Tripyridinophane Platform Containing Three Acetate Pendant Arms: An Attractive Structural Entry for the Development of Neutral Eu(III) and Tb(III) Complexes in Aqueous Solution

DOI
10.1021/acs.inorgchem.9b03345

Publication date
2020

Document Version
Final published version

Published in
Inorganic Chemistry

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to Library of the University of Amsterdam, Secretariat, Singel 426, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Tripyridinophane Platform Containing Three Acetate Pendant Arms: An Attractive Structural Entry for the Development of Neutral Eu(III) and Tb(III) Complexes in Aqueous Solution

Nadine Leygue,† Chantal Galau,† Alberto Lopera,‡ Estefania Delgado-Pinar,‡ René M. Williams,§ Heinz Gornitzka,∥ Turriaan M. Zwier,⊥ Enrique García-España,‡ Laurent Lamarque,*⊥∥ and Claude Picard*⊥∥

† Laboratoire de Synthèse et Physico-Chimie de Molecules d’Intérêt Biologique (SPCIMB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), 118 route de Narbonne, F-31062 Toulouse, France
‡ Instituto de Ciencia Molecular (ICMOL), Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
§ Molecular Photonics Group, Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
∥ CNRS, LCC, Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
⊥ Cisbio bioassays, Parc Marcel Boiteux, BP 84175, 30200 Codolet, France

Supporting Information

ABSTRACT: We report a detailed characterization of Eu³⁺ and Tb³⁺ complexes derived from a tripyridinophane macrocycle bearing three acetate side arms (H₃tpptac). Tpptac⁻ displays an overall basicity (∑ log Kᵢ) of 24.5, provides the formation of mononuclear ML species, and shows a good binding affinity for Ln³⁺ (∑ log Kᵢ). These complexes are also thermodynamically stable at physiological pH (pEu = 18.6, pTb = 18.0). It should be noted that the pGd value of Gd-tpptac (18.4) is only slightly lower than that of commercially available MRI contrast agents such as Gd-dota (pGd = 19.2). Moreover, a very good selectivity for these ions over the endogenous cations (log Kᵢ = 14.4, log Kᵢ = 12.9, and log Kᵢ = 9.3) is observed. The X-ray structure of the terbium complex shows the metal coordinated by the nine N₆O₃ donor set of the ligand and one inner-sphere water molecule. DFT calculations result in two Eu-tpptac structures with similar bond energies (ΔE = 0.145 eV): one structure in which the water is coordinated to the metal ion and one structure in which the water molecule is farther away from the ion, bound to the ligand with an OH–π bond. By detailed luminescence experiments, we demonstrate that the europium complex in aqueous solution presents a hydration equilibrium between nine-coordinate, dehydrated [Eu-tpptac]₀ and ten-coordinate, monohydrated [Eu-tpptac(H₂O)]₀ species. A similar trend is observed for the terbium complex. Despite the presence of this hydration equilibrium, the H₃tpptac ligand sensitizes Eu³⁺ and Tb³⁺ luminescence efficiently in buffered water at physiological pH. Particularly, the terbium complex displays a long excited-state lifetime of 2.24 ms and an overall quantum yield of 33% with a brightness of 3600 M⁻¹ cm⁻¹. Such features of Ln³⁺ complexes of H₃tpptac indicate that this platform appears to be particularly appealing for the further development of luminescent lanthanide labels.

INTRODUCTION

In the last few decades, luminescent lanthanide complexes (especially those of Eu³⁺ and Tb³⁺) have proven their worth as chemical tools for luminescent labels in bioanalytical and biomedical sciences. These lanthanide complexes have already found commercial use as probes in heterogeneous and homogeneous immunoassays for enzyme activity, binding assays, or applications in molecular biochemistry. These complexes have also been exploited for the specific detection of a variety of biorelevant parameters and analytes. Among them are pH value, temperature, reactive oxygen or nitrogen species (H₂O₂, OH⁻, O₂, and NO), metal cations (e.g., K⁺, Cu²⁺, and Zn²⁺), anions (e.g., HCO₃⁻, PO₄³⁻, and F⁻) and small organic molecules (e.g., uric acid, sugars, and thiols). Through fluorescence microscopy techniques, the benefit of lanthanide probes was also exploited for imaging cells, organisms, tissues, and laboratory animals. These numerous and various applications were summarized in several review articles that have appeared during the past five years.¹

Received: November 14, 2019
Published: January 8, 2020

DOI: 10.1021/acs.inorgchem.9b03345
Inorg. Chem. 2020, 59, 1496–1512

© 2020 American Chemical Society
These applications are due to the specific photophysical properties of luminescent Eu(III) and Tb(III) chelates. They display long emission lifetimes in the millisecond range, which allow the use of the time-resolved fluorescence technique, implementing simple and inexpensive instrumentation. In this technique, time-resolved measurements overcome the short-lived fluorescence background present in most biological materials and light scattering from the instrument optics, improving greatly the signal to noise ratio. Their photophysical parameters (lifetime, shape of emission spectrum, intensity of the emission) are modulating depending on the environment of the lanthanide ion and thus allow the detection of analytes modifying this environment. They are useful donors in Förster resonance energy-transfer assays to measure binding events, associated with the lengthening of the fluorescence lifetime of acceptors and measurable distances on the order of 100 Å. Luminescent lanthanide chelates show also reduced photobleaching and higher photostability in comparison to organic fluorophores. This feature is advantageous for imaging applications, allowing long and repeated exposures to excitation light, for instance, to study intracellular processes.

Among the numerous examples of luminescent lanthanide complexes, most of the investigated macrocyclic ligands are built on a limited number of coordinating core structures, such as cyclen (1,4,7,10-tetraazacyclododecane) or tacn (1,4,7-triazacyclononane) bearing side arms containing chromophoric unit(s) both to contribute to coordination and to act as an antenna, and acetic-, amide-, or phosphorus-based functional groups. Such ligands have been investigated because of the high thermodynamic stability of lanthanide complexes derived from dota (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and nota (1,4,7-triazacyclononane-1,4,7-triacetate). In order to extend the family of macrocyclic scaffolds suitable for luminescent lanthanide probes, we have been interested in designing lanthanide complexes based on a tpp platform for a long time (tpp, tripyridine pyridinophane = 2,11,20-triaz[a3.3.3.]2,6-pyridinophane, Chart 1). The tpp platform contains, in an 18-membered macrocyclic structure, 3 secondary amino groups and 3 pyridine rings which are known to generate the antenna effect. The introduction of three monodentate side arms could fulfill the high coordination (8–10) required by Ln3+ ions in aqueous solutions for stable and soluble complexes in water. The presence of three pyridine units in the macrocyclic backbone might generate (i) a significant rigidification of the ligand bringing a positive effect on rapid complexation kinetics and high kinetic inertness in biological media of the resulting complexes, (ii) an antenna-transmetal photosensitization step occurring between partners in a rigid conformation, thus allowing improvement of the energy-transfer rates, (iii) an extension of conjugation of the pyridine ring through its 4-position to enhance the antenna effect, and (iv) enhancement of the absorption cross section of the ligand and consequently the brightness of the lanthanide complexes. The use of multiple antennae around a single lanthanide ion and the extension of conjugation of the pyridyl ring may be exemplified by the H3tpptac ligand (Chart 1) and related ligands. Derivatives of H3tpptac are recently receiving particular attention for the design of very efficient luminescent lanthanide complexes emitting in the visible or near-infrared region and which benefit, in some cases, from nonlinear two-photon excitation.

A few papers have been devoted to the tpp ligand and its derivatives. The first synthesis of tpp was reported by Lee et al. in 1996, but the binding properties of this ligand were only studied 17 years later. In 2013, Castro et al. described the synthesis of its lanthanide complexes and their coordination properties in the solid state and in aqueous solution. These authors also reported the same types of studies concerning Ln3+ complexes derived from a tpp platform containing three acetic acid pendant arms (tpptam, Chart 1). On the other hand, we reported recently a new synthetic strategy to access chelators derived from a tpp platform bearing acetate or mixed acetate/methyl phosphonate side arms.

In this context, we were interested in evaluating the physicochemical properties of Ln3+ complexes derived from the H3tpptac ligand (tripyridine pyridinophane triacetic acid, Chart 1), taken as a prototype of the tribranched tpp family. In this paper, we present a detailed investigation of the thermodynamic stabilities and photophysical properties of some Ln3tpptac complexes in aqueous solution. The thermodynamic properties of Ln(III) complexes (Ln = La, Eu, Gd, Tb, Yb) have been determined by using potentiometric titrations and compared to the stabilities of Cu2+, Zn2+, Mn2+, and Ca2+ analogues. We also present a detailed photophysical study of the Eu3+ and Tb3+ complexes of this ligand to help in a better understanding of the role played by the ligand to help in a better understanding of the role played by the ligand to help in a better understanding of the role played by the ligand.
Inorganic Chemistry

1498

DOI: 10.1021/acs.inorgchem.9b03345
Inorg. Chem. 2020, 59, 1496−1512

various factors that determine their luminescence properties. Moreover, the solid-state structure of the Tb complex is reported and the structure of the Eu complex is investigated by using density functional theory (DFT) calculations. Additionally, a comparison is made on the basis of structural, stability constant, and photophysical data for the complexes derived from H₃tpptac and H₃tpatcn ligands.

EXPERIMENTAL SECTION

Synthesis of Ln-tpptac Complexes

The synthesis of the ligand H₃tpptac was reported in a recent paper, and the ligand was isolated as its hexahydrochloride salt. ¹¹H NMR (300 MHz, D₂O): δ 4.14 (s, 6 H, 3 × CH₂), 4.85 (s, 12 H, 6 × CH), 7.54 (d, J = 7.6 Hz, 6 H, 6 × CH), 7.97 (t, J = 7.6 Hz, 3 H, 3 × CH) ppm. Anal. Calc for C₂₇H₃₀N₆O₆: C, 42.79; H, 4.85; N, 11.09. Found: C, 42.81; H, 4.81; N, 10.94.

LnCl₃·6H₂O (55.7 μmol) in 2 mL of water was added to a solution of H₃tpptac·6HCl (40 mg, 50.6 μmol) in water (5 mL), with the pH adjusted to 6 with 0.1 N NaOH. The mixture was stirred for 24 h at room temperature, and then the pH of the solution was brought to 8 using a 1 N NaOH solution in water. After centrifugation, the solution was evaporated to dryness and the residue was purified by a Waters Sep-Pak column (C₁₈, 10 g), eluting first with pure H₂O to remove all inorganic salts and then with a H₂O/MeOH mixture to recover the complex.

The Ln-tpptac complexes were isolated in 90−95% yields. An Arsenazo test confirmed the absence of free lanthanide ions, and the absence of free ligand was confirmed by mass spectrometry.

Eu-tpptac

MS (ESI): m/z 683.1 (86%) [Eu-tpptac + H]⁺, 685.1 (100%) [Eu-tpptac + H]⁺, 705.1 (28%) [Eu-tpptac + Na]⁺, 707.1 (31%) [Eu-tpptac + Na]⁺, 721.1 (40%) [Eu-tpptac + K]⁺, 723.1 (50%) [Eu-tpptac + K]⁺. HRMS (ESI): m/z calcd for [C₂₇H₂₇N₆O₆Eu + H]⁺: 683.1269, found 683.1274; calcd for [C₂₇H₂₇N₆O₆Eu + Na]⁺: 705.1088, found 705.1093. λ_{abs} (Tris buffer, pH 7.4): 267 nm (ε = 11000 M⁻¹ cm⁻¹). λ_{em} (Tris buffer, pH 7.4, λ_{exc} = 267 nm) 257 nm (relative intensity, corrected spectrum 0.5), 593 (33), 618, 650 (60), 689 nm (81).

Tb-tpptac

MS (ESI): m/z 691.1 (100%) [Tb-tpptac + H]⁺, 729.1 (20%) [Tb-tpptac + K]⁺. HRMS (ESI): m/z calcd for [C₂₇H₂₇N₆O₆Tb + H]⁺: 691.3237, found 691.3247; calcd for [C₂₇H₂₇N₆O₆Tb + Na]⁺: 729.0835, found 729.0837. λ_{abs} (Tris buffer, pH 7.4): 267 nm (ε = 11000 M⁻¹ cm⁻¹). λ_{em} (Tris buffer, pH 7.4, λ_{exc} = 267 nm) 490 (relative intensity, corrected spectrum 50), 544 (34), 585 (28), 625 (22) nm.

Gd-tpptac

HRMS (ESI): m/z calcd for [C₂₇H₂₇N₆O₆Gd + Na]⁺: 712.1131, found 712.1136. λ_{abs} (Tris buffer, pH 7.4): 267 nm (ε = 11600 M⁻¹ cm⁻¹).

Photophysical Experiments

Absorption measurements were done with a Hewlett-Packard 8453 temperature-controlled spectrometer in 10 mm quartz cuvettes. Emission and excitation spectra and luminescence decays at room temperature of the lanthanide complexes were measured using a Cary Eclipse spectrophotometer equipped with a xenon flash lamp source and a Hamamatsu R928 photomultiplier. At liquid nitrogen temperature, an LS-50B PerkinElmer spectrophotometer equipped with a xenon flash lamp source, a Hamamatsu R928 photomultiplier, and an L2250136 low-temperature accessory was used. Excitation spectra were corrected for the excitation light intensity, while emission spectra were corrected for the instrument response.

High-resolution spectra were recorded on a FluoroTime 300 lifetime fluorescence spectrometer from PicoQuant (Berlin, Germany) using a Xe flash lamp (100 Hz repetition rate) for excitation at 267 ± 0.10 nm. Lifetimes τ (uncertainty ±5%) were determined by monitoring the decay at a wavelength corresponding to the maximum intensity of the emission spectrum, following pulsed excitation. They are the average values from at least five separate measurements covering two or more lifetimes. The luminescence decay curves were fitted by an equation of the form I(t) = I(0) exp{−(t/τ)} by using a curve-fitting program.

The number of coordinated water molecules q was determined by comparison of the lifetimes of Ln(III) complexes in water (τ₀)/deuterated water (τ₀) and using eq 1: ²⁴

\[q = A(1/τ₁ - 1/τ₀) \]

where A = 1.05 for Eu(III) and 4.2 for Tb(III) and τ₀ is given in ms, or the refined eq 2 taking into account the second coordination sphere interaction of water molecules: ²⁵

\[q = A(1/τ₁ - 1/τ₀ - b) \]

where A = 1.11 and B = 0.31 for Eu(III), A = 5 and B = 0.06 for Tb(III), and τ₀ is given in ms.

The luminescence quantum yields (uncertainty ±10%) were determined by the method described by Haas and Stein: ²⁶ using as standards [Ru(bpy)₃]²⁺ in aerated water (Φ = 0.04) ³⁷ for the Eu(III) complex or quinine sulfate in 1 N sulfuric acid (Φ = 0.54) ³⁸ for the Tb(III) complex and corrected for the refractive index of the solvent.

They were measured according to conventional procedures with diluted solutions (optical density <0.05).

The intrinsic luminescence efficiency (Φᵢₚ) can be calculated by the equation below according to the literature: ³⁹

\[Φᵢₚ = kᵢ / (kᵢ + ∑ kₘ) = τᵢₚ / τᵢ \]

where τᵢₚ is the emission lifetime determined experimentally and τᵢ is the radiative lifetime, which was obtained from eq 4

\[1/τᵢ = kᵢ = A_MD × n^ε × (∑ pᵢ / τᵢ) \]

where A_MD is the integrated intensity of the entire emission spectrum, I_fₚ is the integrated intensity of the purely magnetic dipole transition Dᵧ → Eₓ, λₚₐₜ is the emission probability of the magnetic dipole transition (14.65 s⁻¹ for Eu(III)), and n is the refractive index of the solution (1.33 for aqueous solutions).

X-ray Crystallographic Study

All data were collected at low temperature using oil-coated shock-cooled crystals on a Bruker-AXS APEX II diffractometer with Mo Kα radiation (λ = 0.71073 Å). The structure was solved by direct methods, ²¹ and all non-hydrogen atoms were refined anisotropically using the least-squares method on F². ²² CCDC-1964484 contains supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Treatment of Disordered Water Molecules

All oxygen atom positions correspond to relatively high residual electron density. At the beginning of the water treatment each oxygen atom had an individual occupancy variable, and in order to avoid correlations between occupancies and U values, the U values of all water oxygen atoms have been refined with one common variable. The next step was to perform an accurate analysis of the occupancies of neighboring oxygen atoms, in order to avoid the presence of more than 100% of a water molecule in one single area, which would make no sense, from either a chemical or a crystallographic point of view. In order to stabilize the following anisotropic refinement, the occupancy values have been fixed based on the corresponding refined values. Altogether, 10.5 water molecules have been refined on 23 positions in order to absorb ‘diffuse water electron density’.

Determination of Protonation and Stability Constants

The potentiometric titrations were carried out at 298.1 ± 0.1 K using 0.1 M KCl as the supporting electrolyte. The experimental procedure (buret, potentiometer, cell, stirrer, microcomputer, …) has been fully described elsewhere. ⁴⁻ The acquisition of the EMF data was performed with the computer program PASAT. ²³ The reference electrode was an Ag/AgCl electrode in a saturated KCl solution. The glass electrode was calibrated as a hydrogen ion concentrated probe by the titration of previously standardized amounts of HCl with CO₂-free NaOH solutions and the equivalent point determined by Gran’s method, ²⁴ which gives the standard potential, E°', and the ionic product of water (pKw = 13.73(1)).
The computer program HYPERQUAD was used to calculate the protonation and stability constants. The pH range investigated was 2.0–11.0, and the concentration of the ligand and metal ions was about 1 × 10⁻³ M with 1:1 M(III):L and M(II):L constant molar ratios. The different titration curves for each system (at least two) were treated either as a single set or as separated curves without significant variation in the values of the stability constants. Finally, the sets of data were merged together and treated simultaneously to give the final stability constants. The distribution diagrams were calculated using the HySS software.

Spectra for pH-dependent UV-visible measurements ([H₃tpptac] = 5.0 × 10⁻³ M) were recorded with an Agilent 8453 UV–vis spectrometer at 293.15 K. Spectra for pH-dependent ¹H NMR measurements were recorded on a Bruker Advance DPX 300 MHz instrument operating at 299.95 MHz for ¹H. tert-Butyl alcohol was used as a reference standard (δ 1.24 ppm for ¹H). Adjustments to the desired pH were made using drops of DCl and/or NaOD solutions. The pD was calculated from the measured pH values using the correlation, pH = pD + 0.4.²⁷

Computational Methods. Structures were optimized with the ADF DFT package (SCM, version 2017) using the default SCF convergence criterion (1 × 10⁻⁶) on the Lisa cluster of SURFsara.³⁰,³¹ As a starting structure, the X-ray structure of [Tb-tpptac(H₂O)]⁰ was used, which was modified accordingly. All geometry optimizations using unrestricted Hartree–Fock of the neutral complexes (with six unpaired electrons) were conducted using the zero-order regular approximation (ZORA) for relativistic effects and Perdew and Wang (PW91) exchange and correlation for the GGA part of the density functional.³³ ADF basis sets TZ2P were used, with a small frozen core. A similar approach has been used for other metal complexes.³⁴ For the Eu-H₂O (1) complex (see Table 1), the starting structure was first minimized with a force field. ADF input and output files are provided as Supporting Information. The results were visualized using UCSF Chimera.³⁵

RESULTS AND DISCUSSION

Synthesis and Characterization of Ln-tpptac Complexes. Luminescence spectroscopy was used to investigate the complex formation and stoichiometry of Ln-tpptac complexes in aqueous solution. Titration experiments for Tris buffer solution (pH 7.4) of ligand and LnCl₃ salts (Ln = Eu, Tb) showed that the addition of increasing amounts of ion up to 1 equiv resulted in an increase in the total integrated emission of the lanthanide, after which a plateau in the emission intensity was reached (Figure 1a). In these experiments, the metal luminescence lifetime is independent of the amount of Ln³⁺ salt added. These observations show that, at room temperature, the formation of the complex is fast and complete following the addition of 1 equiv of the lanthanide ion. The ESI+-MS spectra, obtained with aqueous solutions containing the ligand and Eu³⁺ or Tb³⁺ in a 1:1 ratio are in agreement with results from luminescence titrations. These spectra are characterized by the absence of peaks ascribable to the free ligand and the presence of peaks corresponding to one positively charged species, [Ln-tpptac + H]⁺ or sodium and potassium adducts. In addition, in order to obtain preliminary information about the rate of complex formation, the ligand (c = 1.0 × 10⁻³ M) was mixed with 1 equiv of Eu³⁺ in Tris buffer (pH 7.4) and the emission intensity of the metal was recorded with the passing of time (Figure 1b). This experiment showed that the ligand possesses rapid chelation kinetics under mild conditions (~10 min at

Table 1. Properties of DFT Calculated Structures (in Vacuo) of the tpptac Complexes with Europium or Terbium

<table>
<thead>
<tr>
<th>compd</th>
<th>Ln–H₂O (Å)</th>
<th>Ln–O (Å)</th>
<th>Ln–O (Å)</th>
<th>Ln–O (Å)</th>
<th>μ (D)</th>
<th>E (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb⋅H₂O (X)</td>
<td>2.385</td>
<td>2.341</td>
<td>2.365</td>
<td>2.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb⋅H₂O</td>
<td>2.686</td>
<td>2.214</td>
<td>2.233</td>
<td>2.236</td>
<td>14.42</td>
<td>−453.58088</td>
</tr>
<tr>
<td>Eu⋅H₂O (1)</td>
<td>2.926</td>
<td>2.302</td>
<td>2.318</td>
<td>2.325</td>
<td>14.30</td>
<td>−454.34394</td>
</tr>
<tr>
<td>Eu⋅H₂O (2)</td>
<td>5.401</td>
<td>2.286</td>
<td>2.281</td>
<td>2.280</td>
<td>15.87</td>
<td>−454.48902</td>
</tr>
<tr>
<td>Eu</td>
<td>2.281</td>
<td>2.228</td>
<td>2.221</td>
<td>2.218</td>
<td>15.21</td>
<td>−440.30423</td>
</tr>
<tr>
<td>Tb</td>
<td>2.227</td>
<td>2.227</td>
<td>2.227</td>
<td>2.227</td>
<td>15.04</td>
<td>−439.40109</td>
</tr>
</tbody>
</table>

*Given are selected distances between the lanthanide ion (Eu(III) or Tb(III)) and the oxygen atoms in the structure as well as the total dipole moment (μ) and the total bond energy (E, in eV). For comparison the distances for the X-ray structure are given as well (Tb⋅H₂O (X)).

Figure 1. (a) Evolution of the emission spectrum of a solution of H₃tpptac upon the addition of increasing aliquots of EuCl₃ (0 → 2 equiv) in Tris buffer (pH 7.4). The inset shows the total emission intensity as the function of EuCl₃ added. (b) Plot of emission intensity of the ⁵D₀ → ⁷F₂ transition (618 nm) vs time after mixing H₃tpptac and EuCl₃ (1 equiv) in Tris buffer (pH 7.4) at room temperature.
room temperature). This fast formation kinetics can be attributed, at least in part, to preorganization of the H3tpptac ligand due to the presence of three intracyclic pyridine rings. This observation is consistent with previous findings related to the faster formation rates of Ln-pcta complexes in comparison to those of Ln-dota complexes. Consequently, the Ln3+ chelates derived from H3tpptac were prepared at room temperature in aqueous solutions at pH 6 with an appropriate slight molar excess (ca. 10%) of the lanthanide salt to avoid the presence of free ligand and were isolated by purification using a Waters Sep-Pak column.

We have recorded the 1H NMR of the Eu complex in D2O at 298 K and pD 7.0 (Figure 2). This spectrum shows two sets of signals spread between −10 and +10 ppm as a result of the paramagnetic lanthanide ion. The major set of nine signals may be related to a complex with an effective C3 symmetry as reported by Castro et al. for Eu and Yb complexes derived from the tpptam ligand. The second set of 1H NMR signals is probably related to the presence of a second complex species in solution.

Despite several attempts, suitable crystals of the Eu complex for X-ray diffraction analysis could not be grown. On the other hand, single crystals of the Tb complex were obtained by slow evaporation of aqueous solution of the complex. A view of the structure of Tb-tpptac and selected bond lengths related to the coordination environment of the metal are given in Figure 3 (more complete information including crystal data and bond angles is given in Tables S1 and S2). The complex crystallizes as a mononuclear species in the triclinic space group P1̅. The terbium ion is 10-coordinated, being bound to the six nitrogen atoms (three Ntert and three Npy) of the macrocyclic backbone and to the three oxygen atoms of the carboxylate functions, while a water molecule completes the metal coordination sphere. The shortest contacts are Tb−O(carboxylate) bonds with values between 2.34 and 2.37 Å, and even the Tb−Owater distance (2.385 Å) is in the same range, while Tb−Npy and Tb−Ntert are significantly longer with average values of 2.67 and 2.71 Å, respectively. The metal cation and the ligand form a bowl-like structure with the carboxylate oxygen atoms as legs and the terbium and nitrogen atoms as the bowl hosting the water molecule coordinated to the metal center.

Moreover, two complexes formed a head-to-head dimer in the unit cell (see Figure 4) with strong hydrogen bonds and an O−O distance of 2.214 Å. This dimer could be seen as a cagelike structure encapsulating the two water molecules. To the best of the authors’ knowledge, such a dimer cage is unique in lanthanide structures. Furthermore, 10.5 molecules of water have been refined on a total of 23 positions, mainly located on the “back side” of the dimer, forming hydrogen bonds with the carboxylate oxygen atoms of the complexes with O−O distances varying from 2.66 to 3.01 Å.

A 10-coordinate environment of the Tb3+ ion is also observed in the solid-state structure of the analogue [Tb-tpptam]3+, the tenth coordination site being occupied by an oxygen atom of a nitrate ion. The average bond distances involving the donor atoms of the ligand (H3tpptac or tpptam) are similar in the two corresponding terbium complexes. Particularly, no significant difference was observed in Tb−O (carboxylate or amide) bond lengths, although an amide oxygen has less negative charge density than a carboxylate oxygen. Additionally, we should note that the introduction of three acetate or acetamide side arms in the tpp platform...
Ocarboxylate distances are slightly shorter and the Tb−Ntert because of a better coordinated complex where the Gd³⁺ ion is surrounded by oxygen is 2.385 Å from the terbium cation, and this value is comparable with the Ln−Oether, presumably because of a better flexibility of the H₂N-ac₃[18]aneN₃O₃ ligand. Interestingly, [Gd-N-ac₅[18]aneN₃O₃]⁰ complexes, the average bond distances M−Ocarboxylate and M−Ntert are similar, whereas M−Npy distances are longer by 0.14 Å than those of M−Oether, presumably because of a better flexibility of the H₂N-ac₃[18]aneN₃O₃ ligand. The DFT calculations on [Tb-tpptac-H₂O]⁰ reproduce the X-ray structure well (with a RMSD of 0.395 Å; RMSD = root-mean-square deviation of atomic positions), indicating the appropriateness of the method (see Figure 5a). Comparison of the calculated hydrated Eu and Tb complexes, however, results in nonoverlapping structures due to a different arrangement of the lanthanide ions in the cleft of the ligand. This is related to the metal ion−carboxylate distances (see Table 1). The ligand structures, however (removing ions and water), are very similar (RMSD of 0.205 Å; see Figure 5b). The calculated structures of the Eu complexes (with and without the water molecule) are virtually identical (RMSD for 67 atoms is 0.013 Å; see Figure 5c).

In the two hydrated complexes (of Eu(III) and Tb(III)), the distance between the water molecule and the ion and the metal−carboxylate−ion distances are slightly different (see Table 1). On average the distance between the Tb(III) and the oxygen atom of the carboxylate group is 2.22 Å, while for the Eu(III) complex it is 2.31 Å. The europium ion is positioned slightly higher in the bowl of the ligand. (compare Tb-H₂O and Eu-H₂O (1 in Table 1). The large intrinsic dipole moment of the neutral metal complex, related to the metal ion−carboxylate interactions, is slightly modulated by the coordinating water molecule by its distance to the ion (from 15.2 to 14.3 D; see Table 1).

Figure 6 shows a space-filling representation of the Eu-tpptac structure clearly displaying the vacant water coordination site as well as the carboxylates protecting the lanthanide ion. Slight modification of the starting structure for the DFT calculations of the Eu complex with a molecular mechanics force field (in comparison to starting from the structure based on the X-ray study of [Tb-tpptac(H₂O)]⁰ results in two structures for the hydrate. These structures differentiate in the position of the water molecule. It is either coordinated to the Eu(III) ion or the water molecule interacts with the π systems of the ligand, showing a typical OH−π bond, with a distance of ~2.6 Å between the proton and the center of the pyridine ring. The two binding modes of the water molecule to Eu-tpptac are presented in Figure 7 (data are given in Table 1). The calculated bond energies in vacuo indicate only a slight bond energy difference of 0.145 eV between these two structures. This energy difference is expected to be even smaller in an aqueous environment. The small energy difference between the metal-coordinated and noncoordinated water in the Eu complex agrees with the experimentally observed luminescent behavior (vide infra).

Figure 5. (a) Comparison of the structures of the two Tb(III) hydrate structures (X-ray Tb, brown; DFT Tb, blue). The RMSD for 70 atoms is 0.395 Å. (b) Comparison of the ligands of the calculated structures of the Tb(III) and Eu(III) hydrate structures (Tb, brown; Eu, blue; ions and water molecules removed before comparison). The RMSD for 66 atoms is 0.205 Å. (c) Comparison of the structures of the hydrate and non-hydrate Eu(III) structures (DFT) (Eu-tpptac, blue; Eu-tpptac-H₂O, in brown; water molecule removed before the comparison). The RMSD for 67 atoms is 0.013 Å.
Protonation Constants of the Ligand and Stability of the Corresponding Complexes. The protonation constants of the ligand, defined in eq 5, were determined via potentiometric titrations in aqueous solution. The values are given in Table 2 along with previously reported values for macrocyclic polyaniminopolycarboxylate ligands incorporating one or two pyridine ring(s), and H$_2$dota was used as the reference ligand. All of these data have been determined under the same experimental conditions: 0.1 M KCl ionic strength and 25 °C.

\[
K_i^H = \frac{[HL_i^+]}{[H_{i-1}^+][H^+]},
\]

(5)

The ligand tpptac$^{3-}$ has nine basic centers, but only four constants could be determined in the pH range available for the potentiometric titrations. This is illustrated in the species distribution diagram of the ligand as a function of the pH (Figure 8). At physiological pH (7.4), the predominant species are the H$_2$L$^-$ and HL2- species and the full deprotonated species (L$^{3-}$) is the predominant species at pH >8.0. In comparison to the series of azapyridino macrocycles reported in Table 2, the protonation constants determined for tpptac$^{3-}$ are rather low. The first protonation constant (log $K_1^H = 7.89$) is much lower (1.5–2.8 log units lower), and the first three protonation constants of this ligand range from ca. 8 to 7 logarithmic units with a separation of only 0.54 log unit (versus $K_1^H = 2.30$). The fourth constant determined for tpptac$^{3-}$ is similar to those of other ligands except for pytac$^{4-}$.

The first three protonation steps should occur on either the amine or pyridine groups, while the low value of the fourth step is typical of protonation of a carboxylate group linked to a protonated nitrogen atom. A survey of the literature data related to potentiometric studies of polyaniminopolycarboxylate ligands with pyridine rings showed that the highest protonation constant corresponds to the protonation of a tertiary nitrogen atom, while the protonation of the pyridine is associated with log $K_4^H \approx 6$ or is not observed.\(^\text{7a,42,46}\)

To get insight into this point, we have combined pH-dependent UV–visible spectroscopy and 1H NMR measurements. The variations with pH of the absorbance of the pyridine band at 270 nm (Figures S5–S7) show a significant decrease in intensity (about 20%) from pH 9 to 5 in correspondence to the first three protonation steps, while they remain practically constant above and below this pH range. The variation of the 1H NMR spectrum with pH is illustrated in Figure 9 and Figure S8. Due to the C$_3$ symmetry of the ligand, its 1H NMR spectrum displays only two resonances for the pyridine protons and two singlets for the methylene groups of side arms. The 1H signals attributable to the methylene protons of the acetate groups are those experiencing the largest upfield shifts ($\Delta \delta = 0.2$ ppm) from pH 1 to 3, while the changes in the chemical shifts of the 1H signals of the methylene groups of the macrocyclic core and of the aromatic signals are not significant in this pH range. At pH 6 the signals of the methylene groups of the macrocycle core are rather broad and undergo large upfield shifts ($\Delta \delta = 1.1$ ppm) until the protonation is complete at pH 10. A similar trend is observed for the methylene groups of the acetate arms. Above pH 6 the aromatic signals also undergo upfield shifts ($\Delta \delta \approx 0.3$–0.4 ppm).

In accord with the values derived for the protonation constants, above pH 9 the spectra remain practically unchanged, suggesting that there is no protonation process in highly basic medium. All these variations in the 1H NMR spectra in combination with the changes in the UV–vis spectra suggest that the first three proton bindings of tpptac$^{3-}$ would

![Figure 7](image-url) Space-filling representation of (right) [Eu-tpptac(H$_2$O)]$^{0+}$ displaying the water coordination more clearly (Eu-H$_2$O (1)), as well as (left) a structure where the water molecule shows an interaction with the π system of the ligand (see Eu-H$_2$O (2) in Table 1 for numerical data). DFT calculated structures.

![Figure 8](image-url) Distribution diagram for the ligand H$_3$tpptac as a function of the pH (H$_3$tpptac = H$_3$L, [H$_3$tpptac] = 10$^{-3}$ M).
be somehow shared by the amine and the pyridine groups. The effective involvement of the pyridine rings in the protonation process may justify the low overall basicity of the ligand. Moreover, the basicity found for the first step of \textit{tpptac}$^{3-}$ is even lower than that reported for \textit{bp}2$^{2-}$, a related cyclic ligand having only two amino carboxylates and two pyridine rings. The crystal structure of this compound in its tetraprotonated form shows the location of the protons in the pyridine and carboxylate sites and not in the tertiary amine groups.42 The overall basicity ($\sum \log K^{fi}_i$) of \textit{tpptac}$^{3-}$ (N$_6$O$_3$ donor set, 18-membered ring) is comparable to that of structurally related ligands such as pcta$^{3-}$ and pc2a$^{2-}$ (N$_4$O$_3$ and N$_4$O$_2$ sets, 12-membered ring).30,42 The presence of three pyridine rings and the existence of only three aminoacetate groups contribute strongly to a lower overall basicity of \textit{tpptac}$^{3-}$ in comparison to that of pyta$^{4-}$ (N$_6$O donor set, 18-membered ring) with a decrease of about 4 log units. A significant change in the overall basicity is observed between the 18-membered macrocyclic ligands \textit{tpptac}$^{3-}$ and N-ac$_3$[12]aneN$_3$O$_3$$^{3-}$. The replacement of three dimethyleneoxy moieties by three pyridine rings leads to a decrease of 3 log units. A similar behavior is also observed for the 12-membered macrocycles pcta$^{3-}$ and N-ac$_3$[12]aneN$_3$O$_3$$^{3-}$.40,44 The value obtained for \textit{tpptac}$^{3-}$ is also clearly lower than that of dota$^{3-}$, anticipating a lower stability of the complexes reported here. Nevertheless, the low overall basicity of \textit{tpptac}$^{3-}$ is interesting from a coordination point of view, since it reduces the competition between the metal ions and the protons for the ligand which may lead to achieving high percentages of complexation even at low pH values (vide infra).

Complex stability constants, K_{ML}, have been determined for complexes formed with various Ln$^{3+}$ ions (Ln = La, Eu, Gd, Tb, Yb) by potentiometric titrations and are reported in Table 3.

The complexation kinetics of \textit{H}3tpptac with these ions are fast enough for direct potentiometric titrations, avoiding the use of an out-of-cell (batch) method. The stability constants of the complexes have been calculated from the titration curves obtained at a 1:1 metal to ligand ratio; the best fitting was obtained by using the model that includes the formation of ML and MHL species in equilibrium. The speciation diagrams of Eu$^{3+}$ and Tb$^{3+}$ as representative examples are given in Figure 10 (other data are given in Figures S9–S11). These species distribution diagrams for the Ln complexes indicate that dissociation of the complexes takes place only at pH 3.8. At pH 3, the protonated complexes predominate, while the non-protonated complexes were the single species in aqueous solution at pH 5–11. The stability of the Ln-tpptac complexes is quite large and lies in the range of 17.5–18.7 log units, with the highest value observed for Eu-tpptac. The complex stability increases from the early lanthanides at about the middle of the series and slightly decreases for the heavier lanthanides. This tendency agrees with that reported for \textit{H}4dtpa and several macrocycles containing pyridine rings such as \textit{H}3pcta and \textit{H}2bpdpqa.36,47,48 This is in contrast with the macrocyclic polyaminocarboxylate ligands such as \textit{H}3dota, \textit{H}2pepa, and \textit{H}4heha, which form complexes of increasing stability all across the lanthanide series.43,47

As expected from the total basicity values, the present stability constants for Ln-tpptac complexes do not appear as large as the reported values for Ln-pyta (log K_{ML} \approx 22) or \textit{L}3nota (log K_{ML} = 22–25).43,45 In spite of the comparable total basicities of the ligands \textit{H}3tpptac and \textit{H}2pcta and the presence of two additional coordinating groups (two pyridine nitrogens) in the former, the stability of lanthanide complexes

Figure 9. Plot of the species distribution diagram for \textit{H}3tpptac along with variations with pH of the 1H NMR chemical shifts of (a) the methylene signals “c” (red circles) and “d” (blue circles) and (b) the aromatic signals “a” (red circles) and “b” (blue circles). $\Delta \delta$ was calculated in both drawings as the difference with respect to the δ values of the ligand at pH 1.45. pH values: 1.45, 3.05, 4.03, 4.71, 6.02, 7.19, 7.52, 8.11, 8.55, 8.96, 10.23, and 11.69. \textit{H}3tpptac \Rightarrow H$_3$L.

Table 3. Logarithms of the Stability Constants of \textit{H}3tpptac with Different M$^{3+}$ and M$^{2+}$ Ions Determined in 0.1 M KCl at 25 °C

<table>
<thead>
<tr>
<th>equilibrium reaction</th>
<th>La(III)</th>
<th>Eu(III)</th>
<th>Gd(III)</th>
<th>Tb(III)</th>
<th>Yb(III)</th>
<th>Cu(II)</th>
<th>Zn(II)</th>
<th>Mn(II)</th>
<th>Ca(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M + H + L \equiv MHLab</td>
<td>20.86(3)</td>
<td>21.74(6)</td>
<td>21.17(4)</td>
<td>21.23(4)</td>
<td>20.67(2)</td>
<td>20.83(2)</td>
<td>19.92(2)</td>
<td>18.98(2)</td>
<td></td>
</tr>
<tr>
<td>M + L \equiv ML</td>
<td>17.60(2)</td>
<td>18.69(4)</td>
<td>18.30(3)</td>
<td>17.96(3)</td>
<td>17.44(1)</td>
<td>14.39(5)</td>
<td>12.89(7)</td>
<td>12.97(4)</td>
<td>9.28(1)</td>
</tr>
<tr>
<td>pH (pH 7.4)</td>
<td>17.65</td>
<td>18.6</td>
<td>18.4</td>
<td>18.01</td>
<td>18.01</td>
<td>14.49</td>
<td>13.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

abCharges omitted. bValues in parentheses are standard deviations in the last significant figure.
is lower for H₃tpptac than H₃pcta (about 1.5 log units for the europium complex for example).³⁶ This may be related to the flexibility within these macrocycles, which outweighs basicity considerations. While H₃pcta has some flexibility region (diethylenetriamine core) as part of its macrocyclic ring, H₃tpptac does not have such flexibility. When a metallic complex is used under physiological conditions, its pM value is considered to be more accurate than its Kₐₐₚ value. The pM value corresponds to the concentration of the free metal ion in the solution (pM = −log [M]) at pH 7.4) and is usually calculated in the presence of 100% ligand excess ([ligand]total = 10 μM, [M]total =1 μM). These values are reported in Table 3.

In order to compare the stability of Ln-tpptac to those of other lanthanide complexes, we have selected pGd values (Table 4) because of the greatest availability of stability constants for Gd³⁺ complexes. In addition, the relevance of these complexes as contrast agents in magnetic resonance imaging is well established. Table 4 shows that the H₃tpptac ligand has a pGd value higher than those presented by [Gd-edta]⁻ and the related pyridine complexes [Gd-bp2a]⁺ and [Gd-pcta]²⁻ and only slightly lower than those of commercially available MRI contrast agents such as [Gd-dtpa]²⁻ and [Gd-dota]⁻.

We have also investigated the complex stability of bioavailable cations, such as Cu²⁺, Zn²⁺, Mn²⁺, and Ca²⁺, in order to determine the selectivity of H₃tpptac. The corresponding speciation diagrams are reported in Figure 10 and Figures S12 and S13. Except for Ca²⁺, the experimental data could be fitted with the introduction of a monoprotonated complex. In the case of the first three ions, the stability constants (Kₐₐₚ) drop by 3−4.5 orders of magnitude in comparison to Ln stability constants. These results arise certainly from the more difficult adjustment of the ligand to these divalent metal ions, due to the inherent rigidity of the pyridine rings. With regard to Ln³⁺ ions, these M²⁺ ions have more stereochemical requirements for specific coordination chemistry. These log K_Ca,Zn values are several orders of magnitude less than those of the related pyridine ligands H₃pcta and H₄pyta and reference polyaminocarboxylate ligands H₄dota and H₅dtpa (Table S3). As an example, the stability constants of [Cu-dota]³⁻ and [Zn-dota]²⁻ are about 7 and 10 log units higher, respectively. In comparison with these ligands, H₃tpptac forms Ln³⁺ complexes of very high selectivity over these bioavailable cations. We can also note that Ca²⁺ forms a complex of relatively low stability with H₃tpptac.

Table 4. pGd Values of Representative Chelators

<table>
<thead>
<tr>
<th>ligand</th>
<th>pGd</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₃tpptac</td>
<td>18.4</td>
</tr>
<tr>
<td>H₃pcta</td>
<td>17.3</td>
</tr>
<tr>
<td>H₂bp2a</td>
<td>13.3</td>
</tr>
<tr>
<td>H₂Pyta</td>
<td>19.25</td>
</tr>
<tr>
<td>H₅N-ac₃[18]aneN₃O₃</td>
<td>15.7</td>
</tr>
<tr>
<td>H₄dota</td>
<td>19.2</td>
</tr>
<tr>
<td>H₅dtpa</td>
<td>18.9</td>
</tr>
<tr>
<td>H₄edta</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Calculated from data reported in ref 36; I = 1 M KCl. ³⁶Calculated from data reported in ref 42; I = 0.1 M KCl. ³⁶Calculated from data reported in ref 43; I = 0.1 M KCl. ³⁶Calculated from data reported in ref 44; I = 0.1 M KCl. ³⁶Calculated from data reported in ref 46; I = 0.1 M KCl. ³⁶Calculated from data reported in ref 50; I = 0.1 M KCl.
Photophysical Properties of Eu-tpptac and Tb-tpptac Complexes. The main spectroscopic properties measured for Eu- and Tb-tpptac in air equilibrated Tris buffer solutions (50 mM, pH 7.4) are presented in Table 5. The photophysical properties obtained from the isolated complexes agree with those obtained when the complexes were formed in situ with equimolar solutions of LnCl₃ and ligand.

Table 5. Lifetimes, Overall Quantum Yields and the Number of Coordination Water Molecules of Ln-tpptac and Ln-tpatcn Complexes (Ln = Eu, Tb) in Tris Buffer (pH 7.4)

<table>
<thead>
<tr>
<th></th>
<th>Eu-tpptac</th>
<th>Eu-tpatcn</th>
<th>Tb-tpptac</th>
<th>Tb-tpatcn</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_max (nm)</td>
<td>267</td>
<td>267</td>
<td>274</td>
<td>274</td>
</tr>
<tr>
<td>ε (M⁻¹ cm⁻¹)</td>
<td>11900</td>
<td>11000</td>
<td>14400</td>
<td>15800</td>
</tr>
<tr>
<td>τ_DOD298K [τ_DOD77K] (ms)</td>
<td>0.78 [0.82]</td>
<td>2.24</td>
<td>1.08</td>
<td>2.00</td>
</tr>
<tr>
<td>q(H₂O)</td>
<td>0.82[^a]</td>
<td>0.62[^b]</td>
<td>0.04</td>
<td>0.0</td>
</tr>
<tr>
<td>φ_DOD298K [φ_DOD77K] (%)</td>
<td>4.8 [11.8]</td>
<td>33 [50]</td>
<td>9.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

[^a] Data from ref 8.[^b] Number of coordination water molecules calculated according to the equations of Horrocks and Sudnick.14
[^c] Number of coordination water molecules calculated according to the equations of Supkowski and Horrocks.13[^d] Number of coordination water molecules calculated according to the equations of Beeby et al.16

Europium Complex. The UV/vis absorption spectrum of the complex displays a broad emission band at 267 nm which can be attributed to π–π* transitions centered on the pyridyl moieties. In comparison to the free ligand, this absorption band is shifted toward lower energy, indicating an electronic interaction between the light-absorbing pyridine and the light-emitting europium center. The range of this red shift (∼4 nm) is largely exemplified in the literature for the complexation of lanthanide ions by pyridine ligand.51 The molar absorption coefficient (ε = 11900 M⁻¹ cm⁻¹) is also in line with the presence of three pyridine units (εpy = 3900 M⁻¹ cm⁻¹ for Eupcta).52 Excitation (λ_exc = 267 nm) at 298 K gives a typical europium(III) emission spectrum containing the expected sequence of 5D0 → 7Fⱼ transitions with J = 0→4 being visible (Figure 11a).

At 298 K, the emission decay of Eu-tpptac can be fitted with a monoeponential function and is in the millisecond range (τ = 0.78 ms). This value is longer than that observed from the tpp ligand containing three acetamide pendant arms (τ = 0.57 ms) but shorter than reported for the H₂tpptac ligand functionalized with three picolinate arms (τ = 1.08 ms).51,52 Experimental luminescence lifetimes of the Eu-tpptac complex were also recorded in D₂O solution, and lifetime data in H₂O and D₂O were analyzed in order to assess the hydration number q of these complexes (i.e., the number of metal-bound water molecules). By using the phenomenological Horrocks and Sudnick equation,14 the hydration state of the excited state of the complex is 0.82, which points to the presence of one inner-sphere water molecule in solution. We have also made use of a revised equation, established by Supkowski and Horrocks, taking into account the influence of N–H oscillators on the luminescence lifetime.15 This non-integer value may imply a hydration equilibrium between q = 0 and q = 1 species in solution. The presence of hydration equilibria in solution involving 10-coordinate Eu(III) complexes has been recently reported.53 In the case of an Eu(III) complex of a nonadentate ligand based on the pyclen macrocycle containing two picolinate and one acetate arms, Le Fur et al. reported the presence of a hydration equilibrium involving a monohydrated species (q = 1) with coordination number 10 and a 9-coordinate nonhydrated species (q = 0) species with an apparent hydration number of 0.4.53 We have also used the affinity of the fluoride ion for the lanthanides to evidence the
presence of directly coordinated water molecules.54 As expected, the lifetime in H\textsubscript{2}O was increased by a factor of 1.7 ($\tau = 1.33$ ms) in the presence of saturating fluoride ion (0.4 M, KF). The incorporation of fluoride ion in the inner sphere of the metal was also reflected by important changes in the shapes of the $^5D_0 \rightarrow ^7F_0$ transitions ($J = 1, 2$, and 4) and the I_{7F_2}/I_{7F_3} and I_{7F_4}/I_{7F_3} ratios (decrease of 15–20\% for I_{7F_2}/I_{7F_3}). Similar luminescence lifetimes of Eu-tpptac were observed at 77 K, indicating that the hydration sphere of the metal does not change by lowering the temperature. This also suggests that a back-energy-transfer process between the acceptor manifold excited states of the europium ion ($^5D_h J = 0$–3) and the donor triplet excited state $^3\pi\pi^*$ of the ligand or a quenching mechanism via low-lying LMCT (ligand-to-metal charge transfer) states does not occur for this complex. In either case of these quenching mechanisms, luminescence lifetimes would be significantly higher at 77 K than at 298 K.55

To gain additional information about the presence of an equilibrium of two species in aqueous solution, the emission spectrum was determined on a higher-resolution spectrum recorded at 298 K (Figure 12). In the 583–600 nm region, the $^5D_0 \rightarrow ^7F_4$ transition displays at least five components (lines and shoulders), suggesting the presence of more than one equivalent site for the Eu(III) ion.56 The $^5D_0 \rightarrow ^7F_0$ transition is broad (full width at half-height: 28 cm-1), and asymmetric on its low-energy side, strongly indicative of manifold excited states of the europium ion ($^5D^0$ manifold, $^5I_{77}$). The $^5D_0 \rightarrow ^7F_0$ transition was deconvoluted by using pure Lorentzian functions, a satisfactory fit of the data was obtained when two components were taken into account: a transition centered at 580.47 nm (47\% of the emitted intensity) and a transition centered at 579.57 nm (53\% of the emitted intensity). The presence of these two bands could be related to the existence of a hydration equilibrium. Indeed, two components of the $^5D_0 \rightarrow ^7F_0$ transition separated by ~ 0.5–1 nm were previously observed for differently hydrated species of Eu(III) complexes.53,55 On the basis of these literature data, we tentatively assigned the component at high energy to the 10-coordinated species with $q = 1$ and the component at lower energy to the nonhydrated 9-coordinated species. The proportion of these two bands is in agreement with the apparent hydration number (0.52) obtained from luminescence lifetime measurements. Frey and Horrocks58 showed that the energy of the $^5D_0 \rightarrow ^7F_0$ transition ($\bar{\nu}_{\text{obs}}$) can be calculated from eq 6

$$\bar{\nu}_{\text{obs}} = \bar{\nu}_0 + C_{\text{CN}} \sum_i n_i \delta_i$$

where C_{CN} is a coefficient associated with the coordination number of the europium ion (1.0 for $\text{CN} = 9$ and 0.95 for $\text{CN} = 10$), n_i the number of coordinated atoms i, δ_i the energy shift parameter for atom i, and $\bar{\nu}_0$ the energy of the $^5D_0 \rightarrow ^7F_0$ transition of the free ion (17374 cm-1). By using the nephelauxetic parameters $\delta_{\text{car}} = -15.53$ cm-1 for the carboxylate oxygen, $\delta_{\text{am}} = -15.08$ cm-1 for amine nitrogen, and $\delta_{\text{py}} = -16.67$ cm-1 for the pyridine nitrogen donors,56 the energy of the component at lower energy (17227 cm-1) matches reasonably well with the theoretical value for a $\text{N}_2\text{N}_2\text{O}_3$ environment with no inner-sphere water molecule (17232 cm-1). Considering a 9-coordinated complex where one amine nitrogen or pyridine nitrogen donor is substituted by a water molecule ($\text{N}_2\text{N}_2\text{O}_3\text{O}_w$ or $\text{N}_2\text{N}_2\text{O}_3\text{O}_w$ environment), the application of eq 6, with $\delta_{\text{car}} = -10.34$ cm-1 for inner-sphere water molecule,56 gives theoretical estimations of $\bar{\nu}$ in worse correlation ($\Delta \bar{\nu} > 10$ cm-1). This is in agreement with an NMR study and computational work where no indication is found for a sp2 nitrogen atom inversion. When the C_{CN} value of 0.95 for a total coordination number of 10 ($\text{N}_2\text{N}_2\text{O}_3\text{O}_w$ environment) is taken into account, the phenomenological equation predicts a transition energy of 17230 cm-1 for the species observed at 17254 cm-1. This inconsistency can be tentatively explained by diminishing the nephelauxetic parameters of coordinating atoms in a 10-coordination environment but arises certainly from the very poor number of decadentate species used for the determination of the C_{CN} value ($\text{CN} = 10$), in contrast with the determination of the C_{CN} value for nonadentate species.56 For Eu-tpptac, a better fit between experimental and calculated values implies a C_{CN} value of 0.8 for decadentate species ($\bar{\nu}_{\text{calc}} = 17252$ cm-1). For similar reasons, Latva and Kankare proposed a C_{CN} value of 1.21 for a total coordination number of 8 instead of the original value of 1.06 proposed by Frey and Horrocks.58,59b

The overall quantum yields were determined in 50 mM Tris-buffered solutions at pH 7.4 in H\textsubscript{2}O ($\Phi_{\text{H}_2\text{O}} = 4.8\%$) and in D\textsubscript{2}O ($\Phi_{\text{D}_2\text{O}} = 11.8\%$), using [Ru(bpy)$_3Cl_2$] as a reference. These values take into account the efficiency of the overall energy-transfer process from the pyridyl sensitizers to the europium ion states. The overall quantum yield of sensitized emission (Φ_{ov}, as determined experimentally) can be broken up into three contributions (eq 7)

$$\Phi_{\text{ov}} = \eta_{\text{isc}} \times \eta_{\text{Et}} \times \Phi_{\text{Ln}} = \eta_{\text{sens}} \times \Phi_{\text{Ln}}$$

where η_{isc} and η_{Et} reflect the efficiency of intersystem crossing ($^3\pi\pi^* \rightarrow ^5\pi\pi^*$) and ligand to metal energy transfer ($^5\pi\pi^* \rightarrow \text{Ln}^*$), respectively. These two terms correspond to the sensitization efficiency, η_{sens} ($\eta_{\text{sens}} = \eta_{\text{isc}} \times \eta_{\text{Et}}$). The intrinsic quantum yield, Φ_{Ln}, corresponds to the quantum yield of the lanthanide ion when it is excited into its own levels. In the case of the europium(III) ion, Φ_{Eu} may be calculated from the

![Figure 12. High-resolution emission spectrum of the Eu-tpptac complex in H\textsubscript{2}O recorded at 298 K ($\lambda_{\text{exc}} = 267 \pm 0.8$ nm). Insert: enlargement of the $^5D_0 \rightarrow ^7F_0$ transition region and the corresponding individual Lorentzian signals.](image-url)
experimental data (spectrum, \(\Phi_{\text{ov}} \) and lifetimes) according to eqs 3 and 4 in the Experimental Section. These calculated photophysical parameters for Eu-tpptac are gathered in Table 6. In H2O solution, we calculated \(\Phi_{\text{ov}} = 18\% \), corresponding to a poor metal-centered emission. This parameter is mainly dependent on the presence of metal-coordinated water molecules, and consequently we calculate \(\Phi_{\text{ov}} = 45\% \) in D2O, in agreement with a rather efficient metal-centered emission and a satisfying structural and electronic optimization of the metallic coordination sphere. As expected, the sensitization efficiencies, which are independent of the presence of inner-sphere water molecules, are comparable in H2O and D2O solutions. The calculated value of \(\eta_{\text{esc}} (27\%) \) is modest, although the antennae are ligated to the metal. The sensitization efficiency is highly dependent on the energy gap between the sensitizer excited state \(\left(\pi\pi^* \right) \) and the Ln(III) emitting level. The triplet state energy of the ligand under the perturbation caused by coordination to a lanthanide ion was measured as usual from the ligand phosphorescence spectrum of the corresponding gadolinium complex. At 77 K in a 4/1 methanol/ethanol mixture, Gd-tpptac exhibits ligand phosphorescence as a broad emission band between 350 and 550 nm with a maximum at around 418 nm and an emission lifetime of 17.2 ms (Figure 11c). Unfortunately, due to the lack of vibrationally structured phosphorescence emission bands, it is not possible to determine the \(\tilde{\ell}_{\text{oo}} \) value of the triplet level in the complex. However, we can regard that this triplet energy level lies in the 28600–23900 cm\(^{-1}\) range (i.e., the domain ranging from the left edge to the maximum of the phosphorescence spectra). Looking at this energy range, we think it is likely that the excitation energy may be primarily transferred to the \(\Delta D_1 (24500 \text{ cm}^{-1}) \), \(\Delta D_2 (21500 \text{ cm}^{-1}) \), or \(\Delta D_3 (19000 \text{ cm}^{-1}) \) levels of the Eu(III) ion that decay nonradiatively to the lower-lying \(\Delta D_0 (17300 \text{ cm}^{-1}) \). During this transfer from upper \(\Delta D_3 \) levels to the emitting \(\Delta D_1 \) level, quite significant energy losses can consequently take place, diminishing the overall quantum yield. At last, we explored the resistance of Eu-tpptac in regard to metal dissociation and this behavior was monitored by luminescence experiments. We challenged the complex at room temperature with 150 equiv of competing H2-dtpa ligand in Tris buffer at pH 7.4 (K(Eu-dtpa) = 2.5 \times 10^{22}). Under these conditions, the shape of the emission spectrum, the total intensity, and the lifetime of Eu-tpptac did not differ after 48 h incubation. This result suggests a high kinetic inertness of the complex. Similar results were observed when Eu-tpptac (10 \(\mu \)M) was challenged by an excess of Cu\(^{2+}\) and Zn\(^{2+}\) cations (1 mM). These results indicate the high resistance of the complex to transchelation and transmetalation reactions.

Table 6. Calculated Photophysical Parameters for Eu-tpptac and Eu-tpatcn Complexes in Tris Buffer (pH 7.4) and Energy Information of Triplet State

<table>
<thead>
<tr>
<th></th>
<th>Eu-tpptac in H2O</th>
<th>Eu-tpptac in D2O</th>
<th>Eu-tpatcn in H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{D1}}/I_{\text{D2}})</td>
<td>6.6</td>
<td>6.6</td>
<td>8.3</td>
</tr>
<tr>
<td>(k_{\text{a}} (\text{s}^{-1}))</td>
<td>230</td>
<td>228</td>
<td>295</td>
</tr>
<tr>
<td>(k_{\text{b}} (\text{s}^{-1}))</td>
<td>1282</td>
<td>502</td>
<td>926</td>
</tr>
<tr>
<td>(\Phi_{\text{ov}} (%))</td>
<td>18</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>(\eta_{\text{esc}} (%))</td>
<td>27.0</td>
<td>26.7</td>
<td>28.2</td>
</tr>
<tr>
<td>(\Phi_{\text{ov}} (%))</td>
<td>4.8</td>
<td>11.8</td>
<td>9.0</td>
</tr>
<tr>
<td>(\Sigma \Phi_{\text{ov}} (%))</td>
<td>1048</td>
<td>279</td>
<td>627</td>
</tr>
<tr>
<td>(E(\text{max})) ((\text{cm}^{-1}))</td>
<td>23900</td>
<td>23900</td>
<td>24000</td>
</tr>
</tbody>
</table>

\(^{a} \)Data from ref 8. \(^{b} \)Experimentally measured parameters. \(^{c} \)Calculated parameters; see the Experimental Section. \(^{d} \)Determined as the \(\lambda_{\text{max}} \) value of the phosphorescence spectra of the corresponding Gd(III) complexes.

Comparison between Ln-tpptac and Ln-tpatcn Complexes. It is interesting to compare the thermodynamic stability and the photophysical performances of Ln-tpptac complexes to the corresponding complexes formed with the H2tpptac ligand reported by Mazzanti and co-workers. This ligand (Chart 1) can be considered as the prototype of ligands which have been designed to sensitize several lanthanide ions (Eu\(^{3+}\), Tb\(^{3+}\), Sm\(^{3+}\), Yb\(^{3+}\)) and to maximize the excitation wavelength and the brightness of the corresponding complexes. The two ligands share structural features such as a macrocyclic backbone, a similar ligand denticity (nonadentate ligand), a similar number and type of coordinating atoms, and an overall neutral charge of their Ln(III) complexes. However, they differ from one another in the size of the macrocyclic backbone (18-membered vs 12-membered) and in the arrangement of pyridine chromophoric units (intracyclic vs pendant arms).

Despite the great attention paid recently to the study of the ligand H2tpatcn and derivatives for the development of
luminescent lanthanide probes, only two thermodynamic studies of their metallic complexes have been undertaken. The stability constant for Ln-tpatcn was determined only for the terbium complex and was reported as $K_{\text{TbL}} = 17.4$ (p$K_{\text{B}} = 14.9$) by Mazzanti and co-workers. More recently, Tripier and co-workers reported stability constants for Cu-tpatcn ($\log K_{\text{CuL}} = 16.21$) and Zn-tpatcn ($\log K_{\text{ZnL}} = 15.95$) in a work on copper-based radiopharmaceuticals. Although the basicity of tpatcn$^{3-}$ ($\sum \log K_{\text{H}} = 25.8$) is higher than that of tpptac$^{3-}$ ($\sum \log K_{\text{H}} = 24.5$), the stability constant of Tb-tpatcn is 0.6 log unit lower than our calculated $\log K_{\text{ML}}$ value of 18.0 for Tb-tpptac. This suggests a geometrically more favorable conformation of the latter ligand for the coordination of Tb$^{3+}$ in comparison to that of the former. Additionally, our ligand can be also regarded for the terbium complex as a better ligand than H3tpatcn over the pH range 5–10, as illustrated in Figure 13. Moreover, the enhanced stability of Tb-tpptac and mainly the reduced stability of Cu-tpptac or Zn-tpptac significantly improved the selectivity constant of this ligand, log $K(\text{Tb/Cu}) = 3.6$ and log $K(\text{Tb/Zn}) = 5.1$, over that of H3tpatcn, log $K(\text{Tb/Cu}) = 1.2$ and log $K(\text{Tb/Zn}) = 1.5$. Overall, our ligand can be regarded as a better and more selective chelator for Ln$^{3+}$ in comparison to H3tpatcn from a thermodynamic point of view.

In contrast with Eu- and Tb-tpptac, luminescence experiments showed that Eu- and Tb-tpatcn exist as single and nonhydrated species in aqueous solution. This was further demonstrated by an X-ray structure of Tb-tpatcn in which the 9-coordinated Tb$^{3+}$ ion is only bound by the 9 donor atoms of the ligand, with no water molecule present in its coordination sphere. An inspection of the photophysical data of Eu-tpptac and Tb-tpatcn complexes (Tables 5 and 6) deserves several comments. (i) In comparison to Eu-tpptac, Eu-tpatcn displays an absorption maximum shifted by 7 nm and a ϵ value 1.2 higher, due to the connection of a carboxylate substituent at the 2-position of the pyridine ring. (ii) The efficiency of energy transfer, η_{trans} is similar for the two kinds of complexes in the range 25–30%. Looking at the triplet state energies, the position is fairly similar (23900/24000 cm$^{-1}$ considering the maximum of the emission band in corresponding Gd$^{3+}$ complexes), so that the energy gap ($^3\text{π}^* \rightarrow \text{Eu}^3+$) should be comparable for both ligands. (iii) In the two complexes, the main factor that limits the observed overall quantum yield is the rather low efficiency of energy transfer, η_{trans}. (iv) Due to the presence of a hydration equilibrium, the emission lifetime of Eu-tpatcn is longer and the overall quantum yield higher in H$_2$O solution than those observed for Eu-tpptac. On the other hand, we can note that Eu-tpatcn shows in D$_2$O higher values for these two luminescence parameters in comparison to Eu-tpatcn in H$_2$O. In the same way, Tb-tpptac displays in D$_2$O a higher emission lifetime than Tb-tpatcn and an emission quantum yield in the same range.

CONCLUSIONS

Some lanthanide complexes derived from a tpp platform and various side arms have been recently reported, but their thermodynamic stability constants and detailed photophysical properties were not undertaken. In this work, we have studied these physicochemical properties of lanthanide complexes derived from the H$_2$tpptac ligand, taken as a prototype of the tribranched tpp family.

The stability constants of Ln-tpptac complexes were determined by pH-potentiometry and are in the range 3.0×10^{17} to 5.0×10^{18}. Importantly, these Ln$^{3+}$ complexes are thermodynamically stable at physiological pH with pLn values in the range of those of Ln-dota and Ln-dtpa complexes. The H$_2$tpptac ligand shows also a great selectivity for lanthanide ions versus biogenic metal ions (Cu$^{2+}$, Zn$^{2+}$, Mn$^{2+}$, and Ca$^{2+}$), preventing transmetalation reactions.

Analysis of emission spectrum and emission lifetimes of the Eu$^{3+}$ complex shows that this complex exists in aqueous solution as a mixture of non-hydrated and monohydrated species. From luminescence lifetime data, a similar behavior is assumed for the Tb$^{3+}$ complex. DFT results show a small energy difference between water coordinated to the Eu(III) ion within the bowl of the ligand and water that interacts with the π system of [Eu-tpptac]$^+$, which agrees with the experimentally observed luminescent properties. A molecular structure determination of the Tb$^{3+}$ complex by X-ray crystallography is fully consistent with the presence of a 10-coordinated species, implying all coordinating atoms of the ligand and one inner-sphere water molecule. Owing to the high value of ligand triplet state energy and the greater sensitivity of Eu$^{3+}$ vs Tb$^{3+}$ luminescence toward quenching by metal-coordinated water molecules, H$_2$tpptac is a better sensitizer of Tb$^{3+}$ than of Eu$^{3+}$ ion. Despite the presence of a hydration equilibrium, the terbium complex displays a long excited state lifetime of 2.4 ms and a high overall quantum yield of 33% in H$_2$O solution at pH 7.4. On the other hand, the europium complex displays significant luminescence parameters in D$_2$O solution ($\tau = 1.99$ ms and $\Phi_{\text{ov}} = 11.8\%$).

On the basis of these data, the H$_2$tpptac ligand seems to be an attractive structural entry for constructing efficient Ln$^{3+}$-based luminescent probes in aqueous solution. Further refinement of the ligand structure may arise from the following. (i) The absorption maximum should shift to a longer wavelength more suitable for biological applications and a higher extinction coefficient to increase the brightness of complexes. In this direction, the introduction of a suitable substitution into the pyridine units is well documented. (ii) The capacity of a water molecule to bind the metal ion should be eliminated by, for example, the substitution of carboxylate groups by phosphate or phosphinate groups. (iii) The ligand should be able to conjugate the complexes to biomolecules (antibody, protein, ...). The synthetic pathway of a tpp platform allows the introduction of a reactive group on a single pyridine unit. This work is currently in progress.
Inorganic Chemistry

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03345.

Supporting Information (1), Physicochemical Data. 1H NMR of H4tpptac, HRMS spectra of corresponding Eu, Gd, and Tb complexes, pH-dependent UV-visible and pH-dependent 1H NMR data, distribution diagrams for the systems H4tpptac-La(III), -Gd(III), -Yb(III), -Mn(II), and Ca(II), emission spectra of Eu-tpp tac without and in the presence of KF, crystal data and bond angles of the Tb-tpp tac complex, and a comparison of the stability constants of H4tpp tac and different chelators with Gd3+, Cu2+, and Zn2+ ions (PDF).

Supporting Information (2), Computational Data. Input and output files of the DFT calculations as used with the ADF program are provided, as well as .mol files of the relevant structures. TAPE 21 files are available upon request (ZIP).

Accession Codes

CCDC 1964484 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Author Information

Corresponding Authors
*E-mail for L.L.: llamarque@cisbio.com.
*E-mail for C.P.: picard@chimie.ups-tlse.fr.

ORCID
Alberto Lopera: 0000-0001-6482-0081
Estefanía Delgado-Pinar: 0000-0002-7400-5715
René M. Williams: 0000-0002-9490-6182
Jurriaan M. Zwier: 0000-0001-9017-5856
Enrique García-España: 0000-0002-4601-6505
Laurent Lamarque: 0000-0003-1237-7940
Claude Picard: 0000-0002-8770-7732

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

Acknowledgments

We thank Prof. N. Hildebrandt and Dr. S. Bhuckory (NanoBioPhotonics, Institute for Integrative Biology of the cell (12BC), Université Paris-Saclay, France) for use of equipment and assistance in measuring the high-resolution spectrum. We thank Dr. Stéphane Balayssac for assistance with the recording of the 1H NMR spectrum of the europium complex.

References

