Photo-activated CO-release in the amino tungsten Fischer carbene complex, \([(\text{CO})_5\text{WC(NC}_4\text{H}_8)\text{Me}]\), picosecond time resolved infrared spectroscopy, time-dependent density functional theory, and an antimicrobial study

DOI
10.1016/j.jinorgbio.2020.111071

Publication date
2020

Document Version
Final published version

Published in
Journal of inorganic biochemistry

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 10 Dec 2023
Photo-active CO-release in the amino tungsten Fischer carbene complex, [(CO)₅WC(NC₄H₈)Me], picosecond time resolved infrared spectroscopy, time-dependent functional theory, and an antimicrobial study

Suzanne McMahon, Ashwene Rajagopal, Saeed Amirjalayer, Yvonne Halpin, Deirdre Fitzgerald-Hughes, Wybren Jan Buma, Sander Wouters, Conor Long, Mary T. Pryce

A R T I C L E I N F O

Keywords:
- Tungsten based Fischer carbene
- Photocatalytic CO-loss
- Antimicrobial
- Picosecond time-resolved infrared spectroscopy

A B S T R A C T

Picosecond time-resolved infrared spectroscopy was used to probe the photo-induced early state dynamics preceding CO loss in the Fischer carbene complex, [(CO)₅WC(NC₄H₈)H₂]. Time-dependent density functional theory calculations were employed to help in understanding the photochemical and photophysical processes leading to CO-loss. Electrochemical initiated CO release was quantified using gas chromatography. The potential of [(CO)₅WC(NC₄H₈)H₂], as an antimicrobial agent under irradiation conditions was studied using a Staphylococcus aureus strain.

1. Introduction

Fischer carbene complexes have been used widely as reagents in various organic transformations, and in organometallic synthesis, using both thermal and photochemical approaches [1–5]. Fischer carbene complexes of group 6 metals have been shown to react under photochemical conditions with imines, alkenes, aldehydes or alcohols producing a wide variety of useful compounds including β-lactams, β-lactones, cyclobutanones, or amino esters [6–9]. Recently low temperature matrix isolation and time resolved spectroscopy has been used in identifying the various intermediates generated in these processes. In 1988, Hegedus and co-workers, proposed that visible light irradiation results in photocarbonylation of alkoxy Fischer carbenes, via either a short lived metallocyclopropanone or a metallaketene intermediate [10–12]. We and others have used picosecond time-resolved infrared spectroscopy to confirm the formation of a metallaketene intermediate species [13,14].

Fischer carbene complexes containing alkoxy groups on the carbene carbon, such as [(CO)₅MC(OMe)Me] (M = Cr or W), undergo anti-syn isomerisation of the alkoxy substituent following low energy photoysis. Increasing the excitation energy, however, can result in the formation of a reactive metallaketene intermediate (100 ps) in the case of the chromium analogue. This excited state was detected using picosecond time-resolved infrared spectroscopy (psTRIR) [13], and supported by quantum chemical calculations. For M = Cr, time-dependent density functional theory (TDDFT) calculations indicate that the metallaketene-chromium intermediate has singlet character, while in the case of the tungsten analogue, the metallaketene intermediate is produced from a triplet state [13,15]. In addition, to these two process, the alkoxy based Fischer carbene compounds also undergo photo-induced CO-loss following higher energy photoysis [16,17]. Previously we have shown that replacement of the alkoxy group by an amino substituent (pyrrolidine), greatly enhances the quantum efficiency for CO loss, and the photon energy required to achieve CO-loss is greatly reduced [18]. For example, when [(CO)₅CrC(NC₄H₈)(Me)] was irradiated at λ = 400 nm, rapid (< 50 ps) CO loss occurs, with a quantum yield of approximately 70%. No evidence was obtained for the formation of metallaketene intermediates or metallocyclopropanone excited states with this system, which is not surprising as amino Fischer carbene complexes are known to be poor reagents in the synthesis of β-lactams. Among the very few reports on the photochemistry of tungsten based amino Fischer carbene complexes Rooney et al. used Raman spectroscopy, to identify [(CH₃CN)(CO)₄WC(NC₄H₈)(SiPh₃)] following

https://doi.org/10.1016/j.jinorgbio.2020.111071

Received 1 December 2019; Received in revised form 19 March 2020; Accepted 19 March 2020

Available online 07 May 2020

0162-0134/ © 2020 Elsevier Inc. All rights reserved.
excitation of [(CO)5WC(NC4H8)(SiPh3)] in acetonitrile [19]. While the synthetic applications of Fischer carbene are well known, more recently metal carbonyls have been studied for both antimicrobial effects and therapeutic applications [20]. The toxic effects of inhaled environmental CO are well known, but surprisingly the important role of CO as an intracellular messenger, regulating physiological and cryoprotective processes in the body is less understood [21]. The positive effects of CO, which may have clinical applications include vasodilation, anti-inflammatory, anti-proliferative and anti-angiogenic activities [22]. However, for clinical applications, controlling the delivery of CO gas is essential but challenging. Harnessing CO, in CO-releasing compounds (CO-RMs) where a light or electrochemical stimuli can be used to break bonds and liberate “free CO” has been suggested as a means to control delivery for clinical applications [23,24]. Light induced CO release from molecules (photo-CORMs) may facilitate controlled timing, dosage and location of CO release for on-target applications [25,26]. The development of photoCORMs includes compounds absorbing in the ultraviolet, the visible region, and ideally into the therapeutic window [27]. The photochemistry of a wide range of metal carbonyls has been studied in aqueous media, from the original studies which focused on Fe(CO)5 and Mn2(CO)10 [28], to others containing for example tripodal, di-imine or bipyridine type ligands, and including metal centers such as Mo, W, Re or Ru [29-42]. The antimicrobial properties of metal carbonyl compounds against both E. coli and S. aureus were reported by Nobre and co-workers who demonstrated the superior bactericidal activity of CORMs versus using solely carbon monoxide gas [43]. Following these initial antimicrobial studies, many other metal carbonyls compounds based on Mn, Fe and Cu have been assessed for bactericidal properties, both in the presence and absence of a light source [44-47,50-54]. Chromium based Fischer carbene complexes have previously been studied as CO-releasing modalities in the absence of light in aqueous media where myoglobin was used to quantify CO. [34] Under the conditions employed, nucleophilic attack by water was reported to be important for CO loss, and a clear correlation between the electrophilicity of the carbene carbon and the rate of CO release in solution was reported. In this study, we report the results from a ps-TRIR investigation on the [(CO)5WC(NC4H8)CH3] compound combined with an electrochemical study where induced CO loss is confirmed using gas chromatography. Similarly, to the chromium analogue, the tungsten amino Fischer carbene complex, undergoes efficient CO-loss using 400 nm excitation, with no evidence for the formation a metallaketene intermediate from the time resolved studies [13,18]. The photochemistry and the high quantum yield for CO-loss is supported using TDDFT calculations. Furthermore, the potential application of the compound as an antimicrobial agent was assessed using a Staphylococcus aureus strain (ATCC 25923).

2. Materials and instrumentation

2.1. UV–vis spectroscopy

UV–vis spectra were measured on an Agilent 8453 UV–vis spectrophotometer in a 1 cm quartz cell using spectroscopic grade solvents.

2.2. NMR spectroscopy

1H NMR was recorded on a Bruker AC 400 spectrophotometer in CDCl3 and were calibrated according to the deuterated solvent peak.

2.3. Picosecond time-resolved infrared spectroscopy

The TRIR experiments were performed at the University of Amsterdam. UV pump and mid-IR probe pulses were generated by a Ti:sapphire laser with a repetition rate of 1 kHz were utilised. The UV pump pulse (400 nm) was generated by second harmonic generation (SHG). Typical pulse energies employed were 0.8–1.0 μJ. IR probe pulses were generated by difference frequency generation (DFG) of the signal and idler from a β-barium borate (BBO)-based optical parametric amplifier (OPA) in AgGa2S4. The delay between pump and probe was scanned by mechanically adjusting the beam-path of the UV pump using a translation stage. The temporal resolution of 200 fs has been obtained from the full width at half maximum (FWHM) of the pump-probe cross-correlate function. Solutions were continually circulated (flowed) through IR cells containing CaF2 windows with a path length of 500 μm.

2.4. Cyclic voltammetry and electrochemical loss

Cyclic voltammetry (CVs) and bulk electrolysis profiles were recorded in anhydrous acetonitrile (Sigma Aldrich) with tetra-butylammonium hexafluorophosphate (TBAPF6) (0.1 M), as a supporting electrolyte. The concentration of the sample was 0.001 M throughout. Experiments were carried out using a CH Instruments 750C electrochemical potentiostat. All electrochemical experiments were performed at room temperature (20 °C) unless stated otherwise. A three-electrode cell was employed which consisted of a glassy carbon working electrode, a Pt wire auxiliary electrode and Ag/AgCl reference electrode (Eredox couple = +0.43 V). The scan rate was 0.1 V s⁻¹ unless otherwise stated. All experiments were performed with the cell in the absence of light. CO release was detected using a Shimadzu GC-2010 Plus unit (Lab Solutions version 5.57 software) with a dielectric barrier discharge ionisation detector (BID) and a ShinCarbon micropacked column with 0.53 mm internal diameter.

2.5. Computational studies

All calculations were performed using the Gaussian 16 (Revision B.01) program suite [55], using the exchange functional of Becke [56] and the correlation functional of Lee Yang and Parr [57,58] i.e. the B3LYP method and a triple zeta quality basis set def2-TZVP [59,60]. All molecular geometries were optimised to tight convergence criteria, and different solvent environments were modelled using a polarisable continuum model [61]. Relaxed potential energy scans were undertaken along the chosen reaction coordinates, providing sets of atomic coordinates at each point, which were then used to calculate the excited state energies of both singlet and triplet excited states using Time-Dependent Density Functional Theory (TDDFT) [62,63].

2.6. General remarks

All chemicals were purchased from Sigma Aldrich, ABCR or ACROS and were of reagent grade. The chemicals were used without further purification.

2.7. Synthesis

2.7.1. Preparation of [(CO)3WC(NC4H8)Me]

The synthesis of [(CO)3WC(NC4H8)Me] was carried out according to previously reported procedures [64,65]. 0.31 mmol (0.026 mL) of pyrrolidine was added via syringe to a solution of [(CO)3WC(O)Me] [66] (0.26 mmol, 0.100 g) in diethyl ether (15 mL) at −78 °C (this temperature was achieved by combining liquid nitrogen and acetone and monitored using an alcohol thermometer). The reaction was stirred and allowed to reach room temperature. The solution changed from a bright yellow colour to cream. The solvent and any excess pyrrolidine were removed at reduced pressure. The crude complex was purified on a silica gel column using a solvent mix of pentane: dichloromethane (9:1). The spectroscopic data was in agreement with reported data [19,20].
2.8. Antimicrobial evaluation

The antimicrobial activity of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\] was assessed using a *Staphylococcus aureus* reference strain, (ATCC 25923). Bacteria were grown overnight at 37 °C on Mueller-Hinton (MH) agar and suspensions were prepared from isolated colonies to the density of a 0.5 McFarland standard (bioMérieux, Ireland) and were further diluted 1/100 in phosphate buffered saline (PBS), pH 7.4 (approximately \(1 \times 10^6\) CFU/ml, where CFU is colony forming units). Assays were prepared in micro centrifuge tubes and contained approximately \(1 \times 10^5\) CFU/ml of bacteria and varying concentrations of tungsten carbonyl carbene complex (50–200 μM in 10% DMSO) in PBS. Control assays contained no complex and a DMSO control was also included. For irradiation, 100 μl aliquots were transferred to the wells of a 96 well tissue culture plate which was irradiated for 1 h using a LED lamp with wavelength (\(\lambda_{exc.} \sim 355\) nm). For non-irradiated controls, aliquots were transferred to another 96-well plate which was incubated in the dark for 1 h. The contents of the wells were then diluted, 1/100 with PBS and 100 μl spread onto MH agar and incubated at 37 °C overnight before counting colony forming units (CFU). For irradiated and non-irradiated assays, the percentage killing activity was calculated based on the CFU/mL from treated bacteria compared to untreated (control assays containing DMSO). To confirm the contribution of CO to bactericidal activity, assays were performed in the presence of a CO scavenger, bovine haemoglobin at 20 μM for comparison (see ESI).

3. Results and discussion

The UV–vis spectrum of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\] in \(n\)-heptane is presented in Fig. 1. The main features of this spectrum are an absorption maximum at 337 nm and a shoulder at 364 nm. The spectrum is consistent with those of other Fischer carbene complexes reported in the literature [19,67]. Superimposed on the experimental spectrum are the vertical excitation energies to singlet excited states (represented by black lines) calculated by TDDFT methods and the excitation wavelength used in the TRIR studies (400 nm) is indicated by a downward arrow. The electron density difference maps for the two singlet excited states close to this wavelength are also presented, and these can be characterised as metal-to-carbene (\(^1\text{ES1}\)) and metal-to-cis-CO (\(^1\text{ES2}\)) charge-transfer in nature. It is clear from Fig. 1, that irradiation at 400 nm will populate predominantly \(^1\text{ES1}\). The behaviour of this excited state was then modelled along either the cis- or trans-CO loss reaction coordinates (see later).

Prior to performing time resolved studies, steady-state experiments confirmed that photolysis of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\] (\(\lambda_{exc} = 395\) nm) in \(n\)-pentane solution in the presence of a trapping ligand (PPh3, in 1.1 molar equivalent excess). The blue spectrum is the calculated spectrum of cis-[\(\text{CO}]_4(\text{PPh}_3)\text{WC(NC}_4\text{H}_8\text{)Me}\] minus the spectrum of the \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\] and the green spectrum represents the calculated spectrum of trans-[\(\text{CO}]_4(\text{PPh}_3)\text{WC(NC}_4\text{H}_8\text{)Me}\] minus the spectrum of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\]. All calculated spectra were modelled in \(n\)-heptane.

![Fig. 1. The UV/vis spectrum of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\] in \(n\)-heptane solution superimposed on the calculated vertical excitation energies to singlet excited states (vertical black lines, obtained from TDDFT calculations) and the electron density difference maps for the two lowest energy singlet excited states (\(1\text{ES1}\) and \(1\text{ES2}\)) with the regions where the electron density is reduced in the excited state compared to the ground state coloured blue, and regions where the electron density is increased in the excited state relative to the ground state coloured red.](image)

![Fig. 2. The red spectrum is the experimental difference spectrum obtained following steady-state (\(\lambda_{exc} = 395\) nm) photolysis of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\] in \(n\)-pentane solution in the presence of a trapping ligand (PPh3, in 1.1 molar equivalent excess). The blue spectrum is the calculated spectrum of cis-[\(\text{CO}]_4(\text{PPh}_3)\text{WC(NC}_4\text{H}_8\text{)Me}\] minus the spectrum of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\] and the green spectrum represents the calculated spectrum of trans-[\(\text{CO}]_4(\text{PPh}_3)\text{WC(NC}_4\text{H}_8\text{)Me}\] minus the spectrum of \([\text{CO}]_5\text{WC(NC}_4\text{H}_8\text{)Me}\]. All calculated spectra were modelled in \(n\)-heptane.](image)

3.1. Picosecond time-resolved infrared spectroscopy and time-dependent density functional theory calculations

The photophysical processes leading to CO-loss were studied by calculating the energy profile along two reaction coordinates, cis- and trans-CO loss, in the \(^1\text{ES1}\) state. The \(^1\text{ES1}\) state is bound with respect to both of the reaction coordinates (Fig. 3). These TDDFT results show that the barrier for trans-CO loss is larger by \(\sim 20\) kJ mol\(^{-1}\) compared to the cis-CO loss reaction which explains the dominant formation of the cis-CO loss product in the steady-state experiments. Furthermore, the bound nature of this excited state implies that the CO-loss process will...
be “arrested” [68] i.e. it will occur slowly compared to the ultrafast CO-loss following photolysis of, for instance, Cr(CO)$_6$ [69,70].

Based on this, picosecond time-resolved infrared (TRIR) measurements using 400 nm were performed in n-heptane solution at room temperature. The ground state FTIR spectrum of [(CO)$_5$WC(NC$_4$H$_8$)Me] exhibits metal carbonyl stretching vibrations at 2063(w), 1967(vw), 1932(s) and 1925(s) cm$^{-1}$. The very weak parent feature at 1967 cm$^{-1}$ is not evident in the psTRIR experiments. Following excitation at 400 nm, two new intense features at 1906 and 1892 cm$^{-1}$ together with a very weak feature at approximately 2012 cm$^{-1}$ are produced. The IR changes (in the ν$_{CO}$ region) observed in these experiments are consistent with the initial formation of an excited state (1ES1 in Fig. 4). The main IR feature of this excited state was observed at approximately 1892 cm$^{-1}$ (labelled 1ES1 in Fig. 4) which decays over the initial 80 ps, with concomitant formation of bands at 2028, 1911 and 1873 cm$^{-1}$, which are assigned to the cis-[(CO)$_4$WC(NC$_4$H$_8$)Me], i.e. the vacant coordination site on the metal lies cis to the carbene ligand. This coordinatively unsaturated complex was modelled using DFT methods, and the IR difference spectrum was calculated by subtracting the simulated spectrum of the parent pentacarbonyl complex from the simulated cis-CO loss species. This simulated spectrum is also presented as the blue spectrum in Fig. 4. The similarity between this simulated spectrum and the final difference measured at 120 ps after excitation strongly supports characterisation of the main photoproduct as the cis-[(CO)$_4$WC(NC$_4$H$_8$)Me] complex.

3.2. Evaluation of CO loss by [(CO)$_5$WC(NC$_4$H$_8$)Me] using cyclic voltammetry

Electrolysis was carried out to determine the efficiency of CO loss for [(CO)$_5$WC(NC$_4$H$_8$)Me], using an electrochemical stimulus compared to a photo-stimulus. As shown in Fig. 5, the compound is oxidised at a potential of +0.52 V vs. Fe/Fe$^+$, an irreversible process at slow scan rates up to 1.0 V/s. This process becomes quasi-reversible at higher scan rates (up to 70 V/s) with an anodic to cathodic peak current ratio of approximately 1:0.5 and is assigned to the metal centered W0/I redox couple as previously reported [71,72]. The oxidation peak is metal-centered whereas the reduction peak points to the metal-carbene double bond. Comparing the oxidation potential of [(CO)$_5$WC(NC$_4$H$_8$)Me] with its Cr analogue, reveals an increase of 180 mV. This behaviour has been shown for other Cr and W based complexes which supports that the oxidation peak is metal-centered [71]. The reduction potential at −2.75 V, vs. Fe/Fe$^+$ is irreversible at the range of scan rates investigated (0.1–50 V/s).

The three anodic processes are observed in the range of −1.0 to −0.4 V are followed with the reduction of the complex (shown in Fig. 5). In the present study, electrochemical initiation of CO release from a 1 mM solution of the complex in CH$_3$CN was confirmed and is shown in Fig. 6(b), over five intervals approximately 20 min apart over 1.5 h of controlled potential electrolysis ($E =$ +0.87, vs. Fe/Fe$^+$). In these electrolysis experiments, CO loss over the course of the experiment is ~1 molecule of CO per molecule of complex, which is similar to
other studies performed by us on chromium analogues [18,55].

3.3. Bactericidal activity of [(CO)5WC(NC4H8)Me]

The TRIR studies indicated that the quantum yield of photoinduced CO-loss from [(CO)5WC(NC4H8)Me] is high at ~70%, and therefore suggests this complex is an ideal candidate to be used as a CO releasing compound with antibacterial properties.

[(CO)5WC(NC4H8)CH3] demonstrated concentration dependent bactericidal, against *S. aureus*, when photo-activated for 1 h at 355 nm (Fig. 7). The greatest differential between photo-activation and no irradiation was observed at 200 μM. Apparent low-level killing activity (10–20%) was observed in the absence of light, over the concentration range investigated. To investigate the dependence of photoactivated bactericidal activity on CO-release, bovine haemoglobin (Hb), a high affinity CO scavenger was added to the assays [43]. The bactericidal activity decreased by ~65%, following the addition of Hb, thereby indicating the cytotoxic role of CO (Fig. S3). Singlet oxygen measurements (see ESI) indicated no evidence for the formation of 1O2, which may also photodynamically inactivate bacteria (Fig. S2). For this complex, the cytotoxicity was attributed predominantly to CO release and to a lesser extent, tungsten carbonyl degradation products.

4. Conclusion

The tungsten based amino carbene complex, [(CO)5WC(NC4H8)Me] was assessed for both photo, and electrochemical CO-release. The CO-loss photoproduct cis-[(CO)4WC(NC4H8)Me] was generated via the formation of an excited state over 80 ps, as evident by picosecond time resolved infrared spectroscopy, and was further supported by quantum chemical calculations. From cyclic voltammetry studies, the complex also releases CO, but this approach is less efficient than when a photo-stimuli is used. The potential of this complex for antibacterial activity was assessed using a representative Gram-positive bacteria, *S. aureus*. Enhanced antibacterial activity was evident following irradiation, thereby indicating the potential of such complexes to act as antibacterial agents. CO trapping studies indicate that CO is predominantly responsible for the bactericidal activity. While carbon monoxide-releasing molecules have been shown to act as promising antimicrobials against several pathogens over the last decade [39,73,74], the mode of action is not fully clear and depending on the compound, multiple interactions with intracellular targets may occur that result in cell membrane perturbations, inhibition of DNA repair or iron chelation. Determining the fate of CO and its mechanisms of interaction with bacteria was beyond the scope of this work. However, for other CORMs Nobre et al. [43] showed that CO gas does not dissolve in the medium following its release, inferring that CO interacts directly with intracellular targets once released. Furthermore, for one CO-RM, tetraethylammonium molybdenum pentacarbonyl bromide (ALF 062) they noted accumulation of Mo inside *E. coli* cells suggesting that this CORM transports CO across the membranes for intracellular delivery.

One of the key challenges in using CO as a therapeutic is to control its delivery, such as using light or a redox stimulus, the approaches taken in this study. In our preliminary antimicrobial studies, a high quantum yield for photo-induced CO release, resulted in modest antibacterial activity against *S. aureus*. However, the potential of this approach for clinical applications requiring controlled delivery of antimicrobial activity was demonstrated.

Fig. 6. (a). Scan rate dependence of the first oxidation process for (CO)5WC(NC4H8)Me in 0.1 M TBAPF 6 in CH3CN, vs. FeC+/Fe C. CVs for scan rate of 1.0, 5.0 and 10.0 V/s shown here. (b). Time-dependent electrochemically induced CO release from [(CO)5WC(NC4H8)Me] (1 mM) in CH3CN.

Fig. 7. Photo-activated bactericidal activity of [(CO)5WC(NC4H8)CH3] against *S. aureus* ATCC25923 in PBS, pH 7.4. Activity in the absence of irradiation (light grey bars) and with irradiation for 1 h, λ = 355 nm (dark grey bars) over the concentration of catalyst ranging from 50 μM to 200 μM. Assays were performed in duplicate on 3 separate occasions and percentage killing activity was calculated from CFU/ml in the presence of complex relative to CFU/ml from control assays (assay with no complex). The mean value and standard error are shown. In the absence of complex, no killing effect was observed following irradiation (CFU/ml = 141,550 ± 50,113 - no light Vs 196,700 ± 54,591 with light).
Declaration of competing interest

There is no conflict of interest concerning the results stated in this manuscript.

The funding sources have been in the manuscript.

Acknowledgements

The authors thank the Amsterdam Laboratory under EU access-LLAMS-1961. We would also like to thank the Irish Research Council HRBMRCG-2018-01 (AR) for financial support. We would also like to thank the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jinorgbio.2020.111071.

References

Declaration of competing interest

There is no conflict of interest concerning the results stated in this manuscript.

The funding sources have been in the manuscript.

Acknowledgements

The authors thank the Amsterdam Laboratory under EU access-LLAMS-1961. We would also like to thank the Irish Research Council HRBMRCG-2018-01 (AR) for financial support. We would also like to thank the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jinorgbio.2020.111071.

References

Declaration of competing interest

There is no conflict of interest concerning the results stated in this manuscript.

The funding sources have been in the manuscript.

Acknowledgements

The authors thank the Amsterdam Laboratory under EU access-LLAMS-1961. We would also like to thank the Irish Research Council HRBMRCG-2018-01 (AR) for financial support. We would also like to thank the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

M.A.H. Alamirzy, N.M. Boyle, C.M. Brookes, M.W. George, L. Connor, P. Portius, M.T. Pryce, K.L. Ronayne, X.Z. Sun, M. Towrie, Q.V. Khuong, Unusually slow photodissociation of CO from (η6-C\textsubscript{6}H\textsubscript{6})Cr(CO)\textsubscript{3} (M= Cr or Mo): a time-resolved infrared, matrix isolation, and DFT investigation, Organometallics 28 (2009) 1461–1468, https://doi.org/10.1021/om900925x.

