Anton Pannekoek, Marxist astronomer

Photography, epistemic virtues, and political philosophy in early twentieth-century astronomy

Tai, C.K.

Publication date
2021

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chaokang Tai

Anton Pannekoek, Marxist Astronomer

Photography, Epistemic Virtues, and Political Philosophy in Early Twentieth-Century Astronomy
Anton Pannekoek, Marxist Astronomer

Photography, Epistemic Virtues, and Political Philosophy in Early Twentieth-Century Astronomy

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ter overstaan van een door
het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen
op vrijdag 26 maart 2021, te 13.00 uur

door

Chao Kang Tai

geboren te Apeldoorn
Promotiecommissie:

Promotores:
prof. dr. J.A.E.F. van Dongen
prof. dr. R.A.M.J. Wijers

Overige leden:
prof. dr. E.P.J. van den Heuvel Universiteit van Amsterdam
prof. dr. A. de Koter Universiteit van Amsterdam
prof. dr. A.J. Kox Universiteit van Amsterdam
prof. dr. J.J.E. Kursell Universiteit van Amsterdam
prof. dr. O.W. Nasim Universität Regensburg
prof. dr. R.W. Smith University of Alberta
prof. dr. L.T.G. Theunissen Universiteit Utrecht

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

©2021 Chaokang Tai

This research has been funded by the Institute of Physics and the Anton Pannekoek Institute for Astronomy, both University of Amsterdam; the Descartes Center for the History and the Philosophy of Sciences, Utrecht University; and Stichting Pieter Zeeman Fonds. Additional travel support for archival research was provided the American Institute of Physics, Center for History of Physics.
Contents

Introduction

1 Milky Way Research
 1.1 The Milky Way as Optical Phenomenon 31
 1.2 How to Represent the Milky Way 40
 1.3 Photography for Measurement 50
 1.4 Conclusions 62

2 Statistical Astronomy
 2.1 Statistical Cosmology 69
 2.2 Particularities in Statistical Distribution 74
 2.3 Star Densities in the Local System 90
 2.4 Historical Materialism 106
 2.5 Conclusions 110

3 Astrophysics of Stellar Atmospheres
 3.1 Spectrum, Luminosity, and Colour 118
 3.2 Growth and Relevance of Astronomy 127
 3.3 Ionization Theory 137
 3.4 Acquiring Photographic Plates 144
 3.5 Model Stellar Atmospheres 151
 3.6 Curve of Growth and Equivalent Widths 166
 3.7 Conclusions 175
List of Figures

I.1 Anton Pannekoek, ca. 1916 vi
1.1 Pannekoek’s observational journal 32
1.2 Naturalistic drawing of the Milky Way 44
1.3 Isophotic diagram of the Milky Way 46
1.4 Isophotic diagram of the mean subjective image 48
1.5 Photographic photometry of the Scutum cloud 54
1.6 Extrafocal photographic plate 56
1.7 Working sheet for photographic photometry 58
1.8 Isophotic diagram based on extrafocal photography 59
1.9 Naturalistic drawing based on extrafocal photography 61
2.1 Herschel’s 1785 model of the stellar system 70
2.2 Kapteyn’s model of the stellar system 72
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Table of star counts in Aquila</td>
</tr>
<tr>
<td>2.4</td>
<td>Shapley’s diagram of the distances of globular clusters</td>
</tr>
<tr>
<td>2.5</td>
<td>Shapley’s diagram of the distribution of globular clusters</td>
</tr>
<tr>
<td>2.6</td>
<td>Easton’s 1900 model of the Milky Way system</td>
</tr>
<tr>
<td>2.7</td>
<td>Pannekoek’s diagram of the Milky Way in Cygnus</td>
</tr>
<tr>
<td>2.8</td>
<td>Easton’s diagrams of the Milky Way in Cygnus</td>
</tr>
<tr>
<td>2.9</td>
<td>Diagram of the distribution of stars down to 11th mag</td>
</tr>
<tr>
<td>2.10</td>
<td>Diagram of the star density in the galactic plane</td>
</tr>
<tr>
<td>2.11</td>
<td>Kreiken’s diagram of the star density in the local system</td>
</tr>
<tr>
<td>2.12</td>
<td>Diagram of the density distribution of stars in the sky</td>
</tr>
<tr>
<td>2.13</td>
<td>Diagram of the location of clusters in the local system</td>
</tr>
<tr>
<td>2.14</td>
<td>Diagram of the distribution of B stars</td>
</tr>
<tr>
<td>2.15</td>
<td>Diagram of the distribution of A stars and K giants</td>
</tr>
<tr>
<td>3.1</td>
<td>Astronomical Institute in Amsterdam, ca. 1930</td>
</tr>
<tr>
<td>3.2</td>
<td>Diagram of ionization rate and equation of state</td>
</tr>
<tr>
<td>3.3</td>
<td>Pannekoek at a Solar eclipse expedition, 1927</td>
</tr>
<tr>
<td>3.4</td>
<td>Diagrams of the theoretical contours of absorptions lines</td>
</tr>
<tr>
<td>3.5</td>
<td>Table showing computed continuous absorption</td>
</tr>
<tr>
<td>3.6</td>
<td>Diagram showing computed absorption line strength</td>
</tr>
<tr>
<td>3.7</td>
<td>Diagram comparing colour and effective temperature</td>
</tr>
<tr>
<td>3.8</td>
<td>Spectrum of α Cygni</td>
</tr>
<tr>
<td>3.9</td>
<td>Curve of growth of α Cygni</td>
</tr>
<tr>
<td>3.10</td>
<td>Diagram of the surface gravity of δ Cephei</td>
</tr>
<tr>
<td>3.11</td>
<td>Table listing equivalent widths of F and G stars</td>
</tr>
</tbody>
</table>