Phosphorus Analogues of [Ni(bpy)₂]: Synthesis and Application in Carbon–Halogen Bond Activation

J. Leitl, P. Coburger, D. J. Scott, C. G. P. Ziegler, G. Hiermeier, R. Wolf,* N. P. van Leest, B. de Bruin,* G. Hörner, and C. Müller*

ABSTRACT: The neutral, homoleptic pyridylphosphininenickel(0) complex [Ni(2-Py-4,6-Ph₂-PC₅H₂)₂] (I) has been obtained by reaction of the formal Ni(0) source [(IPr)Ni(H₂C=CHSiMe₃)₂] with 2 equiv of 2-(2'-pyridyl)-4,6-diphenylphosphinine (L). Compound I can be oxidized both electrochemically and through the use of ferrocenium salts, to afford the corresponding Ni(I) complexes [1]BF₄, [1(THF)]PF₆, and [1]([BArF₄]₂. The structures of these salts reveal an interesting dependence on the nature of the anion. While [1]BF₄ and [1(THF)]PF₆ show trigonal-bipyramidal coordination of Ni in the solid state, [1]([BArF₄]₂ exists as a dinuclear Ni(I) complex and possesses a bridging phosphinine moiety in a rare μ₃ mode. Reactions of I with halobenzenes highlight the noninnocent behavior of the aromatic phosphinine ligand, leading to the formation of oxidized Ni complexes but not to classical oxidative addition products. The reaction of I with bromobenzene affords the Λ⁵ phosphinine 2 and the bipyramidal Ni(I) complex [1]Br, whereas a more unconventional oxidation product 3 is formed from the reaction of I and iodobenzene.

INTRODUCTION

Nickel(0) complexes have become ubiquitous in homogenous catalysis and are used for a wide range of processes, including alkene and alkyne oligomerization reactions, as well as Kumada-type cross couplings. The complex bis(2,2'-bipyridine)nickel(0) (A; Figure 1) is an archetypal example of a Ni(0) species with versatile catalytic properties and has found diverse applications in various (electro)chemical reactions and catalysis. Replacing the pyridyl moieties in A with valence isoelectronic phosphinine (also referred to as phosphabenzene) units can have a significant impact on both the electronic structure and reactivity of the corresponding coordination compound.

We have recently become interested in the coordination chemistry of the donor-functionalized phosphinine 2-(2’-pyridyl)-4,6-diphenylphosphinine (L), a “hybrid” P,N ligand that can be considered to be a cross between previously explored biphosphinines and the ubiquitous bipyridines. L possesses two electronically distinct binding sites—a “soft” P and a “hard” N donor site—which can have a significant impact on its coordination properties and reactivity. Although a large variety of 4d and 5d transition-metal complexes of L have been prepared, syntheses of 3d metal complexes remain scarce. Nevertheless, we have recently demonstrated that the combination of a late 3d metal with ligand L can lead to versatile coordination chemistry and, even more importantly, to useful reactivity, as exemplified by the facile cleavage of one C=O bond in CO₂ by the Fe complex C (Figure 1).

EXPERIMENTAL DETAILS

All experiments were performed under an atmosphere of dry argon using standard glovebox and Schlenk-line techniques. Tetrahydrofurfural...
an (THF), toluene, diethyl ether, and n-hexane were purified, dried, and degassed using an MBraun SPS800 solvent purification system. Benzene was distilled and degassed with Schlenk techniques. Deuterated THF and benzene were purchased from Sigma-Aldrich and used as received.

Figure 1. Previously reported bidentate, chelated phosphinine-containing transition-metal complexes (A–C) and the new nickel pyridylphosphinine complexes (1, [1]Br, and 3) described herein.

18c6 = [18]crown-6.

... corrections or analytical ones were applied to the data. The structures were solved with SHELXTL and least-squares refinements on F^2 were carried out with SHELXL. The H atoms were located in idealized positions and refined isotropically with a riding model. CCDC 2000793 contains the atomic coordinates for [Ni(2-Py-4,6-Ph,C6H3)]2 (1), 1988435 for [1]BF4, 1988435 for [1]BF4 (2), and 1988435 for [1]BF4 (3). The remaining structure contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre. The selected crystal of 1a was a nonmerohedral twin. The twin law was determined with the CrystAlisPro software (Rigaku Oxford Diffraction, 2019). Component 2 rotated by -179.7003° around $[-0.71, 0.71, -0.01]_{\text{reciproc}}$ and $[-0.77, 0.64, 0.03]_{\text{direct}}$ in direct space. The structure was refined with the corresponding HKLFS file (see the Supporting Information for further details).

Synthesis. Synthetic of 1. Compound 1a was prepared in an MBraun argon glovebox. 1 is sensitive toward moisture and air. It is soluble and stable in benzene, THF, and toluene. A solution of L (2.5 equiv, 125 mg, 0.385 mmol) was added dropwise to a solution of D (1 equiv, 100 mg, 0.154 mmol) in benzene at room temperature. Volatiles were completely removed, and the deep-purple residue was washed with n-hexane (3 × 2 mL) in order to remove IPr. The remaining residue was extracted with benzene (4 × 2 mL) and layered with n-hexane (12 mL). 1a was isolated as deep-purple crystals after decanting the mother liquor, washing with n-hexane (3 × 2 mL), and drying under vacuum. Crystals suitable for single-crystal XRD were grown from the slow diffusion of n-hexane into a benzene solution of 1. Yield: 40 mg, 37%. Elem anal. Calc for C44H32N2P2Ni (Mw = 709.39 g mol$^{-1}$): C, 74.50; H, 4.55; N, 3.95. Found: C, 74.98; H, 4.70; N, 3.77. UV–vis [THF; λ_{max} mol$^{-1}$ cm$^{-1}$] (290 (98632), 320 (27940), 816 (20814)]. 1H NMR (400.13 MHz, 300 K, THF-d$_2$): δ 7.05–7.11 (m, 6H, H of C$_2$=Ph), 7.18–7.21 (m, 2H, H of NC$_5$H$_4$), 7.33–7.37 (m, 2H, H of C$_2$=Ph), 7.41–7.45 (m, 4H, H of C$_5$=N), 7.79–7.81 (m, 4H, H of C$_5$=N), 7.85–7.86 (m, 2H, H of NC$_5$H$_4$), 7.90 (d, 4H, H of C$_5$=N, $J_{HH} = 7$ Hz), 8.30 (d, 2H, H of NC$_5$H$_4$, $J_{HH} = 8$ Hz), 8.43 (d, 2H, H of NC$_5$H$_4$, $J_{HH} = 5$ Hz). 13C{1H} NMR (100.61 MHz, 300 K, THF-d$_2$): δ 119.3 (s, C of NC$_5$H$_4$), 122.5 (s, C of NC$_5$H$_4$), 126.7 (s, C of C$_5$=Ph), 126.8 (s, C of C$_5$=Ph), 127.0 (s, C of C$_5$=Ph), 127.4 (t, 7 Hz), 129.0 (s, C of C$_5$=Ph), 129.6 (s, C of C$_5$=Ph), 131.4 (s, C of C$_5$=Ph), 133.7 (m, C of NC$_5$H$_4$), 137.4 (t, C of C$_5$=Ph, $J = 7$ Hz), 143.2 (s, C of NC$_5$H$_4$), 143.9 (m, C of NC$_5$H$_4$), 145.1 (m, C of NC$_5$H$_4$), 146.6 (m, C of NC$_5$H$_4$), 153.1 (m, C of NC$_5$H$_4$). 31P{1H} NMR (161.98 MHz, 300 K, THF-d$_2$): δ 179.4. 31P NMR (161.98 MHz, 300 K, THF-d$_2$): δ 179.4.
into a toluene solution of [1]BF₄. Yield: 43 mg, 77%. Elem. anal. Calcd for C₁₅₇H₉₂N₂P₂Ni₂F₄ (M₀ = 796.20 g mol⁻¹): C, 66.38; H, 4.05; N, 3.52. Found: C, 65.17; H, 4.26; N, 3.35. UV−vis [THF; ηmax/μ(εmax/L mol⁻¹ cm⁻¹)]: 284 (38665), 338 (15363), 466 (8545). μB (THF-d₆): 2.01(1) μB.

Synthesis of [I(THF)]PF₆. Compound [1](THF)PF₆ was prepared in an MBraun argon glovebox. [1](THF)PF₆ is sensitive toward moisture and air. [1](THF)PF₆ is solvable and stable in benzene, THF, and toluene. 1 (50 mg, 0.07 mmol) was dissolved in THF (1 mL), and FeC₆F₆ (23 mg, 0.07 mmol) was added at room temperature. A slow color change from deep purple to brown was observed. The solvent of the brown reaction mixture was completely removed, and ferrocene was removed by sublimation under high vacuum (30 °C, ca. 10⁻³ mbar). The remaining brown residue was extracted with THF (2 mL) and layered with n-hexane (6 mL). After crystallization for 1 day at −35 °C, [1](THF)PF₆ could be isolated as a deep-brown powder. Crystals suitable for single-crystal XRD were grown from the slow diffusion of n-hexane into a THF solution of [1](THF)PF₆. Yield: 53 mg, 88%. Elem. anal. Calcd for C₁₂₅H₇₇Ni₃P₃NF₄ (M₀ = 926.47 g mol⁻¹): C, 62.23; H, 4.35; N, 3.02. Found: C, 62.12; H, 4.41; N, 2.93. UV−vis [toluene; ηmax/μ(εmax/L mol⁻¹ cm⁻¹)]: 334 (sh, 6649), 450 (2617), 659 (1805). μeff (THF-d₆): 1.7(1) μB.

Synthesis of [I(THF)]BArF₄. Compound [1](BArF₄)₂ was prepared in an MBraun argon glovebox. [1](BArF₄)₂ is sensitive toward moisture and air. [1](BArF₄)₂ is solvable and stable in diethyl ether, benzene, THF, and toluene. 1 (50 mg, 0.07 mmol) and FeC₆F₆ (74 mg, 0.07 mmol) were dissolved in THF (2 mL) at room temperature. An immediate color change from deep purple to brown green was observed. The mixture was heated to 60 °C, and this reaction mixture was heated to 60 °C. UV−vis [THF; ηmax/μ(εmax/L mol⁻¹ cm⁻¹)]: 284 (38665), 338 (15363), 466 (8545). μB (THF-d₆): 1.7(1) μB.

RESULTS AND DISCUSSION

Encouraged by our previous results with Fe, we were motivated to investigate the coordination compounds of the pyridylphosphinine ligand L with other late 3d metals. Given the paucity of prior Ni complexes containing chelating phosphinine ligands—and, in particular, the lack of corresponding reactivity studies—we were specifically motivated to study the reactivity of L toward suitable low-valent Ni sources and decided to start with the formal Ni(0) source 3. While the 1:1 reaction of D and L resulted in a mixture of several inseparable products (Figure S11), the reaction of D with 2.5 equiv of L led to the selective formation of a single phosphorus-containing species (1), characterized by a singlet in the 31P{¹H} NMR spectrum at δ = 179.4 ppm (Scheme 1; for the spectrum, see Figure S5). Isolation of 1 was achieved by the removal of volatiles (including H₂C=C(HSI)Me) under vacuum, the removal of IR by washing with n-hexane, and the layering of a purple solution of 1 in benzene with n-hexane at room temperature for 2 days, to afford a pure, crystalline material in 35% yield.

Compound 1 was fully characterized by NMR and UV−vis spectroscopy, elemental analysis, and cyclic voltammetry (CV; see the Supporting Information, SI). The collected data are all consistent with the formulation of 1 as the 1:2 homoleptic chelate complex [Ni(L)₂] (Scheme 1), which is also in line with the reaction stoichiometry employed.
Figure 2. Molecular structure of 1 in the solid state (left). Ellipsoids are drawn at the 40% probability level; H atoms are omitted for clarity; four phenyl groups are displayed in wireframe for clarity. Selected bond lengths [Å] and bond angles [deg]: Ni1–N1 2.005(6), Ni1–P2 2.092(2); P1–Ni1–P2 128.15(8), N1–Ni1–N2 110.4(2), P1–Ni1–N2 124.67(18), N1–Ni1–P2 129.03(17), P1–Ni1–N1 84.05(17), P2–Ni1–N2 84.28(17), C1–P1–C5 102.2(3), C1′–P2–C5′ 102.0(3). Cyclic voltammograms of 1 (right; from 0.2 to +1.1 and from 3.4 to +1.1; scan rate 100 mV).

Table 1. Geometry Indices (τ_4 and τ_5) and Magnetic Moments (μ_{eff}) THF-d_8, 300 K of Reported Ni Complexes

<table>
<thead>
<tr>
<th>compound</th>
<th>τ_4</th>
<th>τ_5</th>
<th>μ_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.80</td>
<td>0.53</td>
<td>2.0(1)</td>
</tr>
<tr>
<td>1</td>
<td>0.71</td>
<td>1.7(1)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.79</td>
<td>2.1(1)</td>
<td></td>
</tr>
</tbody>
</table>

The solid-state molecular structures of [1]BF$_4$ and [1](THF)[PF$_6$] reveal a common structural motif: trigonal-bipyramidal Ni(1) complexes coordinated by two ligands L and direct equatorial coordination of an additional ligand (Figure 3). In [1]BF$_4$, the tetrafluoroborate anion shows an interaction of one F atom with the metal center [Ni1–F1 distance: 2.2729(9) Å]. The value of the geometry index for [1]BF$_4$ ($\tau_3 = 0.53$) is between those expected for square-pyramidal ($\tau_3 = 0$) and trigonal-bipyramidal ($\tau_3 = 1$; Table 1) complexes. For [1](THF)[PF$_6$], the fifth coordination site at Ni is occupied by a THF solvent molecule [Ni1–O1 2.1355(15) Å], rather than by the counteranion, which can be attributed to the reduced donor strength of the PF$_6^-$ anion relative to BF$_4^-$ (Figure 3). A similar coordination motif was observed following the
1.7409(14); C1 components of the
1.734(2), C1 tetracene glasses at 20 and 40 K, respectively, and also con
1.389(3), C2−C3 1.407(3), C3−C4 1.396(3), C4−C5 1.387(3), P1−C5 1.738(2); C1−P1−C5 103.42(10), P1−Ni1−P2 103.59(2), P1−Ni1−O1 133.20(4), O1−Ni1−P2 123.20(4), P2−Ni1−N2 81.92(5), P2−Ni1−N1 81.91(5). For [1](BaF4)2, two BA2F8 anions and a n-hexane solvent molecule were omitted for clarity. The crystal of [1](BaF4)2 contained a second crystallographically independent molecule with very similar structural parameters, and only one of these molecules is shown. The structure of the metal core of [1](BaF4)2 is shown in the inset. Selected bond lengths [Å] and bond angles [deg]: Ni1−N1 2.059(3), Ni1−N2 2.091(3), Ni1−P1 2.2275(11), Ni1−P2 2.2153(11), Ni1−P3 2.4071(11), Ni2−N3 1.968(4), Ni2−N4 1.960(4), Ni2−P3 2.2692(11), Ni2−P4 2.2360(13), Ni3−P3−Ni2 125.9074 (10), P1−Ni1−N1 80.6936(11), P2−Ni1−N2 82.1127(13), P3−Ni2−N3 85.8814(12), P4−Ni2−N4 83.9324(11).

electrophilic addition of Ph3SnCl to anionic homoleptic biphosphininecobalt and -rhodium complexes, as described by Le Floch and co-workers.17

The magnetic moments of [1]BF4 and [1(THF)]PF6 [2.0(1) and 1.7(1) μB, respectively, in THF-d4 at 300 K] were determined by the Evans NMR method and are consistent with S = 1/2 Ni(II) centers (Table 1). EPR measurements of [1]BF4 and [1(THF)]PF6 were recorded in toluene glasses at 20 and 40 K, respectively, and also confirm the presence of a single unpaired electron at each Ni center (for full details, see the SI). The EPR signal of [1]BF4 appears almost isotropic because of the broad and overlapping signals of the g tensor. However, it is better described as a rhombic system, which is indicated by the asymmetric shape of the signal. The observed g tensor with the simulated principal components g11 = 2.195, g22 = 2.127, and g33 = 2.060 is consistent with a Ni-centered radical in a system with small g anisotropy (for the spectrum, see Figure S20). The EPR spectrum of [1(THF)]PF6 displays similarly overlapping signals of the g tensor and can again be described as a rhombic system with small g anisotropy. Poorly resolved hyperfine interactions were observed on (at least) one g tensor, and satisfactory simulation was achieved after the inclusion of hyperfine coupling (135 and 150 MHz) to 31P (I = 1/2) on two g tensors. The observed g tensor (simulated g tensor: g11 = 2.200, g22 = 2.129, and g33 = 2.035) is again consistent with a Ni-centered radical (for the spectrum, see Figure S21). These results are consistent with the density functional theory (DFT) calculations carried out on [1]BF4, which show a large amount of spin density on Ni (0.85) and reproduce the experimental g tensor quite well [TPSSh/IGLO-III+CP(PPP); see the SI].

The reaction of 1 with FcBArF4 leads to a product with a notably different structure, at least in the solid state. In this case, the product [1](BaF4)2 is formed, which crystallizes as a dicaticionic dinuclear Ni complex fragment with two Ni(II) centers bridged by one P atom of one phosphinine ligand L. The charge of the dication is balanced by two BArF4 anions, which show no close contacts with either Ni center (Figure 3).

Compound [1](BaF4)2 is a rare example of a complex in which the phosphinine ligand shows a μ-P bridging coordination mode.66−68 The corresponding bipyridyl μ-N bridging mode is even scarcer (despite the fact that these complexes were studied far more extensively) because of the reduced electronic versatility of the lighter heterocycle.66

The Ni−N and Ni−P distances in [1](BaF4)2 are similar to those in [1]BF4 and [1(THF)]PF6 except for the bridging Ni1−P3 distance, which is slightly elongated 2.4071(11) Å vs mean distance 2.246 Å, as expected for a bridging interaction. The bridging P3 atom is tetrahedrally coordinated between the two Ni(II) centers with a geometry index of r2 = 0.86.

Also, in contrast to [1]BF4 and [1(THF)]PF6, the EPR signal of [1](BaF4)2 in a toluene glass at 30 K is well resolved and shows a rhombic system with small g anisotropy and hyperfine coupling interactions with two 31P nuclei along all three g tensors (A3P = 205 MHz, A2P = 170 MHz, and A1P = 175 MHz). The spectrum again indicates that a Ni-centered radical is present (simulated g tensors: g11 = 2.2170, g22 = 2.1450, and g33 = 2.0195; Figure S22). The found g values (close to 2) and well-defined

Figure 3. Solid-state molecular structures of [1]BF4, [1(THF)]PF6, and [1](BaF4)2. Ellipsoids are drawn at the 40% probability level, H atoms are omitted for clarity; some phenyl groups are displayed in wireframe and are transparent for clarity. For [1]BF4, a toluene solvent molecule is omitted for clarity. Selected bond lengths [Å] and bond angles [deg]: Ni1−P1 2.2328(4), Ni1−P2 2.2147(4), Ni1−N1 2.0449(12), Ni1−N2 2.0340(12), Ni1−F1 2.2729(9), P1−C1 1.7422(15), C1−C2 1.397(2), C2−C3 1.404(2), C3−C4 1.402(2), C4−C5 1.391(2), P1−C5 1.7409(14); C1−P1−C5 102.92(7), P1−Ni1−P2 108.070(16), P1−Ni1−F1 114.04(3), P1−Ni1−P2 137.73(3), P2−Ni1−N2 82.66(4), P1−Ni1−N1 82.92(4). For [1(THF)]PF6, one THF molecule, which is not coordinated to the complex, was omitted for clarity. Selected bond lengths [Å] and bond angles [deg]: Ni1−N1 2.1871(6), Ni1−P2 2.1857(6), Ni1−N1 2.0611(16), Ni1−Ni2 2.0586(17), Ni1−O1 2.1355(15), P1−C1 1.734(2), C1−C2 1.389(3), C2−C3 1.407(3), C3−C4 1.396(3), C4−C5 1.387(3), P1−C5 1.738(2); C1−P1−C5 103.42(10), P1−Ni1−P2 103.59(2), P1−Ni1−O1 133.20(4), O1−Ni1−P2 123.20(4), P2−Ni1−N2 81.92(5), P2−Ni1−N1 81.91(5). For [1](BaF4)2, two BA2F8 anions and a n-hexane solvent molecule were omitted for clarity. The crystal of [1](BaF4)2 contained a second crystallographically independent molecule with very similar structural parameters, and only one of these molecules is shown. The structure of the metal core of [1](BaF4)2 is shown in the inset. Selected bond lengths [Å] and bond angles [deg]: Ni1−N1 2.059(3), Ni1−N2 2.091(3), Ni1−P1 2.2275(11), Ni1−P2 2.2153(11), Ni1−P3 2.4071(11), Ni2−N3 1.968(4), Ni2−N4 1.960(4), Ni2−P3 2.2692(11), Ni2−P4 2.2360(13), Ni3−P3−Ni2 125.9074 (10), P1−Ni1−N1 80.6936(11), P2−Ni1−N2 82.1127(13), P3−Ni2−N3 85.8814(12), P4−Ni2−N4 83.9324(11).
hyperfine coupling interactions are indicative for an isolated $S = 1/2$ species. Thus, the EPR data might indicate that $[\text{I}](\text{Br}^\text{Ph})_2$ dissociates in solution into two monocations $[\text{Ni}(\text{L}^\text{P})]^+$. This is also consistent with DFT calculations on the monocation, which yield a rhombic g tensor ($g_\perp = 2.123$, $g_\parallel = 2.116$, and $g_z = 2.015$) that is in good agreement with the experimental results.

When the EPR measurement of $[\text{I}](\text{Br}^\text{Ph})_2$ is performed in a 2-methyltetrahydrofuran glass at 20 K instead of a toluene glass, a well-resolved rhombic system with small g anisotropy is again observed (Figure 4). However, in this case, additionally resolved hyperfine couplings to two equivalent ^{31}P ($I = 1/2$), two equivalent ^{14}N ($I = 1$), and two equivalent ^1H ($I = 1/2$) nuclei are also observed. Calculations indicate that the proton hyperfine couplings are caused by the σ-H atoms of the pyridyl groups (see the SI for details). The simulated g tensor ($g_\perp = 2.2135$, $g_\parallel = 2.1460$, and $g_z = 2.0212$) is similar to that obtained in toluene and so is again consistent with a Ni-centered radical. The presence of monocationic Ni(1) centers is additionally confirmed by the magnetic moment of 1.7(1) μ_B (in THF-d_8 at 300 K) per Ni atom measured by the Evans NMR method.

In addition to simple outer-sphere oxidation, we were also interested in investigating more complex reactions of 1, particularly given the complete lack of analogous studies for other nickel phosphinine complexes. Ni(0) complexes, in general, are very versatile and find various applications in electrochemistry and catalysis.69,70 For example, Ni(0) species play important roles in cross-coupling reactions (e.g., Kumada reaction) because of their redox properties and ability to undergo oxidative additions with substrates such as aryl halides.71,72 Thus, we were motivated to investigate the reactivity of 1 with the simple model cross-coupling substrates bromobenzene and iodobenzene (Scheme 3). When 1 equiv of bromobenzene was added to 1 in benzene, no change was observed at room temperature, either by eye or by $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy. However, when the temperature was increased to 60 °C, a color change from deep purple to fluorescent red could be observed. According to GC-FID analysis, a maximum of ca. 70% bromobenzene was consumed (despite complete consumption of 1, as indicated by $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy) alongside the formation of a new species which shows a single $^{31}\text{P}\{^1\text{H}\}$ resonance arising as a sharp singlet at $\delta = 4.7$ ppm. This signal splits into a complex multiplet in the ^{31}P NMR spectrum. In order to characterize the corresponding species 2, the solvent of the fluorescent red reaction mixture was completely evaporated, and the remaining residue was extracted into n-hexane.

Crystals of 2 were obtained by slow evaporation of the resulting fluorescent orange n-hexane solution. Single-crystal XRD revealed its identity as a 1,1-diphenyl-λ^3-phosphinine (Figure 5), which accounts for the observed fluorescent properties.73-76 This structure formally arises from the addition of two phenyl groups to the P center of the

![Figure 4](https://dx.doi.org/10.1021/acs.inorgchem.0c01115)

Figure 4. Experimental (black) and simulated (red) EPR spectra of $[\text{I}](\text{Br}^\text{Ph})_2$ recorded at 20 K in a 2-methyltetrahydrofuran glass. Simulation parameters: $g_{11} = 2.2135$, $g_{22} = 2.1460$, and $g_{33} = 2.0212$; $W_{11} = 3.0$, $W_{22} = 2.5$, and $W_{33} = 3.2$; $A_{11}^{\text{fl}} = A_{11}^{\text{ex}} = 210$ MHz, $A_{22}^{\text{fl}} = A_{22}^{\text{ex}} = 212$ MHz, $A_{33}^{\text{fl}} = A_{33}^{\text{ex}} = 207$ MHz, $A_{11}^{\text{fl}} = A_{11}^{\text{ex}} = 23$ MHz, $A_{11}^{\text{fl}} = A_{22}^{\text{ex}} = 28$ MHz, $A_{11}^{\text{fl}} = A_{33}^{\text{ex}} = 21$ MHz, $A_{11}^{\text{fl}} = A_{22}^{\text{ex}} = 20$ MHz, $A_{11}^{\text{fl}} = A_{33}^{\text{ex}} = 20$ MHz, and $A_{11}^{\text{fl}} = A_{33}^{\text{ex}} = 19$ MHz. Experimental conditions: microwave frequency 9.64567 GHz; power 1.589 mW; modulation amplitude 4.000 G.

Scheme 3. Reaction of 1 with Haloarenes PhX (X = Br, I) at 60 °C

(i) Reaction in benzene, 2 (15% isolated yield) and [1]Br (45%). (ii) Reaction in toluene, 2 (30%) and 3 (64%). Possible contributions to the electronic structure of 3, including Ni d9 (3-I), Ni d9 (3-II), and Ni d7 (3-III) centers.

https://dx.doi.org/10.1021/acs.inorgchem.0c01115

Inorg. Chem. 2020, 59, 9951–9961
phosphinine ligand L. As reported for other λ^2-phosphinines, the P1–C1/C5 bonds are slightly shortened compared to P–C single bonds (mean distance 1.763 Å vs sum of covalent radii 1.86 Å), while the C–C bonds are in the range of C≡C double bonds (mean distance 1.395 Å vs sum of covalent radii 1.34 Å). The almost planar phosphorus heterocycle is characterized by the small fold angle of 1.50(8),75 which is smaller than a CH group of a phenyl moiety.76,78

The reaction of 1 was also investigated toward 1 equiv of iodobenzene under analogous conditions (toluene, 60 °C) but was found to lead to a significantly different outcome. In this case, full consumption (>99%) of iodobenzene took place according to GC-FID analysis. Compound 2 could again be isolated after extraction with n-hexane. However, the remaining residue showed a deep-green color rather than deep red, as had been observed using PhBr. Crystals were obtained from a toluene solution of this residue, after layering with n-hexane. Single-crystal XRD revealed a new product 3, which shows a significantly different structure in the solid state than [1]Br (Figure 5).

The n-hexane-insoluble material remaining after separation of 2 could be dissolved in THF to give a red NMR-silent solution. Single crystals suitable for XRD were obtained after layering with n-hexane. The molecular structure revealed the formation of a trigonal-bipyramidal Ni(I) complex, [1]Br, containing two L and one additional bromide ligand (Figure S5), in a structure very similar to those observed for [1]BF₄ and [1(THF)]PF₆. The σ bonds between the Ni center and the donor atoms of L (mean distances: Ni1–N1 2.105 Å and Ni1–P 2.208 Å) are elongated compared to 1, most likely caused by the higher coordination number of the Ni atom. In comparison with the cationic complexes [1]BF₄ and [1(THF)]PF₆, [1]Br displays similar Ni–P distances but shortened Ni–N distances. The Ni1–Br1 bond length of 2.4889(4) Å is in the range of covalent Ni–Br bonds (sum of covalent radii 2.430 Å),77 while the geometry index of $\tau_g = 0.79$ is consistent with a distorted trigonal-bipyramidal structure (Table S1). The magnetic moment of [1]Br [2.1(1) μ_B in THF-d_8 at 300 K] was determined by the Evans NMR method and is consistent with an $S = \frac{1}{2}$ Ni(I) center (Table S1). Additionally, EPR measurements in a toluene glass at 20 K indicate the presence of a Ni(I) species with a metal-centered radical (Figure S24; simulated g tensor: $g_{11} = 2.190, g_{22} = 2.125,$ and $g_{33} = 2.060$), similar to [1]BF₄ and [1(THF)]PF₆. The calculated spin density on Ni (0.82) as well as the calculated g tensor are in good agreement with the experimental data (Table S5).

Although Ni-mediated cross-coupling reactions usually involve Ni(0) and Ni(II) species,79 Ni(I) complexes analogous to [1]Br have also been suggested as viable intermediates and may also show pronounced catalytic activity.80 Some other nickel(I) halide complexes have also been isolated from the reaction of Ni(0) complexes with PhX.85,86

The reaction of 1 was also investigated toward 1 equiv of iodobenzene under analogous conditions (toluene, 60 °C) but was found to lead to a significantly different outcome. In this case, full consumption (>99%) of iodobenzene took place according to GC-FID analysis. Compound 2 could again be isolated after extraction with n-hexane. However, the remaining residue showed a deep-green color rather than deep red, as had been observed using PhBr. Crystals were obtained from a toluene solution of this residue, after layering with n-hexane. Single-crystal XRD revealed a new product 3, which shows a significantly different structure in the solid state than [1]Br (Figure 5). Most notably, 3 has clearly lost one of its phosphinine ligands L. Moreover, the Ni center—which is tetrahedrally coordinated ($\tau_g = 0.95$; Table 1)—is bound to two iodiide ligands, as well as by a formally anionic 1-Ph-λ^2-phosphinine ligand, which is derived by the addition of an extra phenyl substituent to the ligand. A similar reaction involving Ni-mediated cross-coupling reactions usually involve Ni(0) and Ni(II) species,79 Ni(I) complexes analogous to [1]Br have also been suggested as viable intermediates and may also show pronounced catalytic activity.80
[3.2(1) in THF-d4 at 300 K] lies between those expected for two and three unpaired electrons (Table 1). The magnetic susceptibility of a solid sample of 3 was measured with a SQUID magnetometer in the temperature range 100 K < T < 400 K. The results are shown in Figure 6. These data reveal that the magnetic moment continuously increases from $\mu_{\text{eff}} = 2$ at 105 K to 4 at 400 K. These data suggest that a thermally activated spin transition occurs from an $S = \frac{1}{2}$ ground state into an $S = \frac{3}{2}$ excited state. The latter dominates at the upper limit of the accessible temperature window. In addition, it is noteworthy that the measured effective moment significantly exceeds the expected spin-only value for an $S = \frac{1}{2}$ system at high temperature ($T > 350$ K). This observation might be explained by unquenched orbital contributions to the magnetic moment of the $S = \frac{1}{2}$ species, which is a common phenomenon for complexes with a tetrahedral d8 configuration at the metal atom.87

The EPR spectrum of 3 recorded at 20 K in a toluene glass shows overlapping and broad signals for the g tensors. The simulated g tensor ($g_{11} = 2.390$, $g_{22} = 2.242$, and $g_{33} = 2.120$) is consistent with a Ni-centered radical in a rhombic $S = \frac{1}{2}$ system (Figure 7).

In the case of 3, the experimental data could not be reproduced in good agreement using standard DFT (for details, see the SI). Furthermore, a rather large spin density was calculated at the Ni atom (1.23), hinting at a broken-symmetry solution. Indeed, a broken-symmetry treatment at the TPSS-D3BJ/def2-TZVP level shows an interesting electronic structure. Here, an intermediate-spin Ni center ($S = 1$, d8) is antiferromagnetically coupled to a phosphacyclohexadienyl radical, resulting in an overall $S = \frac{1}{2}$ species (3-II; for details, see the SI). A small energy separation between the broken-symmetry doublet and quartet states was calculated by DFT ($\Delta E_{\text{doublet-quartet}} = 1.1$ kcal-mol$^{-1}$ at the TPSS-D3BJ/def2-TZVP level of theory). However, dedicated multireference calculations, namely, CASSCF-NEVPT2 with an active space of 13 electrons in 12 orbitals, reveal a much more complicated electronic structure of the $S = \frac{1}{2}$ ground state of 3. These calculations show that all three mesomeric structures (3-I, 3-II, and 3-III), shown in Scheme 3 (vide supra), contribute significantly to the overall electronic structure of 3. Thus, 3 exhibits significant multireference character, which makes an assignment of the oxidation state of the Ni atom somewhat ambiguous. However, both broken-symmetry DFT and CASSCF clearly show the redox-active behavior of the anionic 1-phenylphosphacyclohexadienyl ligand in 3. Furthermore, the CASSCF-NEVPT2 estimation of the g tensor is in qualitative agreement with the experiment and reproduces the observed significant anisotropy of the g tensor ($g_{1} = 2.562$, $g_{y} = 2.227$, and $g_{z} = 2.173$).

CONCLUSION

In summary, we have presented the synthesis and crystallographic characterization of the homoleptic 2-(2′-pyridyl)-4,6-phosphininenickel(0) complex I. First reactivity studies on the phosphinine-based Ni complex 1 show that it can be conveniently oxidized using ferrocenium salts FeX. Oxidation with FeBF$_4$ and FePF$_6$ leads to the formation of Ni(1) complexes [1]BF$_4$ and [1(THF)]PF$_6$, which possess similar trigonal-bipyrimal structural motifs. Oxidation of 1 with FcBAR$_4^{2-}$ on the other hand, affords a dicaticionic dinuclear Ni(1) complex [2](BAR$_4^{2-}$)$_2$ containing a bridging phosphine ligand in the rare μ_3-coordination mode. The reaction of 1 with bromobenzene leads to formation of the λ^2-phosphine 2 and the trigonal-bipyrimal Ni(I) complex [1]Br. In contrast, the reaction of 1 with iodobenzene results in the formation of 2 and the tetrahedral Ni complex 3, which is based on a formally anionic 1-Ph-λ^4-phosphine. Quantum-chemical calculations on 3 highlight the redox-active behavior of the phosphine moiety, which prohibits a clear assignment of an oxidation state to the Ni center. The carbon–halogen bond splitting by a transition-metal complex and transfer of the aryl fragment to the ligand highlight the chemical noninnocence of phosphine ligands in transition-metal complexes. Investigations on the mechanism of formation of [1]Br and 3 and further reactivity studies on 1 are currently underway in our laboratories.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c01115.
Full synthetic details, NMR, UV–vis, and EPR spectra, and crystallographic refinement and computational details (PDF)

Accession Codes
CCDC 2007973 and 1988434–1988439 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request cif, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

R. Wolf – Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany; Email: robert.wolf@ur.de

B. de Bruin – van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; orcid.org/0000-0002-3482-7669; Email: b.debruin@uva.nl

C. Müller – Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Email: c.mueller@fu-berlin.de

Authors

J. Leitl – Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany

P. Coburger – Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany

D. J. Scott – Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany

C. G. P. Ziegler – Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany

G. Hiermeier – Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany

N. P. van Leest – van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

G. Hörner – Department of Chemistry, Inorganic Chemistry IV, Universität Bayreuth, 95440 Bayreuth, Germany; orcid.org/0000-0002-3883-2879

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.0c01115

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof. Birgit Weber (Universität Bayreuth, Bayreuth, Germany) for access to a SQUID magnetometer and helpful discussions. Funding by the Deutsche Forschungsgemeinschaft (Grants WO1496/9-1 and MU1657/5-1) and Alexander von Humboldt Foundation (postdoctoral fellowship to D.J.S.) is gratefully acknowledged.

REFERENCES

9959

https://dx.doi.org/10.1021/acs.inorgchem.0c01115

Inorg. Chem. 2020, 59, 9951–9961
Heterocycles: An Unprecedented Phosphinine with Significant P(3)-Donor Properties.

Dalton Trans. 2015, 44 (22), 10304–10314.

(42) Leitl, J.; Marquardt, M.; Coburger, P.; Scott, D. J.; Streitferdt, V.; Gschwind, R. M.; Müller, C.; Wolf, R. Facile C = O Bond Splitting of Carbon Dioxide Induced by Metal-Ligand Cooperativity in a Phosphonium Iron(0) Complex.

(45) Deb, M.; Hazra, S.; Dolui, P. A.; Elias, J. Ferrocenium Promoted Oxidation of Benzylic Amines to Imines Using Water as the Solvent and Air as the Oxidant.

(47) Clark, R. C.; Reid, J. S. The analytical calculation of absorption in multifaceted crystals.

(48) Sheldrick, G. M. Crystal structure refinement with SHELXL.

(50) Carmichael, D.; Le Floch, P.; Ricard, L.; Mathey, F. Ruthenium(II) Complexes of a 2,2'-Biphenoliphenine; the Synthesis and Characterization of a Non-Equivalent Monohalide.

Chem. Rev. 2000, 100 (10), 3553–3590.

(54) X. D.; M. D.; J. P. Investigation of the Reductive Coupling of Aryl Halides and/or Ethylchlorocacetate Electrocatalyzed by the Precursor NiX(Bpy) with X = Cl, Br or MeSO_3.

Polyhedron 2015, 90, 47–57.

octadiene (COD); M = Rh, DIEN = Norbornadiene (NBD); NIPPHOS = 2-(2′-Pyridyl)-4,5-Dimethylphosphinine. X-Ray Crystal Structure of [Ir₂(COD)₂(NIPPHOS)]⁻[Sbf₆]₆. Inorg. Chem. 1992, 31 (24), 5117–5122.

(65) Mao, Y.; Lim, K. M. H.; Li, Y.; Ganguly, R.; Matthey, F. The Original Coordination Chemistry of 2-Phosphophenol with Copper(I) and Gold(I) Halides. Organometalics 2013, 32 (12), 3562–3565.

