y = 2 respectively, which are assumed to be strictly increasing

and continuous in x ∈ [0, ess sup (X)], with FX|Y (0|1) = FX|Y (0|2) = 0; denote F−1
X|Y (·|1) and

F−1
X|Y (·|2) as the inverse functions of FX|Y (·|1) and FX|Y (·|2) respectively. Assume furthermore

that ρ1 = ρ2 = VaRα with α ∈ (0, 1). The optimal indemnity profiles of the finite dimensional

problem (3.2) and the minimized value of the objective function are given as follows:

(1) If p < α and p ≤ 1− α,

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = x ∧ d∗2, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = (x− d∗2)+,

for any d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)
− d∗2

]
and d∗2 ∈

[
0, F−1

X|Y

(
1− α

1−p |2
)]

, or

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = (x− d∗2)+, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = x ∧ d∗2,

for any d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈
[
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
;

– F (0, (I∗1 , I
∗
2 )) = F−1

X|Y

(
1− α

1−p |2
)

.

(2) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

p |1
)
< F−1

X|Y

(
1− α

1−p |2
)

,

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = x ∧ d∗2, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = (x− d∗2)+,

for any d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈
[
max

{
F−1
X|Y

(
1− α

p |1
)
− d∗1, 0

}
, F−1

X|Y

(
1− α

1−p |2
)
− d∗1

]
,

or

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = (x− d∗2)+, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = x ∧ d∗2,

for any d∗1 ∈
[
F−1
X|Y

(
1− α

p |1
)
, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈[
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
;

– F (0, (I∗1 , I
∗
2 )) = F−1

X|Y

(
1− α

1−p |2
)

.

(3) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

,

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = x ∧ d∗2, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = (x− d∗2)+,

for any d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

=
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 = F−1
X|Y

(
1− α

p |1
)
−d∗1 =

F−1
X|Y

(
1− α

1−p |2
)
− d∗1;
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– F (0, (I∗1 , I
∗
2 )) = F−1

X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

.

(4) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

1−p |2
)
< F−1

X|Y

(
1− α

p |1
)

,

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = x ∧ d∗2, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = (x− d∗2)+,

for any d∗1 ∈
[
max

{
F−1
X|Y

(
1− α

1−p |2
)
− d∗2, 0

}
, F−1

X|Y

(
1− α

p |1
)
− d∗2

]
and d∗2 ∈[

0, F−1
X|Y

(
1− α

p |1
)]

, or

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = (x− d∗2)+, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = x ∧ d∗2,

for any d∗1 ∈
[
F−1
X|Y

(
1−α−(1−p)FX|Y (d∗2 |2)

p |1
)
, ess sup (X)

]
and d∗2 ∈[

F−1
X|Y

(
1− α

1−p |2
)
, F−1

X|Y

(
1− α

p |1
)]

;

– F (0, (I∗1 , I
∗
2 )) = F−1

X|Y

(
1− α

p |1
)

.

(5) If α ≤ p and 1− α < p,

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = x ∧ d∗2, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = (x− d∗2)+,

for any d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

and d∗2 ∈
[
0, F−1

X|Y

(
1− α

p |1
)
− d∗1

]
, or

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = (x− d∗2)+, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = x ∧ d∗2,

for any d∗1 ∈
[
F−1
X|Y

(
1−α−(1−p)FX|Y (d∗2 |2)

p |1
)
, ess sup (X)

]
and d∗2 ∈

[
0, F−1

X|Y

(
1− α

p |1
)]

;

– F (0, (I∗1 , I
∗
2 )) = F−1

X|Y

(
1− α

p |1
)

.

(6) If 1− α < p < α,

– I∗1 (x) = (x− d∗1)+ and I∗2 (x) = x ∧ d∗2, or I∗1 (x) = x ∧ d∗1 and I∗2 (x) = (x− d∗2)+,

for any d∗1 ∈
[
F−1
X|Y

(
1−α
p |1

)
, ess sup (X)

]
and d∗2 ∈

[
F−1
X|Y

(
1−α
1−p |2

)
, ess sup (X)

]
;

– F (0, (I∗1 , I
∗
2 )) = 0.

Regardless of the conditions on the parameters p and α, and the conditional distributions of

the loss, I∗1 6= I∗2 . The six cases in Proposition 3.1 are illustrated in Figure 3.1.

Suppose the risk tolerance level of the buyer and seller is such that α ∈
(
0, 1

2

)
. When the prob-

ability of the first risky environment is very small, i.e. p < α and p ≤ 1−α, if the buyer and seller

each bear a stop-loss in one risky environment and a dual stop-loss in another risky environment,

the deductibles d∗1 and d∗2 are flexible, as long as the sum d∗1 + d∗2 is smaller than the conditional

VaR of the second risky environment at an adjusted risk tolerance level F−1
X|Y

(
1− α

1−p |2
)

; if the

buyer and seller each bear stop-loss or dual stop-loss in both risky environments, the deductibles

d∗1 and d∗2 are also flexible, but d∗1 is smaller than F−1
X|Y

(
1− α

1−p |2
)

while d∗2 is necessarily larger

than it. When the probability of the first risky environment increases, but before the conditional
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α

p

1
2 1

1
2

1

0

(1)

(2)

(3)

(4)

(5)

(6)

Figure 3.1: Optimal indemnity profiles of two risky environments when risk tolerance levels of

buyer’s and seller’s Value-at-Risk are equal; linear and horizontal solution of F−1
X|Y

(
1− α

p |1
)

=

F−1
X|Y

(
1− α

1−p |2
)

for Case (3) is chosen for graphical convenience.

VaR of the first risky environment at an adjusted risk tolerance level F−1
X|Y

(
1− α

p |1
)

is at least

F−1
X|Y

(
1− α

1−p |2
)

, same set of optimal indemnity profiles hold except that the flexibility of de-

ductibles shrinks. When the probability of the first risky environment increases to a level such

that F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

, the buyer and seller each must bear a stop-loss in one

risky environment and a dual stop-loss in another risky environment, where the deductibles are

least flexible that d∗1 + d∗2 = F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

. The remaining two Cases (4)

and (5) are similar with the probability of the second risky environment being small.

Similar conclusions hold for the case that α ∈
[

1
2 , 1
)
. However, in this case, as long as the

probability of the first risky environment is such that p ∈ (1− α, α), the buyer and seller each

must bear a stop-loss in one risky environment and a dual stop-loss in another risky environment,

regardless of the conditional distributions of the loss. However, the deductibles d∗1 and d∗2 do

depend on the conditional distributions of the loss; specifically, they are flexible, as long as
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d∗1 ≥ F−1
X|Y

(
1−α
p |1

)
and d∗2 ≥ F−1

X|Y

(
1−α
1−p |2

)
, which are necessarily larger than the unconditional

VaR of the loss F−1
X (1− α).

We close this subsection with some comments on the assumptions of Proposition 3.1. Our aim

is to show explicitly solved optimal indemnity profiles in Proposition 3.1, and to illustrate the effect

on the optimal indemnity profile (I∗1 , I
∗
2 ) by the probabilities of exogenous risky environments.

A solution of the finite dimensional problem (3.2) under weaker assumptions could be obtained

numerically, but there are a large number of cases to be considered. We next summarize two

computational issues:

� The assumption that there are only two possible risky environments (m = 2) is for math-

ematical tractability. Indeed, if there are in general m risky environments, there exist

2m combinations of θ1, θ2, . . . , θm, which grows exponentially in m. However, we emphasize

that even when the number of risky environments is moderately large, the finite dimensional

problem should still be computationally tractable.

� The assumption that the risk tolerance levels of buyer and seller are the same (ρ1 = ρ2 =

VaRα) is for simplicity. If ρ1 = VaRα and ρ2 = VaRβ with α 6= β, we need to distinguish

more cases, which yields more challenges to aggregate and compare local objective values.

Note also that, under the assumption that α = β, the Pareto optimal contracts in (3.2) do

not “distinguish” the roles of buyer and seller via the optimal indemnity profiles, although

it does via the premium (see Section 7). However, if α 6= β, this no longer holds true.

4 Pareto Optimality with TVaR Preferences

In this section, we assume that the risk preferences ρ1 and ρ2 of the buyer and seller are both

characterized by the TVaR under the probability measure P. The TVaR under the probability

measure P is given by

TVaRγ(Z) :=
1

γ

∫ γ

0

VaRη(Z)dη, where γ ∈ (0, 1].

The TVaR is alternatively called Conditional Value-at-Risk or Expected Shortfall, and has gained

practitioner’s interest since the introduction of Basel III regulations.

Let α ∈ (0, 1] and β ∈ (0, 1] be the respective risk tolerance levels of the buyer and seller. The

minimization problem that yields all Pareto optimal bonuses and profiles of indemnity functions

is given by:

min
b∈[0,b];

(I1,...,Im)∈I

TVaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)
+TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

)
.

(4.1)

In parallel to Section 3, using mutual exclusivity and extended modification arguments, a

sub-class of optimal solutions for the minimization problem (4.1) is identified, which has the
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least finite number of parameters. Hence, the infinite dimensional minimization problem (4.1)

is reduced to a finite dimensional one (cf. Equation (4.2) below); yet the finite dimensional

minimization problem (4.2) can only characterize some Pareto optimal contracts.

Denote the objective function in the minimization problem (4.1) as G. Define a subset of the

admissible indemnity profiles

I2 := {(I1, . . . , Im) ∈ I : for each k = 1, . . . ,m, there exist dk,1 ∈ [0, ess sup (X)]

and dk,2 ∈ [dk,1, ess sup (X)] s.t. Ik (x) = (x−dk,1)+−(x−dk,2)+

or Ik (x) = x− (x− dk,1)+ + (x− dk,2)+}.

The following theorem provides a functional form of some Pareto optimal indemnities with the

TVaR, and its proof is delegated to Appendix C.

Theorem 4.1. Let ρ1 = TVaRα and ρ2 = TVaRβ. For any b ∈
[
0, b
]

and (I1, . . . , Im) ∈ I, there

exists an (Ĩ1, . . . , Ĩm) ∈ I2 such that G(b, (Ĩ1, . . . , Ĩm)) ≤ G (b, (I1, . . . , Im)).

Theorem 4.1 states that any admissible indemnity profile (I1, . . . , Im) is sub-optimal to an

indemnity profile (Ĩ1, . . . , Ĩm) ∈ I2, with the same bonus b. The indemnity profile (Ĩ1, . . . , Ĩm) ∈
I2 is composed of single layer or dual single layer risk transfers. Due to such a sub-optimality

result, the infinite dimensional minimization problem (4.1) can be reduced to a finite dimensional

problem to obtain some Pareto optimal contracts:

min
b∈[0,b];

θ1,...,θm∈{−1,1};
(d1,1,d1,2),...,(dm,1,dm,2)∈[0,ess sup(X)]2:

dk,1≤dk,2, ∀k=1,...,m

GB (b, θ1, d1,1, d1,2, . . . , θm, dm,1, dm,2)

+GS (b,−θ1, d1,1, d1,2, . . . ,−θm, dm,1, dm,2) ,

(4.2)

where, for any b ∈
[
0, b
]
, φ1, . . . , φm ∈ {−1, 1} and 0 ≤ dk,1 ≤ dk,2 ≤ ess sup (X),

GB (b, φ1, d1,1, d1,2, . . . , φm, dm,1, dm,2)

:= TVaRα

(
− b× I{Y=0} +

m∑
k=1

((
(X − dk,1)+ − (X − dk,2)+

)
I{φk=−1}

+
(
X − (X − dk,1)+ + (X − dk,2)+

)
I{φk=1}

)
I{Y=k}

)
,

and

GS (b, φ1, d1,1, d1,2, . . . , φm, dm,1, dm,2)

:= TVaRβ

(
b× I{Y=0} +

m∑
k=1

((
(X − dk,1)+ − (X − dk,2)+

)
I{φk=−1}

+
(
X − (X − dk,1)+ + (X − dk,2)+

)
I{φk=1}

)
I{Y=k}

)
.
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We comment on two technical difficulties in explicitly solving the finite dimensional problem

(4.2) under the case of TVaR, even under the same set of assumptions as in Proposition 3.1.

� Since an optimal indemnity function is taking the (dual) layer-form (Theorem 4.1), there

appears an additional jump in the conditional distribution functions of the retained and

indemnity losses. Hence, more cases need to be considered.

� TVaR is defined as an area under the quantile function. Therefore, we need to distin-

guish considerably more sub-case conditions compared with the proof of Proposition 3.1 in

Appendix B. This brings more challenges to aggregate and compare local objective values.

Later, in Section 5, we will provide an example where there exists an optimizer to the finite

dimensional problem (4.2) such that I∗i 6= I∗j for some i 6= j. Here, before closing this section,

we first study a situation where there exists an optimizer such that I∗1 = I∗2 = · · · = I∗m. This is

indeed the case if the risk measure of the seller ρ2 is given by the expectation under P; in other

words, the seller is risk-neutral with ρ2 = EP = TVaR1. The proof of the following proposition is

delegated to Appendix D.

Proposition 4.1. Let ρ1 = TVaRα and ρ2 = EP. Then, (b∗, (I∗1 , . . . , I
∗
m) , π∗) ∈ A with b∗ = 0,

I∗1 = I∗2 = · · · = I∗m = Id, i.e. R∗1 = R∗2 = · · · = R∗m = 0, is a Pareto optimal contract.

In particular, note that the Pareto optimal indemnity functions in Proposition 4.1 are not

environment-specific provided that Y 6= 0. Then, there exists an optimal contract that coincides

with an optimal contract in the case that m = 1.

5 Heterogeneous Indemnities among Risky Environments

In this section, we numerically illustrate a flexible implementation of the indemnity profile with

multiple risky environments by Pareto optimality. Consider an insurance company that has N =

1, 000 policyholders, who all have hurricane homeowner insurance contracts with the insurance

company. The policyholders are assumed to have their houses in the same geological area, and

individual claims are assumed to be identical. Therefore, the total loss of the insurance company

is X = N ×XI , where XI is the stochastic individual claim. Note that we assume for simplicity

that the insurance claim is the same for every policyholder, which may not be true when the

policyholders hold different values of their houses; one should consider to differentiate the costs of

various house values in order to avoid excessive under-insurance or over-insurance. Such details

are ignored for parsimonious reasoning.

The insurance company seeks to purchase an index-linked hurricane reinsurance contract,

which covers two grouped scales, i.e. m = 2, for example, of Saffir-Simpson Hurricane Wind

Scale in the United States. When the scale is either 1, 2, 3, 4, the wind could cause certain degree

of structural damage to a well-constructed frame house; when the scale is at the highest level 5, the

wind must cause total structural damage to any well-constructed frame house. The advantage of
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an index-linked reinsurance policy is that the loss adjustment expenses, i.e. claim settling costs,

are dramatically reduced, which should reduce the premium. This is possible, since the risky

environments are fully identifiable by robust and publicly available weather measurements. For

simplicity, assume that only one hurricane per year is covered by this reinsurance contract.

We denote Y = 0, when there is no hurricane, with probability 0.5; Y = 1, when the covered

hurricane is of scale 1, 2, 3, or 4, with probability 0.2; Y = 2, when the covered hurricane is of

scale 5, with probability 0.3. If Y = 0, then, with probability 1, XI = 0; if Y = 1, then, with

probability 0.25, XI = 0, with probability 0.5, XI = 1 million, with probability 0.25, XI = 2

millions; if Y = 2, then, with probability 1, XI = 2 millions. To summarize,

P (X = 0|Y = 0) = 1;

P (X = 0|Y = 1) = 0.25, P (X = 1|Y = 1) = 0.5, P (X = 2|Y = 1) = 0.25;

P (X = 2|Y = 2) = 1,

in which the units for X are in billions. Assume that the risk tolerance levels of the insurer

(buyer) and reinsurer (seller) are respectively α = 0.01 and β = 0.02. Assume further that b = 0,

and hence the only feasible bonus is given by b∗ = 0.

First, we assume that both the buyer and the seller adopt the VaR as their time-0 risk

preferences. The finite dimensional minimization problem (3.2) can be solved explicitly, and the

optimal post-transfer objective value is given by 2. There exist multiple solutions, and it is possible

that I∗1 6= I∗2 . For instance, a solution is given by I∗1 (x) = (x− 0.5)+ and I∗2 (x) = x− (x− 1.5)+,

for any x ∈ [0, 2].

Second, we assume that both the buyer and the seller adopt the TVaR as their time-0 risk

preferences. Then, the finite dimensional minimization problem is given by (4.2), which can also

be solved explicitly. Again, the optimal post-transfer objective value is given by 2, and it is

possible that I∗1 6= I∗2 . For instance, a solution is given by I∗1 (x) = (x− 0.5)+ − (x− 1.3)+ and

I∗2 (x) = x− (x− 0.6)+ + (x− 1.8)+, for any x ∈ [0, 2].

There are two important implications of this numerical illustration. Firstly, it shows that

there may exist profiles (b∗, (I∗1 , . . . , I
∗
m)) ∈

[
0, b
]
× I solving

min
b∈[0,b],(I1,...,Im)∈I

ρ1

(
B(b,R;X,Y )

)
+ρ2

(
S(b, I;X,Y )

)
,

such that I∗i 6= I∗j for some 1 ≤ i, j ≤ m. Hence, Pareto optimal risk sharing with multiple

indemnity environments may not reduce to the classical Pareto optimal risk sharing with a single

indemnity environment. Secondly, since the optimal indemnities among risky environments are

not necessarily the same, there is much more flexibility in the Pareto optimal contracts than in

the classical case with a single risky environment.
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6 Heterogeneous Indemnities via Heterogeneous Beliefs

In Section 5, we introduced an example in which there exists a Pareto optimal indemnity profile

with heterogeneous indemnities among risky environments, under the cases of VaR and TVaR.

However, due to modification arguments in solving the cases of VaR and TVaR, such an example

does not necessarily imply that for all Pareto optimal indemnity profiles, the indemnities are

heterogeneous among risky environments; indeed, Proposition 4.1 is a counter-statement under

the case of TVaR, with seller’s preference being expectation, that there exists a Pareto optimal

indemnity profile with homogeneous indemnities among risky environments. In this section, we

consider a model setting, which is simple enough to provide a sufficient condition of the statement

that, for all Pareto optimal indemnity profiles, the indemnities are heterogeneous among risky

environments.

We assume that the risk preferences ρ1 and ρ2 of the buyer and seller are both simply charac-

terized by the expectation, but the buyer and seller have heterogeneous beliefs on the future states

of the world. Specifically, the buyer is endowed with the probabilistic measure P, while the seller

is endowed with another probability measure Q. Both P and Q are beliefs on the measurable space

(Ω,F ). We assume that EQ[X] <∞ and that the expectation under Q is monotonic, i.e., Q� P,

or for any Z1, Z2 ∈ X with Z1 ≤ Z2, P-a.s., it holds that EQ[Z1] ≤ EQ[Z2]. It thus holds that

both the preferences of the buyer and the seller satisfy Assumption 2.1. Moreover, all assump-

tions on the risky environments and the conditional loss hold under Q, i.e. Q (X > 0|Y = k) > 0

for any risky environment k = 1, 2, . . . ,m. Then, according to the discussions in Section 2, the

minimization problem solving all Pareto optimal profiles of indemnity functions is given by:

min
b∈[0,b];

(I1,...,Im)∈I

EP

[
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

]
+EQ

[
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

]
. (6.1)

Unlike Sections 3 and 4, the minimization problem (6.1) is solved explicitly in the following

theorem, and its proof is delegated to Appendix E.

Theorem 6.1. Let ρ1 = EP and ρ2 = EQ. An admissible tuple (b∗, (I∗1 , . . . , I
∗
m) , π∗) ∈ A is

Pareto optimal if and only if

b∗ = b if Q (Y = 0) < P (Y = 0) ,

b∗ = b̃ if Q (Y = 0) = P (Y = 0) , and

b∗ = 0 if Q (Y = 0) > P (Y = 0) ,

where b̃ is an arbitrary constant in
[
0, b̄
]
, and for any k = 1, 2, . . . ,m, and for any t ∈

[0, ess sup (X)],

(I∗k)
′
(t) = 1 if Q ({X > t} ∩ {Y = k}) < P ({X > t} ∩ {Y = k}) ,

(I∗k)
′
(t) = hk (t) if Q ({X > t} ∩ {Y = k}) = P ({X > t} ∩ {Y = k}) , and

(I∗k)
′
(t) = 0 if Q ({X > t} ∩ {Y = k}) > P ({X > t} ∩ {Y = k}) ,
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where hk is a measurable function taking values in [0, 1].

This theorem entails that, under each risky environment k = 1, 2, . . . ,m, if the seller believes

that the loss is more likely to be small while the buyer believes that the loss is more likely to

be large, then the environment-specific tail of the loss is transferred from the buyer to the seller.

If there is only one indemnity environment, then the optimal contracts in Theorem 6.1 are also

shown in Proposition 4.2 of Boonen and Ghossoub (2019). In absence of heterogeneous beliefs

and under a single indemnity environment when the insurance agents are endowed with distortion

risk measures, the optimal indemnities have a similar layer-type structure as in Theorem 6.1 (see

Cui et al., 2013; Assa, 2015). Note, however, that with multiple indemnity environments, the

layer-type indemnity structure only holds within a risky environment k = 1, 2, . . . ,m. In general,

the indemnity is not of a layer-type.

Suppose that P(Y = k) = Q(Y = k), for some k = 1, 2, . . . ,m. Then, given a realization of

Y = k 6= 0, the optimal indemnity contracts only depend on the distribution of X|Y = k under P
and Q, and not on the distribution of Y . This is in sharp contrast to what we observed in Section

3.1, in which the shapes of optimal indemnities I1 and I2 under homogeneous beliefs, m = 2 and

ρ1 = ρ2 = VaRα, do explicitly depend on P(Y = 1) = p.

The following corollary is a direct consequence of Theorem 6.1, and provides a sufficient

condition of the statement that, for all Pareto optimal indemnity profiles, the indemnities are

heterogeneous among risky environments.

Corollary 6.2. Let ρ1 = EP, ρ2 = EQ, and let a pair of indemnity environments (i, j) with i 6= j.

If there exists a t ≥ 0 such that

(Q ({X > t} ∩ {Y = i})− P ({X > t} ∩ {Y = i}))

× (Q ({X > t} ∩ {Y = j})− P ({X > t} ∩ {Y = j})) < 0,

then for all Pareto optimal contracts it holds that I∗i 6= I∗j .

Example 6.1. Suppose that m = 2, and that the seller and buyer both believe that Y = k happens

with probability pk > 0 for k = 1, 2, with p1 +p2 < 1. The seller believes X|Y = k is exponentially

distributed with parameter λ1k and the buyer believes X|Y = k is exponentially distributed with

parameter λ2k, for k = 1, 2. Then, P ({X > t} ∩ {Y = 1}) = e−λ11tp1, P ({X > t} ∩ {Y = 2}) =

e−λ12tp2, Q ({X > t} ∩ {Y = 1}) = e−λ21tp1, and Q ({X > t} ∩ {Y = 2}) = e−λ22tp2. We get

from Theorem 6.1 that (b∗, (I∗1 , . . . , I
∗
m) , π∗) ∈ A is Pareto optimal if and only if for any k = 1, 2,

I∗k = Id if λ2k > λ1k, and I∗k = 0 if λ2k < λ1k,

which is a direct consequence of e−λ2ktpk < e−λ1ktpk if and only if λ2k > λ1k, for all t ≥ 0 and

k = 1, 2. For instance, if λ11 > λ21 and λ22 > λ12, then I∗1 = 0 and I∗2 = Id. Thus, there is full

coverage if Y = 2 and no coverage if Y = 1.

Now, assume that there may also be heterogeneous beliefs regarding the distribution of Y . Let

pk := P(Y = k) and qk := Q(Y = k) for k = 0, 1, 2. Then, we get from Theorem 6.1 that
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(b∗, (I∗1 , . . . , I
∗
m) , π∗) ∈ A is Pareto optimal if and only if

b∗ = b if q0 < p0,

b∗ = b̃ if q0 = p0, and

b∗ = 0 if q0 > p0,

where b̃ is an arbitrary constant in
[
0, b̄
]
, and for any k = 1, 2, and for any t ∈ [0, ess sup (X)],

(I∗k)
′
(t) = 1 if e−λ2ktqk < e−λ1ktpk,

(I∗k)
′
(t) = hk (t) if e−λ2ktqk = e−λ1ktpk, and

(I∗k)
′
(t) = 0 if e−λ2ktqk > e−λ1ktpk.

Thus, b∗ is a non-decreasing function of p0 and a non-increasing function of q0. Likewise, for

any t ∈ [0, ess sup (X)], Ik(t) is a non-decreasing function of pk and a non-increasing function of

qk. Hence, if an agent’s subjective probability of a state Y = k decreases, ceteris paribus, then

the agent absorbs weakly more risk in any Pareto optimal contract.

7 Range of Premiums

Recall from Section 2 that the structure of Pareto optimal contracts is based on two steps. In Step

1, we got a characterization of the indemnity contracts corresponding to Pareto optimal contracts.

In this section, we discuss Step 2: selecting the premium. For a fixed bonus b and indemnity

profile (I1, . . . , Im) minimizing the sum of risk measures, (and thus constituting a Pareto optimal

contract), the aim is to select π in the interval [ρ2 (S(b, I;X,Y )) , ρ1 (X) − ρ1 (B(b,R;X,Y ))]

so that (b, (I1, . . . , Im) , π) ∈ SG. Recall that this interval is always non-empty. If the interval

[ρ2 (S(b, I;X,Y )) , ρ1 (X) − ρ1 (B(b,R;X,Y ))] is single-valued, we have no relevant problem as

the status quo is then Pareto optimal. Suppose now that this interval is not single-valued, so that

ρ2 (S(b, I;X,Y )) < ρ1 (X)− ρ1 (B(b,R;X,Y )).

The set A captures already the individual rationality conditions. In other words, any contract

in A is weakly preferred by the both agents compared to the status quo. The status quo is reached

when both agents do nothing, and thus b = 0, Ik(X) = 0 for all k = 1, . . . ,m, and π = 0. Clearly,

if π is equal to ρ2 (S(b, I;X,Y )) or ρ1 (X) − ρ1 (B(b,R;X,Y )), then the seller or the buyer is

indifferent compared to the status quo, respectively.

When there are more than two agents, it may be of interest to study remaining core-type

stability conditions (Asimit and Boonen, 2018). If there is a deep liquid market with many

agents, Arrow-Debreu equilibrium concepts are popular in pricing (Arrow and Debreu, 1954). In

the absence of knowing other information about the market, a solution is to allocate the gains

from sharing risk equally:

ρ2 (S(b, I;X,Y )− π) = ρ1 (B(b,R;X,Y ) + π)− ρ1 (X) .
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Translation invariance of ρ1 and ρ2 yields directly that

π = ρ2 (S(b, I;X,Y )) +
1

2
(ρ1 (X)− ρ1 (B(b,R;X,Y ))− ρ2 (S(b, I;X,Y ))) . (7.1)

The contract (b, (I1, . . . , Im) , π) ∈ SG, where π is given by (7.1), coincides with Nash-bargaining

solution (Nash, 1950), as (b, (I1, . . . , Im) , π) solves:

max
(b,(I1,...,Im),π)∈A

(ρ1 (B(b,R;X,Y ) + π)− ρ1 (X)) · ρ2 (S(b, I;X,Y )− π) .

This equivalence can be shown via the same arguments as in Boonen et al. (2016). Note here

that (b, (I1, . . . , Im) , π) ∈ A implies that the two components ρ1 (B(b,R;X,Y ) + π) − ρ1 (X)

and ρ2 (S(b, I;X,Y )− π) are non-positive. Moreover, it is well-known that the Nash-bargaining

is necessarily Pareto optimal (Nash, 1950). The Nash-bargaining solution has been character-

ized by Nash (1950) as the only solution concept that satisfies four properties6, and alternative

characterizations are proposed by Binmore et al. (1986) and Van Damme (1986).

8 Conclusion

Multiple indemnity environments affect the shape of optimal indemnity contracts. Traditionally,

with a single indemnity environment, it is well-known that stop-loss and layer-type indemnities

are Pareto optimal for the VaR and TVaR, respectively. This paper generalizes this finding to the

case of multiple indemnity environments. We show that stop-loss and layer-type indemnities are

also optimal for the VaR and TVaR, respectively, but these indemnities may have parameters that

are environment-specific; moreover, full insurance is Pareto optimal when the buyer minimizes

a TVaR and the seller is risk-neutral. When both the buyer and the seller are risk-neutral but

have heterogeneous beliefs regarding the underlying probability distribution, we find all Pareto

optimal contracts in closed form.

While there are many applications of VaR, TVaR and the expectation in insurance and its

regulatory frameworks as Solvency II and Swiss Solvency Test, we wish to generalize our findings

to the more general monetary risk measures. For the monetary risk measure, the technical

difficulty of the problem to find Pareto optimal contracts with multiple indemnity environments

is to include mutually exclusive background risk into the risk sharing approach. Also, a more

realistic situation would be that the seller is endowed with background risk that is due to potential

other business lines (see, e.g., Dana and Scarsini, 2007; Chi and Wei, 2020). We leave these two

problems open for further research.
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ments. The authors thank Léonard Vincent for his helpful comment on the paper. Yichun Chi

is supported by the grant from National Natural Science Foundation of China (No. 11971505).

Wing Fung Chong is supported by, start-up funds provided by the Department of Mathematics

and Department of Statistics, University of Illinois at Urbana-Champaign, and by a Centers of

Actuarial Excellence (CAE) Research Grant (2019–2021) from the Society of Actuaries (SOA).

Any opinions, finding, and conclusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the SOA.

A Proof of Theorem 3.1

For any b ∈
[
0, b
]

and (I1, . . . , Im) ∈ I, define

a := VaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)
,

c := VaRβ

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

)
.

For any k = 1, . . . ,m, define the right-continuous inverse of Ik in c as

I−1+
k (c) := inf {x ∈ [0, ess sup (X)] : Ik (x) > c} ,

where, by convention, inf ∅ = ess sup (X). Moreover, define similarly the right-continuous inverse

of Rk in a as

R−1+
k (a) := inf {x ∈ [0, ess sup (X)] : Rk (x) > a} .

First, we assume a ≥ 0. For each k = 1, . . . ,m, consider the following two cases and the

corresponding sub-cases to construct the modification Ĩk.

Case 1: Assume that I−1+
k (c) ≤ R−1+

k (a).

Sub-case 1.1: Consider that I−1+
k (c) < ess sup (X). Define Ĩk (x) :=(

x− I−1+
k (c) + c

)
+

, and hence R̃k (x) = x −
(
x− I−1+

k (c) + c
)

+
,

for any x ∈ [0, ess sup (X)]. Note that, by definition, it holds for any

x ∈ [0, ess sup (X)] that Ĩk (x) > c if and only if Ik (x) > c. Moreover, using

the identity that Ik
(
I−1+
k (c)

)
+Rk

(
I−1+
k (c)

)
= I−1+

k (c), it holds for any

x ∈ [0, ess sup (X)] that R̃k (x) ≤ I−1+
k (c)− c = Rk

(
I−1+
k (c)

)
≤ a, where

the last inequality is true regardless of the following two sub-sub-cases:

Sub-sub-case 1.1.1: Consider further that R−1+
k (a) < ess sup (X). By

the monotonicity of Rk, it follows Rk
(
I−1+
k (c)

)
≤

Rk
(
R−1+
k (a)

)
= a.

Sub-sub-case 1.1.2: Consider further that R−1+
k (a) = ess sup (X). Nec-

essarily, for any x ∈ [0, ess sup (X)], it holds that

Rk (x) ≤ a; in particular, Rk
(
I−1+
k (c)

)
≤ a.
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Sub-case 1.2: Consider that I−1+
k (c) = ess sup (X). Necessarily, for any x ∈

[0, ess sup (X)], Ik (x) ≤ c. By the case condition that I−1+
k (c) ≤ R−1+

k (a),

necessarily, R−1+
k (a) = ess sup (X), and hence, for any x ∈ [0, ess sup (X)],

Rk (x) ≤ a. Moreover, ess sup (X) must be finite. Indeed, if ess sup (X) =

∞, the facts that, Ik (2 (a+ c)) ≤ c and Rk (2 (a+ c)) ≤ a, implies

that 2 (a+ c) = Ik (2 (a+ c)) + Rk (2 (a+ c)) ≤ a + c, which leads to

a contradiction. Define Ĩk (x) := (x− ess sup (X) + Ik (ess sup (X)))+,

and hence R̃k (x) = x − (x− ess sup (X) + Ik (ess sup (X)))+, for any x ∈
[0, ess sup (X)]. Note that, by definition, it holds for any x ∈ [0, ess sup (X)]

that Ĩk (x) ≤ c. Moreover, using the identity that Ik (ess sup (X)) +

Rk (ess sup (X)) = ess sup (X), it holds for any x ∈ [0, ess sup (X)] that

R̃k (x) ≤ ess sup (X)− Ik (ess sup (X)) = Rk (ess sup (X)). Recall that, for

any x ∈ [0, ess sup (X)], Rk (x) ≤ a; in particular, Rk (ess sup (X)) ≤ a.

Hence, for any x ∈ [0, ess sup (X)], R̃k (x) ≤ a.

In both sub-cases 1.1 and 1.2, the constructed Ĩk satisfies that, for any x ∈ [0, ess sup (X)],

Ĩk (x) > c if and only if Ik (x) > c. Therefore,

P
(
Ik (X) I{Y=k} > c

)
= P ({Ik (X) > c} ∩ {Y = k}) + P ({0 > c} ∩ {Y 6= k})

= P
(
{Ĩk (X) > c} ∩ {Y = k}

)
+ P ({0 > c} ∩ {Y 6= k})

= P
(
Ĩk (X) I{Y=k} > c

)
.

Moreover, in both sub-cases 1.1 and 1.2, the constructed R̃k satisfies R̃k (x) ≤ a for any

x ∈ [0, ess sup (X)]. Therefore,

P
(
Rk (X) I{Y=k} > a

)
= P ({Rk (X) > a} ∩ {Y = k}) ≥ 0 = P

(
R̃k (X) I{Y=k} > a

)
.

Case 2: Assume that R−1+
k (a) ≤ I−1+

k (c). If R−1+
k (a) < ess sup (X), define

R̃k (x) :=
(
x−R−1+

k (a) + a
)

+
, and hence Ĩk (x) = x −

(
x−R−1+

k (a) + a
)

+
,

for any x ∈ [0, ess sup (X)]. If R−1+
k (a) = ess sup (X), define

R̃k (x) := (x− ess sup (X) +Rk (ess sup (X)))+, and hence Ĩk (x) = x −
(x− ess sup (X) +Rk (ess sup (X)))+, for any x ∈ [0, ess sup (X)]. By following

similar arguments as in Case 1 with interchanging the roles of Ik (or the constructed Ĩk)

and Rk (or the constructed R̃k), as well as of a and c, one can show that the constructed

Ĩk and R̃k satisfy

P
(
Ik (X) I{Y=k} > c

)
≥ P

(
Ĩk (X) I{Y=k} > c

)
;

P
(
Rk (X) I{Y=k} > a

)
= P

(
R̃k (X) I{Y=k} > a

)
.
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Rk (x)

ess sup(X)R−1+
k (a)

a

0 I−1+
k (c)

R̃k (x)

Ik (x)

ess sup(X)R−1+
k (a)

c

0 I−1+
k (c)

Ĩk (x)

Figure A.2: Constructions of R̃k (left) and Ĩk (right), under the conditions that a ≥ 0 and

I−1+
k (c) ≤ R−1+

k (a) < ess sup (X), for VaR risk preferences (Sub-sub-case 1.1.1); linear Rk and

Ik are chosen for graphical convenience, and R̃k and Ĩk are bold-faced.

For the ease of understanding these cases above, Figure A.2 illustrates the modification argu-

ments of Sub-sub-case 1.1.1.

Therefore, for any k = 1, . . . ,m, the constructed Ĩk and R̃k satisfy

P
(
Ik (X) I{Y=k} > c

)
≥ P

(
Ĩk (X) I{Y=k} > c

)
and P

(
Rk (X) I{Y=k} > a

)
≥ P

(
R̃k (X) I{Y=k} > a

)
.

By definition,

a = inf

{
z ∈ R : P

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k} > z

)
≤ α

}

and

c = inf

{
z ∈ R : P

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k} > z

)
≤ β

}
.

Therefore, by mutual exclusivity,

P

(
−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k} > a

)
= P

(
−b× I{Y=0} > a

)
+

m∑
k=1

P
(
R̃k (X) I{Y=k} > a

)
≤ P

(
−b× I{Y=0} > a

)
+

m∑
k=1

P
(
Rk (X) I{Y=k} > a

)
= P

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k} > a

)
≤ α

and

P

(
b× I{Y=0} +

m∑
k=1

Ĩk (X) I{Y=k} > c

)
= P

(
b× I{Y=0} > c

)
+

m∑
k=1

P
(
Ĩk (X) I{Y=k} > c

)

22

Electronic copy available at: https://ssrn.com/abstract=3616746



≤ P
(
b× I{Y=0} > c

)
+

m∑
k=1

P
(
Ik (X) I{Y=k} > c

)
= P

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k} > c

)
≤ β.

By definition, it holds that

VaRα

(
−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k}

)

= inf

{
z ∈ R : P

(
−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k} > z

)
≤ α

}
≤ a.

Similarly, it holds that

VaRβ

(
b× I{Y=0} +

m∑
k=1

Ĩk (X) I{Y=k}

)
≤ c.

Hence, (Ĩ1, . . . , Ĩm) ∈ I1 and

F (b, (Ĩ1, . . . , Ĩm))

= VaRα

(
−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k}

)
+ VaRβ

(
b× I{Y=0} +

m∑
k=1

Ĩk (X) I{Y=k}

)
≤ a+ c

= F (b, (I1, . . . , Im)).

Following, we consider the case a < 0. For this case, the definition of VaR together with the

nonnegative property of Rk(X) implies

a = −b and P (Y = 0) ≥ 1− α.

We can construct Ĩk(x) as

Ĩk(x) =

{
(x− I−1+

k (c) + c)+, I−1+
k (c) < ess sup (X) ;

x− (x− c)+, I−1+
k (c) = ess sup (X) ,

then

P
(
Ik (X) I{Y=k} > c

)
= P

(
Ĩk (X) I{Y=k} > c

)
, ∀k = 1, · · · ,m,

which in turn implies

VaRβ

(
b× I{Y=0} +

m∑
k=1

Ĩk (X) I{Y=k}

)
≤ c.

On the other hand, it is trivial that VaRα

(
−b× I{Y=0} +

∑m
k=1 R̃k (X) I{Y=k}

)
= −b because

of P (Y = 0) ≥ 1 − α. As a consequence, we have F (b, (Ĩ1, . . . , Ĩm)) ≤ F (b, (I1, . . . , Im)). The

proof is finally complete.
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B Proof of Proposition 3.1

First, note that

max

{
F−1
X|Y

(
1− α

p
|1
)
, F−1

X|Y

(
1− α

1− p
|2
)}

< F−1
X (1− α)

< min

{
F−1
X|Y

(
1− α
p
|1
)
, F−1

X|Y

(
1− α
1− p

|2
)}

.

Indeed, if 0 < p ≤ α < 1, then 1 − α
p ≤ 0 and 1−α

1−p ≤ 1. Therefore, F−1
X|Y

(
1− α

p |1
)

= 0, while

F−1
X (1− α) < F−1

X|Y

(
1−α
1−p |2

)
is equivalent to

1− α < FX

(
F−1
X|Y

(
1− α
1− p

|2
))

= FX|Y

(
F−1
X|Y

(
1− α
1− p

|2
)
|1
)
p+ FX|Y

(
F−1
X|Y

(
1− α
1− p

|2
)
|2
)

(1− p)

= FX|Y

(
F−1
X|Y

(
1− α
1− p

|2
)
|1
)
p+ 1− α,

which is true. If 0 < α < p < 1, then 1 − α
p > 0 and 1−α

1−p > 1. Therefore, F−1
X|Y

(
1−α
1−p |2

)
=

ess sup (X), while F−1
X|Y

(
1− α

p |1
)
< F−1

X (1− α) is equivalent to

1− α > FX

(
F−1
X|Y

(
1− α

p
|1
))

= FX|Y

(
F−1
X|Y

(
1− α

p
|1
)
|1
)
p+ FX|Y

(
F−1
X|Y

(
1− α

p
|1
)
|2
)

(1− p)

= p− α+ FX|Y

(
F−1
X|Y

(
1− α

p
|1
)
|2
)

(1− p) ,

which is true. These together show that F−1
X|Y

(
1− α

p |1
)
< F−1

X (1− α) < F−1
X|Y

(
1−α
1−p |2

)
. Similar

arguments yield that F−1
X|Y

(
1− α

1−p |2
)
< F−1

X (1− α) < F−1
X|Y

(
1−α
p |1

)
.

Consider the four cases separately that, (i) Case 1: θ1 = 1 and θ2 = 1, (ii) Case 2: θ1 = 1 and

θ2 = −1, (iii) Case 3: θ1 = −1 and θ2 = 1, and (iv) Case 4: θ1 = −1 and θ2 = −1. Since α = β,

P (Y = 0) = 0, and b = 0, it follows from a symmetry argument that if (I∗1 , I
∗
2 ) is optimal among

Cases 1 and 2, then (Id− I∗1 , Id− I∗2 ) is also optimal among Cases 4 and 3. Then, (I∗1 , I
∗
2 ) and

(Id− I∗1 , Id− I∗2 ) are both optimal for the finite dimensional problem (3.2), and it thus suffices

to consider only the first two cases.

For Case 1, the finite dimensional problem (3.2) is optimized with I1 (x) = (x− d1)+, with

R1 (x) = x ∧ d1, and I2 (x) = (x− d2)+, with R2 (x) = x ∧ d2, for some d1, d2 ∈ [0, ess sup (X)].

To explicitly optimize the sum of VaR of buyer and seller, there are two sub-cases.

Consider the first sub-case that d1 ≤ d2. The unconditional cumulative distribution functions

of the retained loss of buyer FB(0,R1,R2;X,Y ) and the indemnified loss of seller FS(0,I1,I2;X,Y ) are
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respectively given by

FB(0,R1,R2;X,Y ) (x) =


FX (x) for x ∈ [0, d1) ;

p+ (1− p)FX|Y (x|2) for x ∈ [d1, d2) ;

1 for x ∈ [d2, ess sup (X)] ,

and FS(0,I1,I2;X,Y ) (x) = pFX|Y (x+ d1|1) + (1− p)FX|Y (x+ d2|2), for x ∈ [0, ess sup (X)]; recall

that B(0, R1, R2;X,Y ) and S(0, I1, I2;X,Y ) are defined in (2.1) and (2.2). In this sub-case that

d1 ≤ d2, there are five further sub-cases to consider in order to explicitly optimize the sum of

VaR of buyer and seller. They are listed as follows:

(i) p+ (1− p)FX|Y (d2|2) ≤ 1− α < 1;

(ii) max
{
p+ (1− p)FX|Y (d1|2) , pFX|Y (d1|1) + (1− p)FX|Y (d2|2)

}
≤ 1 − α < p +

(1− p)FX|Y (d2|2);

(iii) min
{
p+ (1− p)FX|Y (d1|2) , pFX|Y (d1|1) + (1− p)FX|Y (d2|2)

}
≤ 1 − α <

max
{
p+ (1− p)FX|Y (d1|2) , pFX|Y (d1|1) + (1− p)FX|Y (d2|2)

}
;

(iv) FX (d1) ≤ 1− α < min
{
p+ (1− p)FX|Y (d1|2) , pFX|Y (d1|1) + (1− p)FX|Y (d2|2)

}
;

(v) 0 < 1− α < FX (d1).

For each of these further sub-cases, the sum of VaR of buyer and seller (that is FB (0, 1, d1, 1, d2)+

FS (0,−1, d1,−1, d2)) is locally optimized, with the locally optimized d∗1 and d∗2, as well as the

locally optimal objective value, under various conditions on the parameters p and α, and the

conditional distribution functions of the loss. More specifically, they are summarized as follows:

(i) � If 1− α < p, (i) cannot hold.

� If p ≤ 1 − α, d∗1 = d∗2 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

, with FB (0, 1, d∗1, 1, d
∗
2) +

FS (0,−1, d∗1,−1, d∗2) = F−1
X (1− α).

(ii) � If 1− α < p, (ii) cannot hold.

� If p ≤ 1 − α and p < α, d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 =

F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)

, with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) =

F−1
X|Y

(
1− α

1−p |2
)

.

� If α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

p |1
)

< F−1
X|Y

(
1− α

1−p |2
)

, d∗1 ∈[
F−1
X|Y

(
1− α

p |1
)
, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 = F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)

, with

FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

1−p |2
)

.

� If α ≤ p ≤ 1−α and F−1
X|Y

(
1− α

1−p |2
)
≤ F−1

X|Y

(
1− α

p |1
)

, d∗1 = F−1
X|Y

(
1− α

1−p |2
)

and

d∗2 = ess sup (X), with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

p |1
)

.
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(iii) There are two further sub-sub-cases.

(I) Suppose that p+ (1− p)FX|Y (d1|2) ≤ 1− α < pFX|Y (d1|1) + (1− p)FX|Y (d2|2).

� If 1− α < p, (iii, I) cannot hold.

� If p ≤ 1 − α and p < α, d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and

d∗2 ∈
(
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
, with FB (0, 1, d∗1, 1, d

∗
2) +

FS (0,−1, d∗1,−1, d∗2) = F−1
X|Y

(
1− α

1−p |2
)

.

� If α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

p |1
)

< F−1
X|Y

(
1− α

1−p |2
)

,

d∗1 ∈
(
F−1
X|Y

(
1− α

p |1
)
, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈(
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
, with FB (0, 1, d∗1, 1, d

∗
2) +

FS (0,−1, d∗1,−1, d∗2) = F−1
X|Y

(
1− α

1−p |2
)

.

� If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

1−p |2
)
≤ F−1

X|Y

(
1− α

p |1
)

, there is no solution.

(II) Suppose that pFX|Y (d1|1) + (1− p)FX|Y (d2|2) ≤ 1− α < p+ (1− p)FX|Y (d1|2).

� If 1 − α < p < α, d∗1 = 0 and d∗2 = F−1
X|Y

(
1−α
1−p |2

)
, with FB (0, 1, d∗1, 1, d

∗
2) +

FS (0,−1, d∗1,−1, d∗2) = 0.

� If 1 − α < p and α ≤ p, d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

and d∗2 = ess sup (X), with

FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

p |1
)

.

� If p ≤ 1− α and p < α, there is no solution.

� If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

p |1
)
≤ F−1

X|Y

(
1− α

1−p |2
)

, there is no solution.

� If α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

1−p |2
)

< F−1
X|Y

(
1− α

p |1
)

, d∗1 ∈(
F−1
X|Y

(
1− α

1−p |2
)
, F−1

X|Y

(
1− α

p |1
)]

, d∗2 = ess sup (X), with FB (0, 1, d∗1, 1, d
∗
2) +

FS (0,−1, d∗1,−1, d∗2) = F−1
X|Y

(
1− α

p |1
)

.

(iv) � If 1 − α < p < α, d∗1 = 0 and d∗2 ∈
(
F−1
X|Y

(
1−α
1−p |2

)
, ess sup (X)

]
, with

FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = 0.

� If 1− α < p and α ≤ p, there is no solution.

� If p ≤ 1− α and p < α, there is no solution.

� If α ≤ p ≤ 1− α, there is no solution.

(v) d∗1 ∈
(
F−1
X (1− α) , ess sup (X)

]
and d∗2 ∈ [d∗1, ess sup (X)], with FB (0, 1, d∗1, 1, d

∗
2) +

FS (0,−1, d∗1,−1, d∗2) = F−1
X (1− α).

Since the objective function is locally optimized for each of these further sub-cases, the locally

optimal objective values under various conditions need to be aggregated and compared. Therefore,

the following summarizes the first sub-case that d∗1 ≤ d∗2.
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(1) If p < α and p ≤ 1 − α, d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈[
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
, with FB (0, 1, d∗1, 1, d

∗
2) + FS (0,−1, d∗1,−1, d∗2) =

F−1
X|Y

(
1− α

1−p |2
)

.

(2) If α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

p |1
)

< F−1
X|Y

(
1− α

1−p |2
)

, d∗1 ∈[
F−1
X|Y

(
1− α

p |1
)
, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈
[
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
,

with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

1−p |2
)

.

(3) If α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

, d∗1 = F−1
X|Y

(
1− α

p |1
)

=

F−1
X|Y

(
1− α

1−p |2
)

and d∗2 = ess sup (X), with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) =

F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

.

(4) If α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

1−p |2
)

< F−1
X|Y

(
1− α

p |1
)

, d∗1 ∈[
F−1
X|Y

(
1− α

1−p |2
)
, F−1

X|Y

(
1− α

p |1
)]

and d∗2 = ess sup (X), with FB (0, 1, d∗1, 1, d
∗
2) +

FS (0,−1, d∗1,−1, d∗2) = F−1
X|Y

(
1− α

p |1
)

.

(5) If α ≤ p and 1 − α < p, d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

and d∗2 = ess sup (X), with

FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

p |1
)

.

(6) If 1 − α < p < α, d∗1 = 0 and d∗2 ∈
[
F−1
X|Y

(
1−α
1−p |2

)
, ess sup (X)

]
, with FB (0, 1, d∗1, 1, d

∗
2) +

FS (0,−1, d∗1,−1, d∗2) = 0.

For the second sub-case that d2 ≤ d1, the above summary also holds by relabeling d∗1 and d∗2,

as well as p = P (Y = 1) and 1− p = P (Y = 2).

Again, since the objective function is locally optimized for the two sub-cases that d1 ≤ d2 and

d2 ≤ d1, the locally optimal objective values under various conditions need to be aggregated and

compared. Therefore, for Case 1 that θ1 = 1 and θ2 = 1, it holds that:

(1) If p < α and p ≤ 1− α,

– d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈
[
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
, or

– d∗1 = ess sup (X) and d∗2 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

,

with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

1−p |2
)

.

(2) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

p |1
)
< F−1

X|Y

(
1− α

1−p |2
)

,

– d∗1 ∈
[
F−1
X|Y

(
1− α

p |1
)
, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈[
F−1
X|Y

(
1−α−pFX|Y (d∗1 |1)

1−p |2
)
, ess sup (X)

]
, or

– d∗1 = ess sup (X) and d∗2 ∈
[
F−1
X|Y

(
1− α

p |1
)
, F−1

X|Y

(
1− α

1−p |2
)]

,
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with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

1−p |2
)

.

(3) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

,

– d∗1 = F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

and d∗2 = ess sup (X), or

– d∗1 = ess sup (X) and d∗2 = F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

,

with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

.

(4) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

1−p |2
)
< F−1

X|Y

(
1− α

p |1
)

,

– d∗1 ∈
[
F−1
X|Y

(
1− α

1−p |2
)
, F−1

X|Y

(
1− α

p |1
)]

and d∗2 = ess sup (X), or

– d∗1 ∈
[
F−1
X|Y

(
1−α−(1−p)FX|Y (d∗2 |2)

p |1
)
, ess sup (X)

]
and d∗2 ∈[

F−1
X|Y

(
1− α

1−p |2
)
, F−1

X|Y

(
1− α

p |1
)]

,

with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

p |1
)

.

(5) If α ≤ p and 1− α < p,

– d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

and d∗2 = ess sup (X), or

– d∗1 ∈
[
F−1
X|Y

(
1−α−(1−p)FX|Y (d∗2 |2)

p |1
)
, ess sup (X)

]
and d∗2 ∈

[
0, F−1

X|Y

(
1− α

p |1
)]

,

with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = F−1

X|Y

(
1− α

p |1
)

.

(6) If 1− α < p < α,

– d∗1 = 0 and d∗2 ∈
[
F−1
X|Y

(
1−α
1−p |2

)
, ess sup (X)

]
, or

– d∗1 ∈
[
F−1
X|Y

(
1−α
p |1

)
, ess sup (X)

]
and d∗2 = 0,

with FB (0, 1, d∗1, 1, d
∗
2) + FS (0,−1, d∗1,−1, d∗2) = 0.

For Case 2 that θ1 = 1 and θ2 = −1, the finite dimensional problem (3.2) is optimized with

I1 (x) = (x− d1)+, with R1 (x) = x ∧ d1, and I2 (x) = x ∧ d2, with R2 (x) = (x− d2)+, for some

d1, d2 ∈ [0, ess sup (X)]. The unconditional cumulative distribution functions of the retained loss

of the buyer FB(0,R1,R2;X,Y ) and the indemnified loss of the seller FS(0,R1,R2;X,Y ) are respectively

given by

FB(0,R1,R2;X,Y ) (x) =

pFX|Y (x|1) + (1− p)FX|Y (x+ d2|2) for x ∈ [0, d1) ;

p+ (1− p)FX|Y (x+ d2|2) for x ∈ [d1, ess sup (X)] ,

FS(0,I1,I2;X,Y ) (x) =

pFX|Y (x+ d1|1) + (1− p)FX|Y (x|2) for x ∈ [0, d2) ;

pFX|Y (x+ d1|1) + (1− p) for x ∈ [d2, ess sup (X)] .

There are seven sub-cases to consider in order to explicitly optimize the sum of VaR of buyer and

seller, which are listed as follows:
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(i) max
{
p+ (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)

}
≤ 1− α < 1;

(ii) min
{
p+ (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)

}
≤ 1 − α <

max
{
p+ (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)

}
, which induces two

further sub-cases for simplifying the minimum and maximum;

(iii) max
{
pFX|Y (d1|1) + (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)FX|Y (d2|2)

}
≤

1− α < min
{
p+ (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)

}
;

(iv) min
{
pFX|Y (d1|1) + (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)FX|Y (d2|2)

}
≤

1−α < max
{
pFX|Y (d1|1) + (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)FX|Y (d2|2)

}
,

which induces two further sub-cases for simplifying the minimum and maximum;

(v) max
{

(1− p)FX|Y (d2|2) , pFX|Y (d1|1)
}

≤ 1 − α <

min
{
pFX|Y (d1|1) + (1− p)FX|Y (d1 + d2|2) , pFX|Y (d1 + d2|1) + (1− p)FX|Y (d2|2)

}
;

(vi) min
{

(1− p)FX|Y (d2|2) , pFX|Y (d1|1)
}
≤ 1−α < max

{
(1− p)FX|Y (d2|2) , pFX|Y (d1|1)

}
,

which induces two further sub-cases for simplifying the minimum and maximum;

(vii) 0 < 1− α < min
{

(1− p)FX|Y (d2|2) , pFX|Y (d1|1)
}

.

For each of these sub-cases, the sum of VaR of buyer and seller is locally optimized (that is

FB (0, 1, d1,−1, d2) + FS (0,−1, d1, 1, d2)), with the locally optimized d∗1 and d∗2, as well as the

locally optimal objective value, under various conditions on the parameters p and α, and the

conditional distributions of the loss. For example, for (i),

� if p < α or 1− α < p, (i) cannot hold;

� if α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

p |1
)
< F−1

X|Y

(
1− α

1−p |2
)

, d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

and d∗2 = F−1
X|Y

(
1− α

p |1
)
− d∗1, with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d

∗
2) =

F−1
X|Y

(
1− α

1−p |2
)

;

� if α ≤ p ≤ 1 − α and F−1
X|Y

(
1− α

1−p |2
)
≤ F−1

X|Y

(
1− α

p |1
)

, d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 = F−1
X|Y

(
1− α

1−p |2
)
− d∗1, with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d

∗
2) =

F−1
X|Y

(
1− α

p |1
)

.

Since the objective function is locally optimized for each of these sub-cases, the locally optimal

objective values under various conditions need to be aggregated and compared. Therefore, for

Case 2 that θ1 = 1 and θ2 = −1, it holds that:

(1) If p < α and p ≤ 1− α,

– d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)
− d∗1

]
, or

– d∗1 = ess sup (X) and d∗2 ∈
[
F−1
X|Y

(
1−α
1−p |2

)
, ess sup (X)

]
,
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with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d
∗
2) = F−1

X|Y

(
1− α

1−p |2
)

.

(2) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

p |1
)
< F−1

X|Y

(
1− α

1−p |2
)

,

– d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

and d∗2 ∈
[
F−1
X|Y

(
1− α

p |1
)
− d∗1, F−1

X|Y

(
1− α

1−p |2
)
− d∗1

]
, or

– d∗1 ∈
(
F−1
X|Y

(
1− α

p |1
)
, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)
− d∗1

]
,

with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d
∗
2) = F−1

X|Y

(
1− α

1−p |2
)

.

(3) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

,

– d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

=
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 = F−1
X|Y

(
1− α

p |1
)
− d∗1 =

F−1
X|Y

(
1− α

1−p |2
)
− d∗1,

with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d
∗
2) = F−1

X|Y

(
1− α

p |1
)

= F−1
X|Y

(
1− α

1−p |2
)

.

(4) If α ≤ p ≤ 1− α and F−1
X|Y

(
1− α

1−p |2
)
< F−1

X|Y

(
1− α

p |1
)

,

– d∗1 ∈
[
0, F−1

X|Y

(
1− α

1−p |2
)]

and d∗2 ∈
[
F−1
X|Y

(
1− α

1−p |2
)
− d∗1, F−1

X|Y

(
1− α

p |1
)
− d∗1

]
,

or

– d∗1 ∈
(
F−1
X|Y

(
1− α

1−p |2
)
, F−1

X|Y

(
1− α

p |1
)]

and d∗2 ∈
[
0, F−1

X|Y

(
1− α

p |1
)
− d∗1

]
,

with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d
∗
2) = F−1

X|Y

(
1− α

p |1
)

.

(5) If α ≤ p and 1− α < p,

– d∗1 ∈
[
0, F−1

X|Y

(
1− α

p |1
)]

and d∗2 ∈
[
0, F−1

X|Y

(
1− α

p |1
)
− d∗1

]
, or

– d∗1 ∈
[
F−1
X|Y

(
1−α
p |1

)
, ess sup (X)

]
and d∗2 = ess sup (X),

with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d
∗
2) = F−1

X|Y

(
1− α

p |1
)

.

(6) If 1− α < p < α,

– d∗1 = 0 and d∗2 = 0, or

– d∗1 ∈
[
F−1
X|Y

(
1−α
p |1

)
, ess sup (X)

]
and d∗2 ∈

[
F−1
X|Y

(
1−α
1−p |2

)
, ess sup (X)

]
,

with FB (0, 1, d∗1,−1, d∗2) + FS (0,−1, d∗1, 1, d
∗
2) = 0.

Finally, the result follows by aggregating and comparing the summaries of Case 1 and Case 2.
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C Proof of Theorem 4.1

For any b ∈
[
0, b
]

and (I1, . . . , Im) ∈ I, define a := VaRα

(
−b× I{Y=0} +

∑m
k=1Rk (X) I{Y=k}

)
and c := VaRβ

(
b× I{Y=0} +

∑m
k=1 Ik (X) I{Y=k}

)
. Recall the right-continuous inverse functions

of Ik and Rk from Appendix A.

We first assume a ≥ 0. For each k = 1, . . . ,m, consider the following two cases and the

corresponding sub-cases to construct the modification Ĩk.

Case 1: Assume that I−1+
k (c) ≤ R−1+

k (a).

Sub-case 1.1: Consider that R−1+
k (a) < ess sup (X). Define R̃k (x) := x − (x− a)+ +

(x − d̃k,2)+, and hence Ĩk (x) = (x− a)+ − (x − d̃k,2)+, for any x ∈
[0, ess sup (X)], where d̃k,2 ∈

[
R−1+
k (a) , ess sup (X)

]
such that

EP[(R̃k (X)− a)+|Y = k] = EP [(Rk (X)− a)+ |Y = k
]
.

This implies

EP[(R̃k (X)−a)I{X≥R−1+(a)}|Y = k] = EP[(Rk (X)−a)I{X≥R−1+(a)}|Y = k],

which can be written as

EP[R̃k (X) I{X≥R−1+(a)}|Y = k] = EP[Rk (X) I{X≥R−1+(a)}|Y = k],

and

EP[Ĩk (X) I{X≥R−1+(a)}|Y = k] = EP[Ik (X) I{X≥R−1+(a)}|Y = k].

Thus,

EP[(Ĩk (X)−Ĩk(R−1+
k (a)))+|Y = k] = EP[(Ik (X)−Ik(R−1+

k (a)))+|Y = k].

By definition, it holds for any x ∈
[
0, R−1+

k (a)
]

that Ĩk (x) ≤ Ik (x). Fur-

thermore, we have Ĩk
(
R−1+
k (a)

)
= R−1+

k (a) − a = Ik
(
R−1+
k (a)

)
≥ c.

Therefore,

EP[(Ĩk (X)− c)+|Y = k] = EP
[(
Ĩk (X)− c

)
+
I{X≤R−1+

k (a)}|Y = k

]
+ EP

[(
Ĩk (X)− c

)
+
I{X>R−1+

k (a)}|Y = k

]
= EP

[(
Ĩk (X)− c

)
+
I{X≤R−1+

k (a)}|Y = k

]
+ EP

[(
Ĩk (X)− Ĩk(R−1+

k (a))
)

+
|Y = k

]
+
(
Ĩk(R−1+

k (a))− c
)
P
(
X > R−1+

k (a) |Y = k
)

≤ EP
[
(Ik (X)− c)+ I{X≤R−1+

k (a)}|Y = k
]
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+ EP
[(
Ik (X)− Ik(R−1+

k (a))
)

+
|Y = k

]
+
(
Ik(R−1+

k (a))− c
)
P
(
X > R−1+

k (a) |Y = k
)

= EP
[
(Ik (X)− c)+ I{X≤R−1+

k (a)}|Y = k
]

+ EP
[
(Ik (X)− c)+ I{X>R−1+

k (a)}|Y = k
]

= EP[(Ik (X)− c)+|Y = k].

Sub-case 1.2: Consider that R−1+
k (a) = ess sup (X). Necessarily, for any x ∈

[0, ess sup (X)], Rk (x) ≤ a. Define R̃k (x) := x − (x− a)+, and hence

Ĩk (x) = (x− a)+, for any x ∈ [0, ess sup (X)]. By definition, it holds

for any x ∈ [0, ess sup (X)] that Rk (x) ≤ R̃k (x) ≤ a, and necessarily

Ĩk (x) ≤ Ik (x). Therefore,

EP[(R̃k (X)− a)+|Y = k] = 0 = EP [(Rk (X)− a)+ |Y = k
]

;

EP[(Ĩk (X)− c)+|Y = k] ≤ EP[(Ik (X)− c)+|Y = k].

In both sub-cases 1.1 and 1.2, the constructed Ĩk and R̃k satisfy

EP[(Ĩk (X)− c)+|Y = k] ≤ EP[(Ik (X)− c)+|Y = k],

and

EP[(R̃k (X)− a)+|Y = k] = EP [(Rk (X)− a)+ |Y = k
]
.

Case 2: Assume that R−1+
k (a) ≤ I−1+

k (c). If I−1+
k (c) < ess sup (X), define Ĩk (x) :=

x − (x− c)+ + (x − d̃k,2)+, and hence R̃k (x) = (x− c)+ − (x − d̃k,2)+, for any

x ∈ [0, ess sup (X)], where d̃k,2 ∈
[
I−1+
k (c) , ess sup (X)

]
such that

EP[(Ĩk (X)− c)+|Y = k] = EP [(Ik (X)− c)+ |Y = k
]
.

If I−1+
k (c) = ess sup (X), define Ĩk (x) := x− (x− c)+, and hence R̃k (x) = (x− c)+, for

any x ∈ [0, ess sup (X)]. By following similar arguments as in Case 1 with interchanging

the roles of Ik (or the constructed Ĩk) and Rk (or the constructed R̃k), as well as of a

and c, one can show that the constructed Ĩk and R̃k satisfy that

EP[(Ĩk (X)− c)+|Y = k] = EP[(Ik (X)− c)+|Y = k];

EP[(R̃k (X)− a)+|Y = k] ≤ EP [(Rk (X)− a)+ |Y = k
]
.

For the ease of understanding these cases above, Figure C.3 illustrates the modification argu-

ments of Sub-case 1.1.

Therefore, for any k = 1, . . . ,m, the constructed Ĩk and R̃k satisfy that

EP[(Ĩk (X)− c)+|Y = k] ≤ EP[(Ik (X)− c)+|Y = k];
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Rk (x)

ess sup(X)R−1+
k (a)

a

0 I−1+
k (c)

R̃k (x)

Ik (x)

ess sup(X)R−1+
k (a)

c

0 I−1+
k (c)

Ĩk (x)

Figure C.3: Constructions of R̃k (left) and Ĩk (right), under the conditions that a ≥ 0 and

I−1+
k (c) ≤ R−1+

k (a) < ess sup (X), for TVaR risk preferences (Sub-case 1.1); linear Rk and Ik

are chosen for graphical convenience, and R̃k and Ĩk are bold-faced.

EP[(R̃k (X)− a)+|Y = k] ≤ EP [(Rk (X)− a)+ |Y = k
]
.

By the dual representation of TVaR (Rockafellar and Ursayev, 2000),

TVaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)

= inf
d≥−b

d+
1

α
EP

(−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k} − d

)
+

 ,

where the infimum can be attained at d∗ = a. Moreover,

TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

)

= inf
e≥0

e+
1

β
EP

(b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k} − e

)
+

 ,

where the infimum is attained at e∗ = c. The last two relations imply that

TVaRα

(
−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k}

)

= inf
d≥−b

d+
1

α
EP

(−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k} − d

)
+


≤ a+

1

α
EP

(−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k} − a

)
+


= a+

1

α
EP [(−b−a)+ |Y =0

]
P (Y =0) +

m∑
k=1

1

α
EP
[(
R̃k (X)−a

)
+
|Y =k

]
P(Y =k)
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≤a+
1

α
EP
[(
− b−a

)
+
|Y =0

]
P (Y =0) +

m∑
k=1

1

α
EP
[(
Rk (X)−a

)
+
|Y =k

]
P(Y =k)

= a+
1

α
EP

[(
− b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k} − a
)

+

]

= inf
d≥−b

d+
1

α
EP

(−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k} − d

)
+


= TVaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)
.

Similarly, we have that

TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ĩk (X) I{Y=k}

)
≤ TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

)
.

Therefore, (Ĩ1, . . . , Ĩm) ∈ I2 and

G(b, (Ĩ1, . . . , Ĩm))

= TVaRα

(
−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k}

)
+ TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ĩk (X) I{Y=k}

)

≤ TVaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)
+ TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

)
= G (b, (I1, . . . , Im)) .

Following, we consider the case a < 0. For this case, we use the same way as Case 2 to

construct Ĩk(x), then it is easy to find that EP[(Ĩk (X) − c)+|Y = k] = EP[(Ik (X) − c)+|Y = k]

and EP[R̃k (X) |Y = k] ≤ EP [Rk (X) |Y = k], which in turn imply

TVaRα

(
−b× I{Y=0} +

m∑
k=1

R̃k (X) I{Y=k}

)
≤ TVaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)
and

TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ĩk (X) I{Y=k}

)
≤ TVaRβ

(
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

)
.

Therefore, G(b, (Ĩ1, . . . , Ĩm)) ≤ G (b, (I1, . . . , Im)), which completes the proof.

D Proof of Proposition 4.1

Note that TVaR1 = EP. Thus, the expectation is a special case of TVaR. By Theorem 4.1, it

suffices to consider the finite dimensional problem (4.2):

min
b∈[0,b];

(I1,...,Im)∈I2

TVaRα

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k}

)
+ EP

[
b× I{Y=0} +

m∑
k=1

Ik (X) I{Y=k}

]
.
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By the dual representation of TVaR (Rockafellar and Ursayev, 2000), the above problem is

equivalent to

min
b∈[0,b]

min
(I1,...,Im)∈I2

inf
d≥−b

d+ EP

 1

α

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k} − d

)
+


+EP

[
b× I{Y=0} −

m∑
k=1

Rk (X) I{Y=k}

])

= min
b∈[0,b]

inf
d≥−b

min
(I1,...,Im)∈I2

d+ EP

 1

α

(
−b× I{Y=0} +

m∑
k=1

Rk (X) I{Y=k} − d

)
+


+EP

[
b× I{Y=0} −

m∑
k=1

Rk (X) I{Y=k}

])

= min
b∈[0,b]

inf
d≥−b

(
d+ b× P (Y = 0)

+ min
(I1,...,Im)∈I2

m∑
k=1

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
P (Y = k)

)
.

Let b ∈
[
0, b
]
. First, fix any d ≥ 0. For any k = 1, 2, . . . ,m, Ik takes a form either

Ik (x) = (x− dk,1)+ − (x− dk,2)+ or Ik (x) = x− (x− dk,1)+ + (x− dk,2)+ ,

for some dk,1 ∈ [0, ess sup (X)] and dk,2 ∈ [dk,1, ess sup (X)], which allows us to directly compute

EP [ 1
α (Rk (X)− d)+ −Rk (X) |Y = k

]
. In the sequel, we let d∗k,1 and d∗k,2 be parameters that

yields the minimum of this conditional expectation.

Case 1: Suppose that Ik (x) = (x− dk,1)+ − (x− dk,2)+, i.e. Rk (x) = x − (x− dk,1)+ +

(x− dk,2)+.

Sub-case 1.1: Consider that 0 ≤ d ≤ dk,1 ≤ dk,2 ≤ ess sup (X). Then,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

1

α
EP
[
(X − d)+ − (X − dk,1)+ + (X − dk,2)+ |Y = k

]
− EP

[
X − (X − dk,1)+ + (X − dk,2)+ |Y = k

]
=

1

α

∫ ess sup(X)

d

SX|Y (t|k)dt+

(
1− 1

α

)∫ dk,2

dk,1

SX|Y (t|k)dt

− EP [X|Y = k] ,

which is non-decreasing in dk,1 and non-increasing in dk,2, where SX|Y (·|k)

is the survival function of the loss X|Y = k under P, for k = 1, 2, . . . ,m.

Therefore, d∗k,1 = d and d∗k,2 = ess sup (X).
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Sub-case 1.2: Consider that 0 ≤ dk,1 ≤ d ≤ dk,1 +ess sup (X)−dk,2 ≤ ess sup (X). Then,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

1

α
EP
[
(X − (dk,2 + d− dk,1))+ |Y = k

]
− EP

[
X − (X − dk,1)+ + (X − dk,2)+ |Y = k

]
.

Define z = dk,2 + d− dk,1, and thus 0 ≤ dk,1 ≤ d ≤ z ≤ ess sup (X), and

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

1

α
EP [(X − z)+ |Y = k

]
− EP

[
X − (X − dk,1)+ + (X − (z − d+ dk,1))+ |Y = k

]
=

(
1

α
− 1

)∫ ess sup(X)

z

SX|Y (t|k)dt−
∫ dk,1

0

SX|Y (t|k)dt

−
∫ z

z−d+dk,1

SX|Y (t|k)dt,

which can be easily shown to be non-increasing in dk,1, given a z. Therefore,

d∗k,1 = d, and hence,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

(
1

α
− 1

)∫ ess sup(X)

z

SX|Y (t|k)dt−
∫ d

0

SX|Y (t|k)dt,

which is non-increasing in z. Therefore, z∗ = d∗k,2 = ess sup (X).

Sub-case 1.3: Consider that 0 ≤ dk,1 ≤ dk,1 +ess sup (X)−dk,2 ≤ d ≤ ess sup (X). Then,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
= − EP

[
X − (X − dk,1)+ + (X − dk,2)+ |Y = k

]
=

∫ dk,2

dk,1

SX|Y (t|k)dt− EP [X|Y = k] ,

which is non-increasing in dk,1. Therefore, d∗k,1 = dk,2 − ess sup (X) + d,

and hence,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

∫ dk,2

dk,2−ess sup(X)+d

SX|Y (t|k)dt− EP [X|Y = k] ,

which can be easily shown to be non-increasing in dk,2. Therefore, d∗k,2 =

ess sup (X), and thus d∗k,1 = d.
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Sub-case 1.4: Consider that 0 ≤ dk,1 ≤ dk,2 ≤ ess sup (X) ≤ d. Then,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
= − EP

[
X − (X − dk,1)+ + (X − dk,2)+ |Y = k

]
=

∫ dk,2

dk,1

SX|Y (t|k)dt− EP [X|Y = k] ,

which is non-increasing in dk,1 and non-decreasing in dk,2. Therefore,

d∗k,1 = d∗k,2 ≤ ess sup (X) ≤ d.

Case 2: Suppose that Ik (x) = x − (x− dk,1)+ + (x− dk,2)+, i.e. Rk (x) = (x− dk,1)+ −
(x− dk,2)+.

Sub-case 2.1: Consider that 0 ≤ d ≤ dk,2 − dk,1. Then,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

1

α
EP
[
(X − (dk,1 + d))+ − (X − dk,2)+ |Y = k

]
− EP

[
(X − dk,1)+ − (X − dk,2)+ |Y = k

]
=

1

α

∫ ess sup(X)

dk,1+d

SX|Y (t|k)dt−
∫ ess sup(X)

dk,1

SX|Y (t|k)dt

+

(
1− 1

α

)∫ ess sup(X)

dk,2

SX|Y (t|k)dt,

which is non-decreasing in dk,2. Therefore, d∗k,2 = dk,1 + d, and hence

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
= −

∫ dk,1+d

dk,1

SX|Y (t|k)dt,

which is non-decreasing in dk,1. Therefore, d∗k,1 = 0 and d∗k,2 = d.

Sub-case 2.2: Consider that 0 ≤ dk,2 − dk,1 ≤ d. Then,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
= − EP

[
(X − dk,1)+ − (X − dk,2)+ |Y = k

]
= −

∫ ess sup(X)

dk,1

SX|Y (t|k)dt+

∫ ess sup(X)

dk,2

SX|Y (t|k)dt,

which is non-increasing in dk,2. Therefore, d∗k,2 = dk,1 + d, and hence

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
= −

∫ dk,1+d

dk,1

SX|Y (t|k)dt,

which is non-decreasing in dk,1. Therefore, d∗k,1 = 0 and d∗k,2 = d.
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Hence, if d ≥ 0, in any case, it is optimal to choose Ik (x) = (x− d)+, i.e. Rk (x) = x− (x− d)+,

which are independent of the environment k = 1, 2, . . . ,m, and the objective function becomes:

d−
m∑
k=1

EP [X − (X − d)+ |Y = k
]
P (Y = k) + b× P (Y = 0) ,

which is non-decreasing in d, and thus the minimum is attained at d∗ = 0, and thus the objective

function is b× P (Y = 0).

Second, fix any d ∈ [−b, 0]. For any k = 1, 2, . . . ,m, EP [ 1
α (Rk (X)− d)+ −Rk (X) |Y = k

]
=(

1
α − 1

)
EP [Rk (X) |Y = k]− d

α . In the next two cases, we determine the parameters d∗k,1 and d∗k,2

that yield the minimum of this conditional expectation.

Case 1: Suppose that Ik (x) = (x− dk,1)+ − (x− dk,2)+, i.e. Rk (x) = x − (x− dk,1)+ +

(x− dk,2)+, for some dk,1 ∈ [0, ess sup (X)] and dk,2 ∈ [dk,1, ess sup (X)]. Therefore,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

(
1

α
− 1

)(∫ dk,1

0

SX|Y (t|k)dt+

∫ ess sup(X)

dk,2

SX|Y (t|k)dt

)
− d

α
,

which is non-decreasing in dk,1 and non-increasing in dk,2, and thus d∗k,1 = 0 and d∗k,2 =

ess sup (X).

Case 2: Suppose that Ik (x) = x − (x− dk,1)+ + (x− dk,2)+, i.e. Rk (x) = (x− dk,1)+ −
(x− dk,2)+, for some dk,1 ∈ [0, ess sup (X)] and dk,2 ∈ [dk,1, ess sup (X)]. Therefore,

EP
[

1

α
(Rk (X)− d)+ −Rk (X)

∣∣∣∣Y = k

]
=

(
1

α
− 1

)∫ dk,2

dk,1

SX|Y (t|k)dt− d

α
,

and thus 0 ≤ d∗k,1 = d∗k,2 ≤ ess sup (X).

Hence, if d ∈ [−b, 0], in any case, Ik (x) = x, i.e. Rk (x) = 0, which are independent of the

environment k = 1, 2, . . . ,m, and the objective function becomes:(
1− 1

α

m∑
k=1

P (Y = k)

)
d+ b× P (Y = 0) .

If α ≥
∑m
k=1 P (Y = k), the objective function is non-decreasing in d, and thus it is minimized

at d∗ = −b. If α ≤
∑m
k=1 P (Y = k), the objective function is non-increasing in d, and thus it is

minimized at d∗ = 0.

Therefore, there are two cases to consider on determining the optimal bonus b∗ ∈
[
0, b̄
]
.

Case 1: Suppose that α ≥
∑m
k=1 P (Y = k). Therefore, d∗ = −b, and the objective function be-

comes, for any b ∈
[
0, b̄
]
,
(
P (Y = 0) + 1

α

∑m
k=1 P (Y = k)− 1

)
b, which is non-decreasing

in b, and thus it is minimized at b∗ = 0.
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Case 2: Suppose that α ≤
∑m
k=1 P (Y = k). Therefore, d∗ = 0, and the objective function is, for

any b ∈
[
0, b̄
]
, b× P (Y = 0), which is also non-decreasing in b, and thus it is minimized

at b∗ = 0.

Hence, in any case, the bonus b∗ = 0 and the optimal indemnity functions I∗k = Id, for k =

1, 2, . . . ,m, solve Problem (4.2), and are thus Pareto optimal.

E Proof of Theorem 6.1

The minimization problem (6.1) can be rewritten as

EP [X] + min
b∈[0,b̄]

b(Q(Y = 0)− P(Y = 0))

+ min
(I1,...,Im)∈I

m∑
k=1

(
EQ [Ik (X) |Y = k]Q (Y = k)− EP [Ik (X) |Y = k]P (Y = k)

)
.

Here, minb∈[0,b̄] b(Q(Y = 0)− P(Y = 0)) is solved by

b


= b̄ if Q (Y = 0) < P (Y = 0) ;

∈
[
0, b̄
]

if Q (Y = 0) = P (Y = 0) ;

= 0 if Q (Y = 0) > P (Y = 0) .

By Assa (2015), (I1, . . . , Im) ∈ I implies I ′k(t) ∈ [0, 1] for all t ≥ 0 almost everywhere and all

k = 1, . . . ,m. Moreover, for any k = 1, 2, . . . ,m,

EQ [Ik (X) |Y = k]Q (Y = k)− EP [Ik (X) |Y = k]P (Y = k)

=

∫ ∞
0

Q (X > t|Y = k) dIk (t)Q (Y = k)−
∫ ∞

0

P (X > t|Y = k) dIk (t)P (Y = k)

=

∫ ∞
0

(Q ({X > t} ∩ {Y = k})− P ({X > t} ∩ {Y = k})) dIk (t)

=

∫ ∞
0

(Q ({X > t} ∩ {Y = k})− P ({X > t} ∩ {Y = k})) I ′k (t) dt,

where the last equality is due to the fact that Ik is absolutely continuous, since (I1, . . . , Im) ∈ I
(see Cheung and Lo (2017)). Hence, the result follows directly.
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