Simultaneous observations of the blazar PKS 2155-304 from ultra-violet to TeV energies

DOI
10.1051/0004-6361/201936900

Publication date
2020

Document Version
Final published version

Published in
Astronomy & Astrophysics

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Simultaneous observations of the blazar PKS 2155–304 from ultra-violet to TeV energies

Received 11 October 2019 / Accepted 12 December 2019

ABSTRACT

Here we report the results of the first ever contemporaneous multi-wavelength observation campaign on the BL Lac object PKS 2155–304 involving Swift, NuSTAR, Fermi-LAT, and H.E.S.S. The use of these instruments allows us to cover a broad energy range, which is important for disentangling the different radiative mechanisms. The source, observed from June 2013 to October 2013, was found in a low flux state with respect to previous observations but exhibited highly significant flux variability in the X-rays. The high-energy end of the synchrotron spectrum can be traced up to 40 keV without significant contamination by high-energy emission. A one-zone synchrotron self-Compton model was used to reproduce the broadband flux of the source for all the observations presented here but failed for previous observations made in April 2013. A leptohadronic solution was then explored to explain these earlier observational results.

Key words. BL Lacertae objects: individual: PKS 2155–304 – astroparticle physics

* Corresponding authors: H.E.S.S. Collaboration (e-mail: contact.hess@hess-experiment.eu).
1. Introduction

Blazars are active galactic nuclei (AGNs) with an ultra-relativistic jet pointing towards the Earth. The spectral energy distribution (SED) of blazars exhibits two distinct bumps. The low-energy part (from radio to X-ray) is attributed to synchrotron emission while there is still debate on the emission process responsible for the high-energy bump (from X-ray up to TeV). Synchrotron self-Compton (SSC) models reproduce such emission invoking only leptons. The photons are then produced via synchrotron emission and inverse-Compton scattering. Hadronic blazar models, in which the high-energy component of the blazar SED is ascribed to emission by protons in the jet, or by secondary leptons produced in $p-\gamma$ interactions, have been widely studied (see e.g. Mannheim 1993; Aharonian 2000; Mücke & Protheroe 2001) as an alternative to leptonic models. These latter convey a certain advantage in that they provide a link between photon, cosmic-ray, and neutrino emissions from AGNs, and thus open the multi-messenger path to study AGN jets as cosmic-ray accelerators. Interest in hadronic blazar models has recently increased with the first hint (at 3σ level) of an association of an IceCube high-energy neutrino with the flaring High Energy Stereoscopic System (H.E.S.S.) X-ray missions. Its sensitivity in hard X-rays up to 79 keV enables which permits more sensitive studies above 10 keV than previous indications in X-rays (Schwartz et al. 1979). The source is a bright γ-ray emitter. Variability with a timescale of about one month was reported in the GeV energy range by the Fermi-LAT, and H.E.S.S., the Neil Gehrels Swift Observatory, and Fermi-LAT. These instruments observed PKS 2155–304 simultaneously during four epochs, where each epoch corresponds to observations conducted on a given night (2013-07-17, 2013-08-03, 2013-08-08, and 2013-09-28), labelled as epochs 1, 2, 3, and 4. Both H.E.S.S. and Swift observed the blazar for two additional epochs (2013-06-05 and 2013-06-19; labelled 5 and 6). Epoch 6 is presented for sake of completeness since the Swift data were found to be unusable (see Sect. 2.4). NuSTAR and Swift also observed PKS 2155–304 during three extra epochs (labelled 7, 8, and 9): those are also reported here for the sake of completeness. For each epoch, Fermi-LAT data were analysed and the results are reported in Sect. 2.2. Figure 1 presents the overall light curve derived from all the epochs.

2. Data analysis

PKS 2155–304 is an important calibration source in X-rays and was observed during a cross-calibration campaign with other X-ray instruments early in the NuSTAR mission (Madsen et al. 2017). The multi-wavelength observations of the source in April 2013 including NuSTAR, XMM-Newton, and Fermi-LAT were reported by Madejski et al. (2016), and those are denoted “epoch 0” in this paper. Observations of PKS 2155–304 were made as part of the “Principal Investigator” phase of the NuSTAR mission. The aim was to have those observations take place in exact coincidence with observations by the γ-ray observatory H.E.S.S. Because of diverse constraints (technical problems, bad weather, etc.), H.E.S.S., NuSTAR, and Swift only observed PKS 2155–304 simultaneously during four epochs, with the detection of an air shower by at least two telescopes (Funk et al. 2014, 2013). The H.E.S.S. array is located in the Khomas Highland, in Namibia (23°16′18″ S, 16°30′01″ E), at an altitude of 1800 m above sea level. Now in its second phase, H.E.S.S., is an array of five Imaging Atmospheric Cherenkov telescopes. Four of the telescopes (CT1-4) have segmented optical reflectors of 12 m in diameter consisting of 382 mirrors (Bernlöhrr et al. 2003) and cameras composed of 960 photomultipliers. Together these form the array of the H.E.S.S. phase I. The second phase started in September 2012 with the addition of a 28 m diameter telescope (CT5) with a camera of 2048 photomultipliers in the centre of the array. The system operates either in Stereo mode, requiring the detection of an air shower by at least two telescopes (Funk et al. 2004; Holler et al. 2015), or in Mono mode in which the array triggers on events detected only with CT5.

PKS 2155–304 was subsequently the target of a multi-wavelength campaign from June to October 2013 by NuSTAR, H.E.S.S., the Neil Gehrels Swift Observatory, and Fermi-LAT. This paper presents the gathered multi-wavelength data from the 2013 campaign and an analysis of these data in Sect. 2. In Sect. 3, the variability of the source and the X-ray spectra are discussed. Section 4 presents the modeling of the data, and Sect. 5 summarizes the findings of this campaign.
Fig. 1. Multiwavelength light curve of PKS 2155–304 in (from top to bottom) TeV, GeV, X-ray, and UV. The red lines illustrate the epochs mentioned in the text.

Table 1. H.E.S.S. observations of PKS 2155–304.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Date</th>
<th>Live time</th>
<th>Mode</th>
<th>E_{th} [TeV]</th>
<th>$\phi_{\text{dec}}(E_{\text{dec}})$ [$10^{-12} \text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1}$]</th>
<th>Γ</th>
<th>E_{dec} [TeV]</th>
<th>Flux [$10^{-12} \text{cm}^{-2} \text{s}^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013-07-17</td>
<td>1.2</td>
<td>Stereo</td>
<td>0.108</td>
<td>68.1 ± 5.5</td>
<td>2.89</td>
<td>0.27</td>
<td>57.6 ± 5.4</td>
</tr>
<tr>
<td>2</td>
<td>2013-08-03</td>
<td>2.0</td>
<td>Mono</td>
<td>0.072</td>
<td>324.8 ± 27.7</td>
<td>2.84</td>
<td>0.18</td>
<td>173.4 ± 17.2</td>
</tr>
<tr>
<td>3</td>
<td>2013-08-08</td>
<td>0.4</td>
<td>Stereo</td>
<td>0.120</td>
<td>98.9 ± 11.6</td>
<td>2.82</td>
<td>0.26</td>
<td>59.1 ± 7.5</td>
</tr>
<tr>
<td>4</td>
<td>2013-09-28</td>
<td>1.2</td>
<td>Mono</td>
<td>0.072</td>
<td>211.5 ± 28.5</td>
<td>2.72</td>
<td>0.20</td>
<td>133.4 ± 20.9</td>
</tr>
<tr>
<td>5</td>
<td>2013-06-05</td>
<td>0.9</td>
<td>Stereo</td>
<td>0.146</td>
<td>61.8 ± 12.3</td>
<td>3.17</td>
<td>0.26</td>
<td>27.0 ± 5.8</td>
</tr>
<tr>
<td>6</td>
<td>2013-06-19</td>
<td>0.8</td>
<td>Stereo</td>
<td>0.108</td>
<td>123.1 ± 9.1</td>
<td>2.79</td>
<td>0.26</td>
<td>90.1 ± 7.8</td>
</tr>
<tr>
<td>Stack</td>
<td></td>
<td>6.5</td>
<td>Combined</td>
<td>0.121</td>
<td>75.7 ± 2.7</td>
<td>3.00</td>
<td>0.29</td>
<td>62.0 ± 2.6</td>
</tr>
</tbody>
</table>

Notes. The first five columns give the epoch label, the observation date, the live time, the observation mode, and the energy threshold. The data were fitted with a simple power-law with differential flux ϕ_{dec} at E_{dec} (the decorrelation energy) and with an index Γ. The integrated flux above E_{th} is also given.

Each observation of 28 min had to pass standard quality criteria (Aharonian et al. 2006). For two nights (2013-08-03 and 2013-09-28; epochs 2 and 4), these criteria were not met by the four 12 m telescopes. Therefore, only CT5 Mono observations are available for these nights.

Data for each night were analysed independently using the Model analysis (de Naurois & Rolland 2009) adapted for the five-telescope array (“Stereo analysis” hereafter). In this case, loose cuts (with a threshold of 40 photo-electrons) were applied to lower the energy threshold. For the Mono analysis, standard cuts (threshold of 60 photo-electrons) were applied to minimize systematic uncertainties.

The spectra obtained at each epoch were extracted using a forward-folding method described in Piron et al. (2001). For each night, a power-law model was used of the form $\phi_{\text{dec}}(E/E_{\text{dec}})^{-\Gamma}$, where E_{dec} is the decorrelation energy. Table 1 lists the parameters providing the best fits to the data above an energy threshold E_{th}. This threshold is defined as the energy where the acceptance is 10% of the maximal acceptance.
Table 2. Fermi-LAT observations of PKS 2155–304.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Date</th>
<th>TS</th>
<th>$\phi_{dec}(E_{dec})$ [10^{-12} cm^{-2} s^{-1} MeV^{-1}]</th>
<th>Γ</th>
<th>E_{dec} [MeV]</th>
<th>Flux [10^{-8} ph cm^{-2} s^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013-07-17</td>
<td>19.8</td>
<td>1.62 ± 3.4</td>
<td>1.99 ± 0.17</td>
<td>909</td>
<td><14.2</td>
</tr>
<tr>
<td>2</td>
<td>2013-08-03</td>
<td>131.1</td>
<td>18.5 ± 5.4</td>
<td>2.01 ± 0.26</td>
<td>845</td>
<td>13.1 ± 3.8</td>
</tr>
<tr>
<td>3</td>
<td>2013-08-08</td>
<td>99.8</td>
<td>9.3 ± 1.7</td>
<td>1.79 ± 0.13</td>
<td>1280</td>
<td>11.3 ± 2.8</td>
</tr>
<tr>
<td>4</td>
<td>2013-09-28</td>
<td>154.6</td>
<td>5.6 ± 1.5</td>
<td>1.93 ± 0.22</td>
<td>1260</td>
<td>7.5 ± 3.2</td>
</tr>
<tr>
<td>5</td>
<td>2013-06-05</td>
<td>57.8</td>
<td>0.9 ± 0.3</td>
<td>1.38 ± 0.14</td>
<td>4340</td>
<td>4.2 ± 1.4</td>
</tr>
<tr>
<td>6</td>
<td>2013-06-19</td>
<td>127.0</td>
<td>124.0 ± 14.8</td>
<td>2.07 ± 0.10</td>
<td>540</td>
<td>39.0 ± 5.4</td>
</tr>
<tr>
<td>7</td>
<td>2013-08-14</td>
<td>295.1</td>
<td>1.1 ± 0.3</td>
<td>1.48 ± 0.14</td>
<td>3990</td>
<td>5.5 ± 1.8</td>
</tr>
<tr>
<td>8</td>
<td>2013-08-26</td>
<td>163.1</td>
<td>6.5 ± 1.8</td>
<td>2.02 ± 0.26</td>
<td>1160</td>
<td>9.1 ± 4.3</td>
</tr>
<tr>
<td>9</td>
<td>2013-09-04</td>
<td>46.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stack</td>
<td></td>
<td>875.0</td>
<td>23.4e−11 ± 1.8</td>
<td>1.89 ± 0.06</td>
<td>1300</td>
<td>12.5 ± 1.6</td>
</tr>
</tbody>
</table>

Notes. The epoch number is given in the first column and the corresponding date in the second. Other columns present the results of the analysis: TS, differential flux at the decorrelation energy, the spectral index Γ, the decorrelation energy, and integrated flux between 100 MeV and 500 GeV.

For completeness, the spectra averaged over the epochs 1, 3, 5, and 6 (Stereo mode observations) and over epochs 2 and 4 (Mono mode observations) were computed separately. Above 200 GeV, both measurements are compatible with each other, with an integrated flux of $(4.86±0.30)\times10^{-6}$ ph cm$^{-2}$ s$^{-1}$ for the Stereo mode observations and $(2.59±0.38)\times10^{-6}$ ph cm$^{-2}$ s$^{-1}$ for Mono mode observations. All the H.E.S.S. data were analysed together by combining the Stereo and Mono mode observations (see Holler et al. 2015), allowing us to compute an averaged spectrum (see Table 1). The integrated flux above 200 GeV measured for this combined analysis is $(3.12±0.47)\times10^{-12}$ ph cm$^{-2}$ s$^{-1}$ TeV$^{-1}$. A cross check with a different analysis chain (Parsons & Hinton 2014) was performed and yields similar results.

2.2. Fermi-LAT data analysis and results

The Fermi-LAT is a γ-ray pair conversion telescope (Atwood et al. 2009) that is sensitive to γ-rays above 20 MeV. The bulk of LAT observations are performed in an all-sky survey mode ensuring a coverage of the full sky every 3 h.

Data and software used in this work (Fermitools) are publicly available from the Science Support Center1. Events within 10° around the radio coordinates of PKS 2155–304 (region of interest, ROI) and passing the SOURCE selection (Ackermann et al. 2012) were considered corresponding to event class 128 and event type 3 and a maximum zenith angle of 90°. Further cuts on the energy (100 MeV < E < 500 GeV) were made, which remove the events with poor energy resolution. To ensure a significant detection of PKS 2155–304, time windows of 3 days centred on the campaign nights (Table 1) were considered to extract the spectral parameters. To analyse LAT data, P8R3_SOURCE_V2 instrument response functions (irfs) were used. In the fitting procedure, FTOOL and BACK events (Atwood et al. 2009) were treated separately.

The Galactic and extragalactic background models designed for the PASS 8 irfs denoted gll_iem_v07.fits (Acero et al. 2016) and iso_P8R3_SOURCE_V2_v1.txt were used in the sky model, which also contains all the sources of the fourth general Fermi catalogue (4FGl, The Fermi-LAT Collaboration 2020) within the ROI plus 2° to take into account the large point spread function (PSF) of the instrument especially at low energy.

An unbinned maximum likelihood analysis (Mattox et al. 1996) implemented in the gtlike tool2 was used to find the best-fit spectral parameters of each epoch. Models other than the power-law reported here do not significantly improve the fit quality. Table 2 shows the results of the analysis. We note that for epoch 1 with a test statistic (TS) below 25 (≈5σ), a flux upper limit was derived assuming a spectral index of $\Gamma = 1.75$.

All the uncertainties presented in this section are statistical only. The most important source of systematic uncertainties in the LAT results is the uncertainty on the effective area, all other systematic effects are listed on the FSSC website3.

2.3. NuSTAR data analysis and results

The NuSTAR satellite developed in the NASA Explorer program features two multilayer-coated telescopes that focus the reflected X-rays onto pixellated CdZnTe focal plane modules and provide an image of a point source with a half-power diameter of ~1′ (see Harrison et al. 2013, for more details). The advantage of NuSTAR over other X-ray missions is its broad bandpass, 3–79 keV with a spectral resolution of <1 keV.

Table 3 provides the details of individual NuSTAR pointings: this includes the amount of on-source time (after screening for the South Atlantic Anomaly passages and Earth occultation) and mean net (background-subtracted) count rates. After processing the raw data with the NuSTAR Data Analysis Software (NuSTARDAS) package v1.3.1 (with the script nupipeline), the source data were extracted from a region of 45″ radius centred on the centroid of X-ray emission, while the background was extracted from a 1.5′ radius region roughly 5′ southwest of the source location located on the same chip. The choice of these parameters is dictated by the size of the point-spread function of the mirror. However, the derived spectra depend very weakly on the sizes of the extraction regions. The spectra were subsequently binned to have at least 30 total counts per re-binned channel. Spectral channels corresponding nominally to the 3–60 keV energy range were considered, in

1 https://fermi.gsfc.nasa.gov/ssc/data
2 An unbinned analysis is recommended for small time bins https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/unbinned_likelihood_tutorial.html
3 This value has been taken a priori and close to the index found in this work.
4 https://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html
The source exhibited significant variability in one of the observations of PKS 2155–304 (see, e.g. Zhang 2008). More recently, rapid X-ray variability was seen in PKS 2155–304 when it was simultaneously observed by many X-ray instruments (Madsen et al. 2017). Other HBL-type blazars exhibit similar variability; recent examples are Mkn 421 (Baločkić et al. 2016) and Mkn 501 (Furniss et al. 2015).

2.4. Swift-XRT data analysis and results

The details of the Swift X-ray Telescope (XRT, Burrows et al. 2005) observations used here are listed in Table 4. The observations were taken simultaneously (or as close as possible) with the H.E.S.S. and NuSTAR observations. During this campaign, Swift observed the source nine times, but for one of the pointings (corresponding to epoch 6, archive sequence 00030795110), applying standard data quality cuts resulted in no useful source data (the source was outside of the nominal Window Timing – WT – window). Two Swift-XRT observations (sequences 0080280006 and -08) were close in time and were performed during a single NuSTAR observation. Because these observations have consistent fluxes and spectra, they were added together as Swift-XRT data for epoch 7.

All Swift-XRT observations were carried out using the WT readout mode. The data were processed with the XRTDAS software package (version 3.4.1) developed at Space Science Data Center (SSDC\(^5\)) and distributed by HEASARC within the HEASoft package (version 6.22.1). Event files were calibrated and cleaned with standard filtering criteria with the xrtpipeline software package (version 3.4.0) developed at Space Science Data Center (SSDC\(^5\)) and distributed by HEASARC within the HEASoft package (version 6.22.1). Event files were calibrated and cleaned with standard filtering criteria with the xrtpipeline task using the calibration files available in the Swift CALDB (v. 20171113). The average spectrum was extracted from the summed and cleaned event file. Events for the spectral analysis were selected within a circle of 20 pixels (\(\sim 46''\)) radius, which encloses about 80% of the PSF, centred on the source position. The background was extracted from a nearby circular region of 20 pixels radius. The ancillary response files (ARFs) were generated with the xrtmkarf task applying corrections for PSF losses and CCD defects using the cumulative exposure map. The latest response matrices (version 15) available in the Swift CALDB were used. Before the spectral fitting, the 0.4–10 keV clock time (Fig. 2). This was observed independently by both NuSTAR modules. The other NuSTAR observations showed only modest variability, with a nominal min-to-max amplitude of less than 20% of the mean count rate. Such variability is not uncommon in HBL-type BL Lac objects and has been seen in previous observations of PKS 2155–304 (see, e.g. Zhang 2008). The resulting fit parameters are given in Table 3. More complex models for fitting to the datasets obtained during joint NuSTAR and Swift-XRT pointings were considered, and those are discussed in Sect. 3.2.

The source exhibited significant variability in one of the pointings on August 26 (epoch 8); the NuSTAR X-ray count rate for the FPMA module dropped by almost a factor of two in 25 ks
source spectra were binned to ensure a minimum of 30 counts per bin. The data extending to the last bin with 30 counts were used, which is typically ~5 keV.

The spectrum of each Swift-XRT observation was fitted with a simple power law with a Galactic absorption column of 1.7×10^{20} atoms cm$^{-2}$ using the XSPEC v12.8.2 package. The resulting mean count rates, power law indices, and corresponding 2–10 keV model fluxes are also included in Table 4. No variability was found in individual observations in this energy range.

2.5. Spectral fitting of X-ray data and the search for the hard X-ray “tail”

The results of the individual spectral fits of the Swift-XRT and NuSTAR data are given in Tables 3 and 4, respectively. However, because PKS 2155–304 exhibited complex X-ray spectral structure measured in the joint XMM-Newton plus NuSTAR observation in April 2013 (Madejski et al. 2016), here a joint fit to the lower-energy Swift-XRT and the higher-energy NuSTAR data was performed to investigate the need for such increasingly complex models. Since the source is highly variable, only the strictly simultaneous Swift-XRT and NuSTAR data sets were paired. To account for possible effects associated with variability or imperfect Swift-XRT-to-NuSTAR cross-calibration, the normalisations of the models for the two detectors were allowed to vary, but the difference was in no case greater than 20%, consistent with the findings of Madsen et al. (2017), with the exception of the August 26 observation (epoch 8) where NuSTAR revealed significant variability (see note in Sect. 2.3).

To explore the spectral complexity similar to that seen in April 2013, the following models were considered:

1. PL: a simple power-law model; and
2. LP: a log-parabola model. The resulting joint spectral fits are given in Table 5.

In four observations (epochs 1, 3, 4 and 9), the model consisting of a simple PL absorbed by the Galactic column fits the data well: no deviation from a simple power-law model is required. However, for epochs 2, 7, and 8, a significant improvement ($\Delta \chi^2 > 20$ for one extra parameter) of the fit quality is found by adopting the LP model. Thus, at these epochs, the spectrum steepens with energy. In conclusion, there are not only significant variability (see note in Sect. 2.3). There was an improvement of approximately five lower than during the 2008 campaign ($\phi(E > 200\text{GeV}) = (57.6 \pm 1.8) \times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$ Aharonian et al. 2009); see Fig. 3. The average flux above 200 GeV measured by H.E.S.S. during 9 years of observations ($\phi(E > 200\text{GeV}) = (51.0 \pm 4.1) \times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$, H.E.S.S. Collaboration 2017a) is also more than four times higher than that reported here (for the entire campaign). We note that even lower flux values have been measured over the last 10 years (see Fig. 1 of H.E.S.S. Collaboration 2017a). The source exhibits a harder spectrum ($\Gamma = 2.8$) with respect to the H.E.S.S. phase I measurement ($\Gamma \approx 3.4$, Aharonian et al. 2009; H.E.S.S. Collaboration 2017a). This is consistent with the results of H.E.S.S. Collaboration (2017b) and likely to be due to the lower energy threshold achieved with CT5.

The Fermi-LAT flux averaged over the nine epochs was lower than the flux measured in the 3FGL, $(12.6 \pm 0.4) \times 10^{-8}$ ph cm$^{-2}$ s$^{-1}$, and lower than in 2008 by a factor of approximately two. Similar results were found by H.E.S.S. Collaboration (2017b) showing that the source was in a low state flux state and variability in γ-rays

3. Discussion

3.1. Flux state and variability in γ-rays

During the observation campaign, PKS 2155–304 was found in a low flux state, in the H.E.S.S. energy range, $\phi(E > 200\text{GeV}) = (11.6 \pm 1.3) \times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$, a factor of approximately five lower than during the 2008 campaign ($\phi(E > 200\text{GeV}) = (57.6 \pm 1.8) \times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$ Aharonian et al. 2009); see Fig. 3. The average flux above 200 GeV measured by H.E.S.S. during 9 years of observations ($\phi(E > 200\text{GeV}) = (51.0 \pm 4.1) \times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$, H.E.S.S. Collaboration 2017a) is also more than four times higher than that reported here (for the entire campaign). We note that even lower flux values have been measured over the last 10 years (see Fig. 1 of H.E.S.S. Collaboration 2017a). The source exhibits a harder spectrum ($\Gamma = 2.8$) with respect to the H.E.S.S. phase I measurement ($\Gamma \approx 3.4$, Aharonian et al. 2009; H.E.S.S. Collaboration 2017a). This is consistent with the results of H.E.S.S. Collaboration (2017b) and likely to be due to the lower energy threshold achieved with CT5.

The Fermi-LAT flux averaged over the nine epochs was lower than the flux measured in the 3FGL, $(12.6 \pm 0.4) \times 10^{-8}$ ph cm$^{-2}$ s$^{-1}$, and lower than in 2008 by a factor of approximately two. Similar results were found by H.E.S.S. Collaboration (2017b) showing that the source was in a low state flux state and variability in γ-rays

3.2. Broad-band X-ray spectrum

In the energy range from 0.3 to 10 keV, the spectrum is usually assumed to be the high-energy end of the synchrotron emission. Indeed, the measured spectral index of PKS 2155–304 in the X-ray regime is generally in agreement with the value expected for a HBL, for which a power-law spectral index, Γ, is typically steeper than 2 (“soft component” hereafter). Nevertheless a single power law is too simple a representation of the spectrum when measured with sensitive instruments affording a good signal-to-noise ratio. As already pointed out by Perlman et al. (2005), the soft X-ray spectra of HBLs are well represented.
The errors quoted on the spectral parameters as well as the quoted 20–40 keV flux limits are 90% level confidence regions. For the log-parabola model, the number of degrees of freedom is four less than the number of PHA bins, since the LP model has one extra parameter, and in addition, the normalisation of the two instruments is fitted separately. The 2–10 keV flux for joint Swift and NuSTAR spectral fits is essentially the same as that measured by NuSTAR alone. \(\Gamma \) is evaluated at 5 keV. The hard tail index is assumed to have \(\Gamma_{HT} \) of 2.

Table 5. Joint NuSTAR and Swift-XRT observations of PKS 2155–304.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Start</th>
<th>Stop</th>
<th>Obs. ID</th>
<th>Exposure [ks]</th>
<th>Ct. rate [cts s(^{-1})]</th>
<th>Flux(_{2-10\text{keV}}) [10(^{-11}) erg cm(^{-2}) s(^{-1})]</th>
<th>(\chi^2/\text{PHA})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2013-07-17 00:06:58</td>
<td>2013-07-17 02:41:34</td>
<td>00080280001</td>
<td>1.6</td>
<td>1.67</td>
<td>1.7 ± 0.1</td>
<td>2.43 ± 0.06</td>
</tr>
<tr>
<td>2</td>
<td>2013-08-03 00:20:59</td>
<td>2013-08-03 02:50:45</td>
<td>00080280002</td>
<td>2.1</td>
<td>2.56</td>
<td>1.9 ± 0.1</td>
<td>2.63 ± 0.05</td>
</tr>
<tr>
<td>3</td>
<td>2013-08-08 23:06:59</td>
<td>2013-08-09 00:21:47</td>
<td>00080280003</td>
<td>1.7</td>
<td>1.36</td>
<td>1.0 ± 0.1</td>
<td>2.71 ± 0.07</td>
</tr>
<tr>
<td>4</td>
<td>2013-09-28 22:50:59</td>
<td>2013-09-29 00:06:47</td>
<td>00080280015</td>
<td>1.6</td>
<td>1.07</td>
<td>0.8 ± 0.1</td>
<td>2.69 ± 0.08</td>
</tr>
<tr>
<td>5</td>
<td>2013-06-05 19:37:59</td>
<td>2013-06-05 20:43:12</td>
<td>00037959109</td>
<td>0.9</td>
<td>1.61</td>
<td>1.4 ± 0.2</td>
<td>2.57 ± 0.09</td>
</tr>
<tr>
<td>6</td>
<td>2013-08-14 23:15:45</td>
<td>2013-08-15 02:13:48</td>
<td>00080280006 and –08</td>
<td>1.8</td>
<td>2.32</td>
<td>2.0 ± 0.1</td>
<td>2.59 ± 0.05</td>
</tr>
<tr>
<td>7</td>
<td>2013-08-26 20:17:59</td>
<td>2013-08-26 23:06:38</td>
<td>00080280009</td>
<td>1.0</td>
<td>3.1</td>
<td>3.4 ± 0.2</td>
<td>2.38 ± 0.06</td>
</tr>
<tr>
<td>8</td>
<td>2013-09-05 04:33:59</td>
<td>2013-09-05 05:39:41</td>
<td>00080280013</td>
<td>0.9</td>
<td>0.85</td>
<td>1.5 ± 0.2</td>
<td>2.65 ± 0.10</td>
</tr>
</tbody>
</table>

Notes. The first columns are the epoch number, the start and stop time of the observation, and the corresponding ID. The observation length, the count rate, and the derived spectral parameters (integrated model flux and photon index) are given in subsequent columns. The last column is the \(\chi^2 \) over the number of PHA bins (PHA). For the power-law model, the number of degrees of freedom is two less than the number of PHA bins.

Table 6. Swift-UVOT observations of PKS 2155–304.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>(V)</th>
<th>(B)</th>
<th>(U)</th>
<th>(U V W1)</th>
<th>(U V M2)</th>
<th>(U V W2)</th>
<th>(\Gamma_{UV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (*)</td>
<td>71 ± 2</td>
<td>73 ± 2</td>
<td>78 ± 3</td>
<td>75 ± 3</td>
<td>88 ± 3</td>
<td>81 ± 3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>54.2 ± 1.5</td>
<td>56.0 ± 1.2</td>
<td>59.6 ± 1.4</td>
<td>59.4 ± 1.2</td>
<td>67.1 ± 1.4</td>
<td>60.1 ± 1.1</td>
<td>1.86 ± 0.14</td>
</tr>
<tr>
<td>2</td>
<td>59.9 ± 1.6</td>
<td>65.4 ± 1.4</td>
<td>66.5 ± 1.5</td>
<td>69.5 ± 1.4</td>
<td>79.5 ± 1.6</td>
<td>71.1 ± 1.3</td>
<td>1.80 ± 0.14</td>
</tr>
<tr>
<td>3</td>
<td>49.8 ± 1.3</td>
<td>54.4 ± 1.1</td>
<td>51.5 ± 1.2</td>
<td>57.8 ± 1.1</td>
<td>64.9 ± 1.3</td>
<td>62.1 ± 1.1</td>
<td>1.77 ± 0.14</td>
</tr>
<tr>
<td>4</td>
<td>57.0 ± 1.4</td>
<td>60.5 ± 1.2</td>
<td>61.4 ± 1.4</td>
<td>62.9 ± 1.2</td>
<td>72.3 ± 1.4</td>
<td>63.1 ± 1.1</td>
<td>1.86 ± 0.14</td>
</tr>
<tr>
<td>5</td>
<td>53.7 ± 1.6</td>
<td>58.5 ± 1.4</td>
<td>65.3 ± 1.6</td>
<td>64.7 ± 1.4</td>
<td>75.8 ± 1.6</td>
<td>65.7 ± 1.2</td>
<td>1.76 ± 0.14</td>
</tr>
<tr>
<td>6</td>
<td>62.1 ± 1.8</td>
<td>64.3 ± 1.5</td>
<td>73.3 ± 1.8</td>
<td>74.3 ± 1.5</td>
<td>84.5 ± 1.9</td>
<td>74.6 ± 1.4</td>
<td>1.76 ± 0.14</td>
</tr>
<tr>
<td>7</td>
<td>59.1 ± 1.8</td>
<td>60.7 ± 1.5</td>
<td>65.6 ± 1.6</td>
<td>70.1 ± 1.5</td>
<td>79.4 ± 1.7</td>
<td>70.1 ± 1.3</td>
<td>1.76 ± 0.14</td>
</tr>
<tr>
<td>8</td>
<td>62.5 ± 1.8</td>
<td>68.6 ± 1.6</td>
<td>68.0 ± 1.6</td>
<td>70.6 ± 1.5</td>
<td>81.4 ± 1.7</td>
<td>72.6 ± 1.4</td>
<td>1.83 ± 0.14</td>
</tr>
</tbody>
</table>

Notes. The fluxes are given in units of 10\(^{-12}\) erg cm\(^{-2}\) s\(^{-1}\). The last column is the power-law spectral index \(\Gamma_{UV} \) obtained by fitting the UVOT data. (*)Values taken from Madejski et al. (2016).
contamination of the synchrotron spectra by inverse-Compton emission. More recently, and with the increased energy range provided by NuSTAR, Madejski et al. (2016) also measured a hard tail in the X-ray spectrum of PKS 2155–304 (April 2013 observations, epoch 0). Using a broken power-law model, they found a flattening spectrum with a spectral break of $\Delta \Gamma > 1$ around 10 keV. During that observation, the source was found in a very low flux.

Fig. 3. Spectral energy distribution of PKS 2155–304 for each epoch considered in this work. For epoch 0, the red points are directly extracted from Madejski et al. (2016). In the other plots, the purple points are UVOT data, orange are XRT data, and yellow are the NuSTAR data. In γ-rays, the green points and contours are the Fermi-LAT results and H.E.S.S. results are in blue. The black upper limits refer to the hard-tail component (see text) and are used to constrain the inverse-Compton part of the SSC model (black line). The grey points are the data from the 2008 observation campaign (Aharonian et al. 2009) shown for comparison. Black points are the radio data from Abdo et al. (2010) and Liuzzo et al. (2013). The dashed blue line is the synchrotron emission and the orange line is the IC emission. Both are from the SSC calculation, and the black dashed line is the sum of both.
state (with the 2–10 keV flux of 1.1×10^{-11} erg cm$^{-2}$ s$^{-1}$), even lower than the flux reported by Zhang (2008) and Foschini et al. (2008). Jointly fitting the strictly simultaneous XMM-Newton data with the NuSTAR data, a more complete picture emerged, with a log-parabola describing the soft ($E < 5$ keV) spectrum, and a hard tail which can be described as an additional power law.

Regarding the observations presented in this work, adding an extra hard tail (LPHT model) does not significantly improve the χ^2. However, it is important to note that the flux of the object during the April 2013 pointing was relatively low, and the observations were fairly long (about four times longer than any single pointing during the campaign reported here). As noted by Madejski et al. (2016), the hard tail becomes more easily detectable only during low-flux states of the softer, low-energy spectral component.

To detect a possible hard tail in the data set of the present campaign, a simultaneous spectral fit of all data sets was performed. Due to the spectral variability of the soft, low-energy component (Table 3), stacking (or just summing) all spectra simultaneously is inappropriate. Instead, a simultaneous fit of seven individual datasets from Epochs 1, 2, 3, 4, 7, 8, and 9 was considered, allowing the spectral parameters of the soft component (described as a log-parabola) to vary independently. Each epoch was described by a LPHT model (see Sect. 2.5), and with common normalisation of the hard tail for all data sets9. Formally, the fit returns zero flux for the hard-tail component. The 99% confidence upper limit of $1_n\nu$.

9

Formally, the fit returns zero flux for the hard-tail component. The 99% confidence upper limit of $1_n\nu$. with a log-parabola describing the soft ($E < 5$ keV) spectrum, and a hard tail which can be described as an additional power law.

The modelling was performed on the epochs presented in this work (1–5) with UV, X-ray, GeV, and TeV data. Radio data from Abdo et al. (2010) and Liuizzo et al. (2013) were taken from the NED10. The radio emission could originate from another location in the jet, or from the emission zone, and is therefore considered as an upper limit in the model. Historical data taken between 10^{-2} eV and 1 eV (infra-red range) are found to be quite stable in time with variation of less than a factor of two. Such data were collected using Vizier11 and shown in the SEDs.

For each epoch, a mathematical minimisation (Nelder & Mead 1965) was performed to find the model parameters R, B, N, $\log(\gamma_{\text{min}})$, $\log(\gamma_{b})$, and $\log(\gamma_{\text{max}})$ that best fit the data. The values of p_1 and p_2 were constrained by the UV and X-ray data, respectively, and were not allowed to vary freely in the fitting procedure. Given the little spectral variability found in UV and GeV, p_1 was set to 2.5 and $p_2 = 2.1$ (Rybicki & Lightman 1986). The minimisation was performed using a Markov chain Monte Carlo (MCMC) implemented in the emcee python package (Foreman-Mackey et al. 2013). For epochs 1–4, the upper limit on the hard-tail flux (Table 5) is taken into account by forcing the inverse-Compton (IC) component of the model to be below this limit. The resulting parameters are given in Table 7 with their corresponding realisations in Fig. 3.

The model parameters are consistent with previous studies by Kataoka et al. (2000), Foschini et al. (2007), Katarzynski et al. (2008), and Aharonian et al. (2009). As in these previous studies, as well as for other BL Lac objects (e.g. Mrk 421 (Abdo et al. 2011a), Mrk 501 (Abdo et al. 2011b), SHBL J001355.9–185406 (H.E.S.S. Collaboration 2013), etc.), the obtained model is far from equipartition. Even with a very low flux state in the present modelling, particles carry at least ten times more energy density than the magnetic field.

The data from epochs 1–5 are well reproduced by the simple SSC calculation presented here. In contrast to Gaur et al. (2017) for this object or Chen (2017) for Mrk 421, there is no need to invoke a second component to reproduce the SED without over-predicting the radio flux. The main difference is that the hard tail above ≈ 10 keV seen in the previous observations is not observed in the present data set.

The SSC model was applied to the data of epoch 0 and results are also presented in Table 7. The contemporaneous data are well reproduced. The main difference in the modelling parameters between epoch 0 and the campaign presented in this work lies in the values of γ_{min}. For epoch 0, having $\log(\gamma_{\text{min}}) = 0$ allows a greater inverse-Compton contribution in the X-ray band, making the X-ray tail detectable by NuSTAR. This is also in agreement with the observed decrease in the optical flux in epochs 1–5. Indeed a higher value of γ_{min} decreases the number of electrons emitting in this energy range. We also note that the archival radio data are in disagreement with the modelling of epoch 0, which predict an overly high flux in that energy range. The values obtained for different parameters are not equally well constrained. The shape of the electron distribution (γ_{min}, γ_{break}, and

9

In an SSC or lepto-hadronic scenario, one would expect the hard X-ray tail to be the low-energy counterpart of the Fermi spectra. The approach made here with the assumption of a constant normalisation for the tail is more conservative than using the γ-ray spectral results.

10

http://ned.ipac.caltech.edu/

11

http://cds.u-strasbg.fr/vizier-org/licences_vizier.html

A42, page 9 of 13
γmax) is quite robust with small errors. Other parameters like the B-field or the size of the emitting region remain poorly known and are indeed different from the model presented in Madejski et al. (2016).

4.2. Emergence of a hadronic component in hard X-rays?

Following the detection of a γ-ray flare from TXS 0506+056 coinciding with a high-energy neutrino (IceCube Collaboration 2018), several authors have independently shown that, while pure hadronic models cannot reproduce the multi-messenger dataset, a scenario in which the photon emission is dominated by an SSC component with a subdominant hadronic component is viable (see, e.g. Ansoldi et al. 2018; Cerruti et al. 2018; Gao et al. 2019; Keivani et al. 2018). The hadronic component emerges in the hard-X-rays as synchrotron radiation by secondary leptons produced via the Bethe–Heitler pair-production channel in this scenario. With this result in mind, it was investigated whether the hardening seen in the NuSTAR data of PKS 2155–304 could be due to subdominant hadronic emission. Starting from the simple SSC model for epoch 0 (see Table 7), a population of relativistic protons was added. It was assumed that $p_0 = p_{\text{c,1}}$ (i.e. protons and electrons share the same acceleration mechanism, resulting in the same injection spectral index) and that the maximum proton Lorentz factor $\gamma_{p,\text{max}}$ is determined by equating acceleration and cooling timescales. The proton distribution was normalised such that the hadronic component emerges in hard X-rays. For additional details on the hadronic code used see Cerruti et al. (2015). Another change in the SSC part of the model was the increase of the value of $\log(\gamma_{\text{min}})$ to 3.3 in order to avoid over-shooting the radio emission.

The key parameter is the power in protons L_p required to provide the observed photon flux, because a very well-known drawback of hadronic blazar models is that they often require proton powers well above the Eddington luminosity L_{Edd} of the super-massive black hole which powers the AGN. For the case of PKS 2155–304, if $p_0 = 2.5$, $\gamma_{p,\text{min}} = 1$ and $\log \gamma_{p,\text{max}} = 8.0$, then $L_p = 5.6 \times 10^{50} \text{ erg s}^{-1}$ is needed, which is around 1000L_{Edd}.

Table 7. Model parameters for each epoch.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>$\log(\gamma_{\text{min}})$</th>
<th>$\log(\gamma_b)$</th>
<th>$\log(\gamma_{\text{max}})$</th>
<th>p_1</th>
<th>p_2</th>
<th>δ</th>
<th>B [10^{-2} G]</th>
<th>R [10^{16} cm]</th>
<th>N_{tot} [10^{50}]</th>
<th>U_c/U_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0.21^{+0.01}_{-0.01}$</td>
<td>$4.69^{+0.01}_{-0.01}$</td>
<td>$7.09^{+0.11}_{-0.20}$</td>
<td>2.5</td>
<td>4.60</td>
<td>33.0$^{+1.8}_{-1.7}$</td>
<td>$4.2^{+0.2}_{-0.3}$</td>
<td>$5.9^{+0.6}_{-0.5}$</td>
<td>43178$^{+322.9}_{-617.9}$</td>
<td>722.0</td>
</tr>
<tr>
<td>1</td>
<td>$3.55^{+0.06}_{-0.11}$</td>
<td>$4.96^{+0.06}_{-0.08}$</td>
<td>$7.31^{+0.43}_{-0.54}$</td>
<td>2.5</td>
<td>4.10</td>
<td>$27.1^{+1.7}_{-1.5}$</td>
<td>$1.2^{+0.4}_{-0.3}$</td>
<td>$24.5^{+16.0}_{-7.7}$</td>
<td>5.8$^{+2.6}_{-2.2}$</td>
<td>11.8</td>
</tr>
<tr>
<td>2</td>
<td>$3.39^{+0.06}_{-0.07}$</td>
<td>$5.02^{+0.04}_{-0.07}$</td>
<td>$6.27^{+0.21}_{-0.19}$</td>
<td>2.5</td>
<td>4.60</td>
<td>$32.4^{+2.0}_{-1.5}$</td>
<td>$2.0^{+0.3}_{-0.3}$</td>
<td>$10.6^{+2.3}_{-5.1}$</td>
<td>2.7$^{+937.2}_{-0.8}$</td>
<td>18.7</td>
</tr>
<tr>
<td>3</td>
<td>$3.39^{+0.10}_{-0.16}$</td>
<td>$4.95^{+0.11}_{-0.09}$</td>
<td>$7.55^{+0.17}_{-0.37}$</td>
<td>2.5</td>
<td>4.54</td>
<td>$29.2^{+3.2}_{-4.1}$</td>
<td>$1.7^{+1.2}_{-0.7}$</td>
<td>$10.8^{+5.1}_{-4.5}$</td>
<td>2.9$^{+1.5}_{-2.9}$</td>
<td>23.4</td>
</tr>
<tr>
<td>4</td>
<td>$3.32^{+0.11}_{-0.10}$</td>
<td>$4.73^{+0.11}_{-0.11}$</td>
<td>$7.14^{+0.47}_{-0.53}$</td>
<td>2.5</td>
<td>4.42</td>
<td>$30.6^{+4.0}_{-2.3}$</td>
<td>$3.1^{+1.4}_{-0.7}$</td>
<td>$6.2^{+5.7}_{-2.9}$</td>
<td>$1.6^{+1.5}_{-0.7}$</td>
<td>19.1</td>
</tr>
<tr>
<td>5</td>
<td>$3.29^{+0.10}_{-0.14}$</td>
<td>$4.74^{+0.08}_{-0.15}$</td>
<td>$7.42^{+0.43}_{-1.04}$</td>
<td>2.5</td>
<td>4.14</td>
<td>$32.8^{+2.2}_{-3.4}$</td>
<td>$2.8^{+2.9}_{-0.8}$</td>
<td>$7.4^{+0.4}_{-1.0}$</td>
<td>$1.6^{+1.0}_{-0.9}$</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Notes. Errors were estimated from the MCMC distributions. The first column recalls the epoch, followed by minimal, break, and maximal energies, and the indices p_1 and p_2. The last parameters are the B-field, size of the region R, and the total number of electrons N_{tot}. The equipartition factor (ratio of the energy carried by electron over energy in the magnetic field U_c/U_b) is given in the last column.

Fig. 4. Same as Fig. 3 but for epoch 0 only. The blue and orange dashed lines are the synchrotron and inverse-Compton emission as in Fig. 3. The green line is the emission from Bethe–Heitler pair-production and the red line is that from the photo-meson cascade. The sum of all these components is given by the black dashed line. The black continuous line is the predicted neutrino spectrum.
for a black hole mass of $10^9 M_\odot$, making this scenario unrealis-
tic. This result is very sensitive to the exact shape of the proton
distribution, especially at low Lorentz factors (which cannot be
constrained by the data). Moreover, L_p is lower if the proton dis-
tribution is harder, or if $\gamma_{p,\text{min}} > 1$. As an example, if $p_e = 2.0$
and $\gamma_{p,\text{min}} = 1000$, then $L_p = 6.6 \times 10^{57} \text{ erg s}^{-1}$, which is of
the same order of magnitude as L_{edd}. For this scenario, the hadronic
photon emission is shown in Fig. 4, and emerges in X-rays as
the emission by Bethe–Heitler pairs, and at VHE as a photo-
meson cascade. The model predicts an expected neutrino rate in
IceCube of $\nu_{\text{rate}} = 0.01 \text{ yr}^{-1}$, which is compatible with the non-
detection of PKS 2155–304 by IceCube (computed using the IC
effective area12 for a declination of -30°).

5. Conclusions

PKS 2155–304 was observed contemporaneously for the first
time by Swift, NuSTAR, Fermi–LAT, and H.E.S.S. The source
was found in a low flux state in all wavelengths during epochs 1–9.
The source flux is lower than during the campaign carried
out in 2008.

For each epoch, no hard tail was detected in the X-ray spec-
tra, contrary to what was seen at epoch 0. The computation of
an upper limit on the 20–40 keV flux of such a hard tail for each
observation and for the full data set shows that this component is
variable on a timescale of a few months. For epochs 1–5, the
SED is well reproduced by a one-zone SSC model. Such a model
fails to reproduce the epoch 0 data due to the required value of the
γ_{min} parameter. A low value of γ_{min} is mandatory to repro-
duce the hardening in X-rays but in return produces an overly
high flux in the radio band with respect to the archival measure-
ments.

The emergence of the variable X-ray hard tail cannot be
explained by a one-zone SSC model. Several authors have pro-
posed a multi-zone model to tackle this issue, and Gaur et al.
(2017) in particular used a spine or layer jet structure. In such a
structured jet, synchrotron photons of the slow layer are Com-
ponentised by the electrons of the fast spine to produce the hard
X-ray tail. The results presented here would imply that the layer
producing the hard tail is variable over a timescale of months.
Such a result is in agreement with the model parameters of Gaur
et al. (2017). Nevertheless, the variability timescale derived from
the model parameters of these latter authors cannot reproduce
variability of the source on a timescale of days, as the model
was not designed to reproduce such variability.

Here, the possibility of having a lepto-hadronic radiation
model component was explored. The same parameters as for the SSC
model but with $\log(\gamma_{\text{min}}) = 3.3$ were used to reproduce a large
part of the SED. The hard tail was successfully reproduced by the
hadronic emission. Nevertheless for such a model to be in agree-
ment with the Eddington luminosity of the super-massive black
hole, the proton distribution has to be harder ($p_e = 2.0$) than
the electron distribution ($p_e = 2.3$) together with $\gamma_{p,\text{min}} > 1000$
and/or have a low-energy cut-off $\gamma_{p,\text{min}} > 1$. In the framework of
the lepto-hadronic model, the hard-X-ray emission associated
with Bethe–Heitler pair production is independent and is not
directly associated with the electron-synchrotron and the SSC
components. The detection of the hard-X-ray tail during only
one of the NuSTAR observations could therefore be explained by
a sudden increase in the hadronic injection. The origin of the
hard tail is still uncertain but this feature could help to disentan-

Acknowledgements. The support of the Namibian authorities and of the Univer-
sity of Namibia in facilitating the construction and operation of H.E.S.S. is grate-
fully acknowledged, as is the support by the German Ministry for Education
and Research (BMBF), the Max Planck Society, the German Research Foundation
(DFG), the Helmholtz Association, the Alexander von Humboldt Foundation,
the French Ministry of Higher Education, Research and Innovation, the Cen-
tre National de la Recherche Scientifique (CNRS/IN2P3 and CNRS/INSU),
the Commissariat à l’énergie atomique et aux énergies alternatives (CEA),
the U.K. Science and Technology Facilities Council (STFC), the Knut and
Alice Wallenberg Foundation, the National Science Centre, Poland grant no.
2016/22/M/ST9/00382, the South African Department of Science and Technol-
ogy and National Research Foundation, the University of Namibia, the National
Commission on Research, Science & Technology of Namibia (NCRST), the
Austrian Federal Ministry of Education, Science and Research and the Aus-
trian Science Fund (FWF), the Australian Research Council (ARC), the Japan
Society for the Promotion of Science and by the University of Amsterdam.
We appreciate the excellent work of the technical support staff in Berlin, Zeuthen,
Heidelberg, Palaiseau, Paris, Saclay, Tübingen and in Namibia in the construc-
tion and operation of the equipment. This work benefited from services pro-
vided by the H.E.S.S. Virtual Organisation, supported by the national resource
providers of the EGI Federation. The Fermi-LAT Collaboration acknowledges
generous ongoing support from a number of agencies and institutes that have
supported both the development and the operation of the LAT as well as scient-
tific data analysis. These include the National Aeronautics and Space Adminis-
tration and the Department in the United States, the Commissariat à l’Energie
Atomique and the Centre National de la Recherche Scientifique/Institut
National de Physique Nucléaire et de Physique des Particules in France, the
Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy,
the Ministry of Education, Culture, Sports, Science and Technology (MEXT),
High Energy Accelerator Research Organization (KEK) and Japan Aerospace
Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation,
the Swedish Research Council and the Swedish National Space Board in Swe-
den. Additional support for science analysis during the operations phase from
the following agencies is also gratefully acknowledged: the Istituto Nazionali
di Astrofisica in Italy and the Centre National d’Etudes Spatiales in France.
This work performed in part under DOE Contract DE-AC02-76SF00515.
This work was supported under NASA Contract No. NNG08FD60C and made use
of data from the NuSTAR mission, a project led by the California Institute of Tech-
nology, managed by the Jet Propulsion Laboratory, and funded by the NASA
Aeronautics and Space Administration. We thank the NuSTAR Operations, Soft-
ware, and Calibration teams for support with the execution and analysis of these
observations. This research has made use of the NuSTAR Data Analysis Software
(NuSTARDAS) jointly developed by the ASIC Science Data Center (ASDC, Italy)
and the California Institute of Technology (USA). This research has made use of
the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration. This research made use
of Enrico, a community-developed Python package to simplify Fermi-LAT analy-
sis (Sanchez & Deil 2013). This research has made use of the VizieR catalogue
access tool, CDS, Strasbourg, France. The original description of the VizieR ser-
vice was published in A&AS 143, 23. This work has been done thanks to the
facilities offered by the Université Savoie Mont Blanc MUST computing cen-
ter. M. Cerruti has received financial support through the Postdoctoral Junior
Leader Fellowship Programme from la Caixa Banking Foundation, grant n.
LCF/BQ/L18/11630012. M. B. gratefully acknowledges financial support from
NASA Headquarters under the NASA Earth and Space Science Fellowship Pro-
gram (grant NNX14AQ07T), and from the Black Hole Initiative at Harvard Uni-
versity, which is funded through a grant from the John Templeton Foundation.

References

L71

12 https://icecube.wisc.edu/science/data/PS-IC86-2011