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Abstract: The Photo Response Non-Uniformity pattern (PRNU-pattern) can be used to identify
the source of images or to indicate whether images have been made with the same camera. This
pattern is also recognized as the “fingerprint” of a camera since it is a highly characteristic feature.
However, this pattern, identically to a real fingerprint, is sensitive to many different influences,
e.g., the influence of camera settings. In this study, several previously investigated factors were
noted, after which three were selected for further investigation. The computation and comparison
methods are evaluated under variation of the following factors: resolution, length of the video and
compression. For all three studies, images were taken with a single iPhone 6. It was found that a
higher resolution ensures a more reliable comparison, and that the length of a (reference) video should
always be as high as possible to gain a better PRNU-pattern. It also became clear that compression
(i.e., in this study the compression that Snapchat uses) has a negative effect on the correlation value.
Therefore, it was found that many different factors play a part when comparing videos. Due to the
large amount of controllable and non-controllable factors that influence the PRNU-pattern, it is of
great importance that further research is carried out to gain clarity on the individual influences that
factors exert.

Keywords: PRNU; photo response non-uniformity; source camera identification; videos; compres-
sion; snapchat; resolution

1. Introduction

Each camera creates a highly characteristic pattern: The Photo Response Non-Uniformity
pattern (PRNU-pattern). The PRNU-pattern is caused by differences in material properties
and due to proximity effects during the production process of the image sensor. This
pattern can be compared with various software in order to answer the following questions:
‘which camera is the source of a specific photo or video’ and ‘are certain photos or videos
taken with the same camera’. After this comparison, a correlation value is linked to
it, which describes the degree of similarity. In some cases, inexplicable low correlation
values were measured when comparing videos. Several initiatives have already been
taken by the Netherlands Forensic Institute (NFI) to determine the causes of these low
correlation values. This was done by conducting small studies and proficiency tests
in which international organizations participated. Since the size of these studies was
limited, in most cases this matter has not been published. This study therefore made an
overview of the factors already investigated. Based on this list of more than 50 different
factors, three factors were chosen that could contribute to the broadening of knowledge
regarding the factors that influence the PRNU-pattern. These factors include the following:
compression, resolution and the length of the video. It is expected that these factors
will negatively influence the PRNU-pattern, resulting in a low correlation value when
a comparison is made. In previous studies [1–3] it was found that compression had a
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negative influence on the PRNU-pattern. Since Snapchats compression had not yet been
investigated, this factor was chosen. Currently not much is possible in terms of getting
information from the Snapchat application. A method to determine whether an image
comes from the Snapchat application of a phone is therefore a welcome addition. These
“Snapchat image comparisons” can also be very important to increase the burden of proof
when normal reference images are missing or when large quantities of social media images
have to be compared with each other. In this report the investigation regarding Snapchat
serves as a starting point for further investigations. In addition to this partial study, the
influence of resolution on the PRNU-pattern is being investigated. Some research has
been conducted into video resolutions higher than 720p, but not enough to draw more
general conclusions [3]. This partial study attempts to contribute to the formation of these
more general conclusions. The last factor, the influence of the length of the video, was
chosen on the basis of a recommendation that was given in a study into the influence of
movement and stabilization of drones on the PRNU-pattern [4]. In this last study it was
described that this factor may contribute to the deterioration of the PRNU-pattern. This
paper therefore looks at three different factors that can influence the PRNU-pattern and
with that the correlation value that comes from the comparison of these PRNU-patterns.
The factors that have already been investigated by the NFI are also included. The aim of
this research is therefore to determine which factors may provide low correlation values
when comparing videos. It evaluates the computation and comparison methods used,
under variation of these certain factors.

Now that an introduction has been given, the rest of this paper consists of the fol-
lowing: The chapter state of the art describes the basics of PRNU-investigation. The
materials and methods chapter gives information regarding the choices made. The results
are presented and later discussed in the chapters results and discussion. Subsequently,
a conclusion has been formulated. All chapters are written by Lars de Roos, under the
supervision of Zeno Geradts.

2. State of the Art
2.1. Photo Response Non-Uniformity

Photo Response Non-Uniformity is a way in which errors in the output of the image
sensor are expressed [5,6]. PRNU describes the difference between the actual response of
the image sensor and a uniform response [7]. During the production process PRNU occurs
due to the impurity of the raw material or by the variation in size of the photodiode due
to proximity effects. Since PRNU is caused by these physical properties, the characteristic
differences cannot be eliminated [7]. Furthermore, the amount of noise depends on the
light: if there is a lot of light, or if settings are used that let much light enter the camera, this
will lead to a lot of noise. The differences and variations that arise create a noise pattern
(also called a PRNU-pattern). This pattern is present in every photograph that the image
sensor produces. The pattern is often seen as the “fingerprint” of the image sensor, and
therefore also of a camera [8,9]. The production of the fingerprint of the camera has grown
over the years to be the golden standard when comparing digital images.

The PRNU-pattern can be made visible with advanced software, such as PRNUCom-
pare [10]. With this software the source of an image can be retrieved. This is done with the
same steps as described by Meij and Geradts [2]. In this study, steps 4 and 5 whereby the
zero mean and Wiener filter are used to remove noise and artifacts created due to compres-
sion, were skipped in order to investigate the influence of compression. Reference cameras
are needed to make reference images, also called flatfield images. These are images of a
gray surface where the light is distributed as evenly as possible over the pixels of the image
sensor. The PRNU-patterns that come from the reference images can then be compared
to the images whose source has to be retrieved. In the software, such a comparison can
be performed. A correlation value is calculated for this comparison which describes the
degree of similarity between the PRNU-patterns.
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2.2. Related Work

Multiple studies have been conducted over the past few years regarding the analysis of
camera images. In the early stages these were mainly focused on the possibilities that Fixed
Pattern Noise (FPN)—which includes Photo Response Non-Uniformities—had to offer [5,6].
Furthermore, it was also discovered that it was possible to identify a camera on the basis of
pixel defects [11]. Ultimately, the method of Photo Response Non-Uniformities was further
developed. For example, more complex filters and algorithms were introduced [12–14].
Due to further developments within this subject, even images of poorer quality could be
analyzed. [15–17]. The goals were also adjusted. In addition to identifying the camera, it
became possible to identify fake images [18–21]. Even before the turn of the century it was
possible to identify a video camera on the basis of videos. However, this did not concern
current digital videos but video tapes [22]. The identification of current digital videos
started around 2007, when it was found possible to identify a camcorder using PRNU [23].
From that moment on, developments have progressed, and it became possible to prevent
the copying and illegal downloading of movies [24]. The emergence of drones, smartphones
and social media has led to yet another change in the playing field of digital images. To keep
up with this, several studies have been conducted in recent years concerning smartphones,
WhatsApp, YouTube and drones [2,4,25,26]. For example, it is now possible to identify
the brand and model of a smartphone via video analysis [27]. In most literature that has
been discussed so far, there is no explicit mention in the results, or in the interpretation and
discussion of those results, that there were problems with, for instance, factors influencing
the (PRNU-)patterns. Unfortunately, despite all the rapid advances, these problems can
still occur. These problems are also referred to as (unexpected) artifacts or defects [28,29].
Observations made in the “Dresden Image Database” study revealed several of those
artifacts [30]. In many other studies the defects are seen as beneficial since this increases the
characteristic value of the noise pattern [29]. In order to identify more factors that influence
the PRNU-pattern, a large number of studies have been done by the NFI. To provide insight
into this, a table is made in which all the factors, and their influences on the PRNU-pattern,
have been presented. In Table A1 the distinction is made between six different groups:
type of camera, resolution, compression, digital processing, physical adaptation and other
factors. Examples of previously investigated factors are the influence of the framerate [31],
the influence of compression and resolution of YouTube videos [3,32,33] and the influence
of stabilization and movement of drones [4].

3. Materials and Methods

The most important information about the PRNU-pattern, including a brief overview
of studies that have been conducted in recent years into (factors influencing) the PRNU-
pattern, has just been discussed. This knowledge is applied in this chapter to determine
the research method. In this way an attempt has been made to exclude most unwanted
influences and to create the opportunity to examine only the chosen factors. This chapter
successively describes the camera, software and images used.

3.1. Camera

An iPhone 6 was used for this study. This iPhone was chosen because it had the
ability to adjust the resolution, so videos could be made in 720p and 1080p, both with
30 fps (30 frames per second). No updates were made at the time of the investigation. The
Snapchat application was also downloaded on this iPhone.

3.2. PRNUCompare

Software program “PRNUCompare” was developed by the Netherlands Forensic
Institute (NFI) in order to answer the following questions: 1: Which camera is the source
of a specific photo or video? And 2: Are photos or videos taken with the same cam-
era? PRNUCompare can analyze individual or multiple photos and/or videos, including
YouTube clips. It is equipped with a large selection of advanced algorithms which, when
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they are combined, have the ability to analyze multiple images simultaneously. Different
filters can be chosen to obtain the PRNU-pattern: 2nd order extraction filter (FSTV), 4th
order extraction filter and wavelet denoising/filter [2,10]. The 2nd order extraction filter
(FSTV) works best for videos relative to the other filters [2,3]. The differences between the
filters are mainly based on the relationship between speed and quality. In PRNUCompare
it is also possible to use “frame averaging”. During the examination of all factors, the
2nd order extraction filter was used and 1 in 10 frames was extracted each time (frame
averaging). When interpreting the results, the NFI uses a minimum correlation value in
order to make a reliable statement about finding the source of an image. This correlation
value, which can be between 0 and 1, has to be at least 0.15. In this study, this value was
also used to draw conclusions about the reliability of the correlation values of the factors
studied. The correlation value is a result of the equation below, which is carried out using
PRNUCompare. NCC stands for the normalized cross-correlation. This is a matrix of the
values between X and Y (in short, the coordinates of an image) [34]. In the rest of the article,
PRNUCompare is referred to as ‘algorithm’.

NCC[i, j] =
∑m

k=1 ∑n
l=1

(
X[k, l]−X

)(
Y[k + i, l + j]− Y

)
‖ X−X ‖ Y− Y ‖

(1)

3.3. Images

Different amounts of videos were used for the examined factors, an overview of the
images per factor examined can be found in Table 1. This table also explains the type
of videos (flatfield or natural) that have been used. All videos were made with the rear
camera of the iPhone 6, without filters and other custom settings. All videos taken with the
iPhone were stationary flatfield images, which means that the videos all consisted of a still
shot of a grey background. This also insured that the light distribution was as favorable
as possible and that influence on the pixels was minimal. The standard video format
for Apple devices (.mov) was used, which may not be representative of non-iOS devices
such as Samsung or Huawei. The videos used for the investigation of the compression
of Snapchat and the resolution were all between 10 and 11 s long. Before the start of the
investigation into the compression of Snapchat, it was first investigated whether there was
actually a compression. This was done with images made with the Snapchat application
on the iPhone 6. There were two sets, or rather parts, of Snapchat videos made: part 1
consisted of 7 flatfield videos and part 2 consisted of 15 flatfield videos. The two sets of
videos were made on two different days.

Table 1. Overview of the amount of videos per factor examined.

Factor Amount of Videos

Resolution
Snapchat

Video length

23 videos (720p) and 23 videos (1080p)
22 Snapchat videos (720 × 1080)

10 videos same length and 10 videos different length

When researching the length of the videos, the first set consisted of 10 videos with
different lengths (10, 14, 15 and 16 s) and the second set consisted of 10 videos with a length
of 10 s. QuickTime Player was used to shorten the videos with different lengths to a length
of 10 s.

During the production of all videos, it was taken into account that the factors, from
Table A1, might still have an influence on the results of the examined factors. For instance,
camera settings and the amount of light. To limit these random and systematic errors
as much as possible work was carried out in the same lab, in this lab use was made of
controlled light, air and temperature conditions. The same device (the iPhone 6) was used
and this device was in the lab at all times. Camera settings have remained unchanged,
except for the change in resolution. The settings were adjusted, through the settings of the
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iPhone 6, from the standard 1080p with 30 fps to 720p with 30 fps and later back to 1080p
with 30 fps for the other examined factors.

3.4. Snapchat: Extraction and Comparison of Snapchat Images

Snapchat, together with Instagram, Facebook and Twitter, is one of the most used
social media in the world. In Snapchat it is possible to take photos and videos, with or
without the large amount of filters and augmented reality (AR) techniques that Snapchat
offers.

Both the images and the videos were created in the same way in Snapchat and stored
on the iPhone 6. Since Snapchat offers no option to save photos directly on a smartphone,
the following method was chosen: first the image or the video was made, it was saved
in “memories” and then exported to the photo application of the iPhone 6. The images
were then taken from the iPhone to investigate on a desktop which had the PRNUCompare
software. Here the images were compared to each other and to images and videos from the
iPhone 6.

3.5. From Images to Results

It is important to zoom in a little further on what happens between the production
of the images and obtaining the results of the comparisons in the form correlation values.
After the images are structured in a way that is easy to load into the algorithm, the images
are converted as batches to PRNU-patterns. As discussed above, certain settings and
factors are taken into account and the method of Meij and Geradts is used [2]. After the
images have been converted to PRNU-patterns, it is possible to perform comparisons. The
patterns are compared one by one on the basis of similarities between the noise pattern,
using the aforementioned equation [34]. It is possible to compare a single pattern with a
single other pattern, but it is also possible to perform an entire set of comparisons directly.
In the latter case, a certain number of other patterns are compared per single pattern (for
example 1 vs. 20). This creates a kind of “ranking” of the best matches per pattern based on
the correlation value. As mentioned, a correlation value is generated for each performed
comparison, which is displayed in a table and in a graph. These tables can be exported in
Excel, after which a visual presentation can easily be made, as can be found in the results
of this paper.

4. Results

For interpreting the figures that can be found in the results this information may be
relevant: the highest and lowest correlation values are indicated in each figure, these are
the values of mutual comparisons of images from the same telephone. The negative (red)
result therefore relates to the lowest correlation value that came from a mutual comparison
between two images of the same telephone. This result is considered negative since it
would be “normal” if there was no or very little difference between mutual comparison of
images from the same phone (with the same settings).

4.1. Resolution

First, we investigated whether the resolution of the videos could have an influence
on the correlation value, and therefore would influence the comparison of visual material.
Since previous studies only looked at a maximum resolution of 720p, we chose devices that
had the ability to make videos with resolutions higher than 720p. Therefore, we decided to
use an iPhone 6 video with resolutions of 720p and 1080p, both with 30 fps. Table 2 and
Figures 1 and 2 show the correlation values of the different video comparisons made using
the algorithm. One video comparison means that different videos with a same resolution
from the same device, the iPhone 6, are compared (with a one-to-one video comparison).
This resulted in a highest, lowest, and average correlation value per comparison. Since the
algorithm always takes the same picture into the equation, a maximum correlation value
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of 1.00 is always achieved. This value was omitted here as it had to be investigated how
well the other images of the same device could be matched.

Table 2. Overview of the highest, average and lowest correlation values for both resolutions.

Figure 1 (720p) Figure 2 (1080p)

Highest correlation value between 0.13 and 0.23 between 0.27 and 0.67
Average correlation value between 0.08 and 0.15 between 0.25 and 0.58
Lowest correlation value between 0.06 and 0.12 between 0.22 and 0.44
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Figure 2. 23 comparisons, done with images made with an iPhone 6, all with a resolution of 1080p.

In Figure 1 all 23 comparisons have a comparable lowest correlation value and the
average correlation value varies a little. The highest correlation values per comparison vary
more. In Figure 1 comparison 1 has a little spread, compared to the other comparisons. In
Figure 2 the first seven comparisons are very close together, the rest of the 23 comparisons
are more scattered. The highest and lowest value are much further apart. Comparison 10 is
noticeable; it only has a highest correlation value of 0.27.

When looking at the average correlation values in Figures 1 and 2. It shows that
these average correlation values of the resolutions are very different. The images with
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a resolution of 1080p have a much higher correlation value for all comparisons than the
images with a resolution of 720p. Furthermore, the videos with a resolution of 720p
cannot be reliably matched several times, they do not meet the requirement of a minimum
correlation value of 0.15 used by the NFI. The difference with the videos with a resolution
of 1080p is big, since a valid match can always be made with this resolution. The stability of
the correlation values also differs. For example, the highest and lowest correlation values of
the images with a resolution of 720p fluctuate more, this may have to do with the influence
that stabilization and/or movements had during the making of the videos. Videos with a
lower resolution seem to be more sensitive to this, as a result of which the correlation values
differ. At higher resolutions, in this case at a resolution of 1080p, this mutual difference
is much less (almost minimal). What can be concluded of this is the following: as the
resolution improves, it becomes increasingly possible to obtain a PRNU-pattern (that is
more resistant to influence by other factors) from a video. This makes it possible to carry
out a reliable comparison with the algorithm.

4.2. Snapchat Compression

Subsequently, research was done into the compression of Snapchat. In order to
determine whether Snapchat made any adjustments at all, a small investigation was
conducted into the differences between normal iPhone 6 images and Snapchat images
(which were also made with an iPhone 6). It turned out that when Snapchat was used,
the resolution was adjusted to 720 × 1280. This could be caused by a different utilization
of the image sensor within the iPhone 6. The resolution of the normal iPhone 6 images
was 3264 × 2448 (pixel height: 3264 and pixel width: 2448). For this reason, no direct
comparison could be made.

The Snapchat images could be compared to each other, but it was noticeable that the
correlation values were all far below the limit of a possible match. This made it clear that
Snapchat makes very big adjustments to images. The algorithm could not recognize that
the images were all made by the same phone with the same Snapchat application. After
that it was investigated whether Snapchat makes a compression on videos.

In Figure 3 the 22 video comparisons of the Snapchat videos are shown. In this case,
one single video comparison means that several videos of Snapchat from the same device,
the iPhone 6, are compared. The highest correlation value is displayed with green; this
value varies between 0.17 and 0.28. Orange shows the average correlation value for the
comparison performed this value also varies. Correlation values between 0.10 and 0.21
have been measured here. Red indicates the lowest correlation value; these values vary
between 0.08 and 0.18. In Figure 3 it is striking that there is a difference between the first
7 comparisons (part 1) and the last 15 comparisons (part 2). The lowest correlation value
here is much lower than that of comparisons 8 to 22. Additionally, in comparison 6 and 7
the highest correlation value is lower than in the other 20 comparisons. There is no direct
explanation for these results. Because very many factors have been taken into account, the
conditions have been kept as equal as possible, see the materials and methods section. Yet
it seems that making images on two different days can still cause a slight difference, even if
the circumstances have remained the same.

To determine whether a match could be found on the basis of regular images of the
iPhone 6, the videos that were used in researching the resolution in this study were used
to perform various comparisons. Thus, the videos of the resolution study all served as
reference images.



J. Imaging 2021, 7, 8 8 of 16

J. Imaging 2020, 6, x FOR PEER REVIEW 7 of 16 

 

of the images with a resolution of 720p fluctuate more, this may have to do with the influ-

ence that stabilization and/or movements had during the making of the videos. Videos 

with a lower resolution seem to be more sensitive to this, as a result of which the correla-

tion values differ. At higher resolutions, in this case at a resolution of 1080p, this mutual 

difference is much less (almost minimal). What can be concluded of this is the following: 

as the resolution improves, it becomes increasingly possible to obtain a PRNU-pattern 

(that is more resistant to influence by other factors) from a video. This makes it possible 

to carry out a reliable comparison with the algorithm. 

4.2. Snapchat Compression 

Subsequently, research was done into the compression of Snapchat. In order to de-

termine whether Snapchat made any adjustments at all, a small investigation was con-

ducted into the differences between normal iPhone 6 images and Snapchat images (which 

were also made with an iPhone 6). It turned out that when Snapchat was used, the reso-

lution was adjusted to 720 × 1280. This could be caused by a different utilization of the 

image sensor within the iPhone 6. The resolution of the normal iPhone 6 images was 3264 

× 2448 (pixel height: 3264 and pixel width: 2448). For this reason, no direct comparison 

could be made. 

The Snapchat images could be compared to each other, but it was noticeable that the 

correlation values were all far below the limit of a possible match. This made it clear that 

Snapchat makes very big adjustments to images. The algorithm could not recognize that 

the images were all made by the same phone with the same Snapchat application. After 

that it was investigated whether Snapchat makes a compression on videos. 

In Figure 3 the 22 video comparisons of the Snapchat videos are shown. In this case, 

one single video comparison means that several videos of Snapchat from the same device, 

the iPhone 6, are compared. The highest correlation value is displayed with green; this 

value varies between 0.17 and 0.28. Orange shows the average correlation value for the 

comparison performed this value also varies. Correlation values between 0.10 and 0.21 

have been measured here. Red indicates the lowest correlation value; these values vary 

between 0.08 and 0.18. In Figure 3 it is striking that there is a difference between the first 

7 comparisons (part 1) and the last 15 comparisons (part 2). The lowest correlation value 

here is much lower than that of comparisons 8 to 22. Additionally, in comparison 6 and 7 

the highest correlation value is lower than in the other 20 comparisons. There is no direct 

explanation for these results. Because very many factors have been taken into account, the 

conditions have been kept as equal as possible, see the materials and methods section. Yet 

it seems that making images on two different days can still cause a slight difference, even 

if the circumstances have remained the same. 

 

Figure 3. 22 comparisons, done with Snapchat images made with an iPhone 6, all with a resolution
of 720 × 1280.

The previous figures (see Figures 1–3) showed the individual comparisons, with the
highest, lowest and average values. The results that can be found in these figures can
be seen as check whether the images can be matched (and thus meet the requirements
set in the method). Because the correlation values, with some exceptions, were sufficient
to perform mutual comparisons, the images were then compared with each other: the
iPhone 6 videos with a resolution of 720p, as well as videos with a resolution of 1080p were
compared to Snapchat videos. The result of these comparisons can be found in Figure 4.
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Figure 4. Boxplot of two times 506 individual comparisons between Snapchat images, all with a
resolution of 720 × 1280, made with an iPhone 6 and images, all with a resolution of either 720p or
1080p, made with an iPhone 6.

The spread of the comparison between images with a resolution of 720p and Snapchat
is larger than that of images with a resolution of 1080p and Snapchat. This is not comparable
to the difference already seen between Figures 1 and 2, in which it became clear that images
with a resolution of 1080p achieve higher correlation values, but also fluctuate on a larger
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scale, namely between 0.22 and 0.67 (see Figure 2). In Figure 4 this spread, when comparing
1080p videos to Snapchat videos, is between 0.006 and 0.012. Which immediately shows the
decrease in the correlation values and thus the decrease in the reliability of the comparisons
performed. The same drop can be observed when comparing the 720p videos to Snapchat
videos, the correlation value there is between −0.002 and 0.013 instead of 0.06 and 0.23
(see Figure 1). In all cases, the highest correlation value is below the limit used by the NFI
when it comes to a reliable comparison with the algorithm.

With regard to the comparison between 1080p videos and Snapchat, it is striking that
not only the spread is smaller, but also the average is higher. The 1080p vs. Snapchat
comparison average is around 0.008, while it is 0.005 for the 720p vs. Snapchat comparison.
This was unexpected since it was expected that this comparison would not be possible
due to the difference in resolution between the Snapchat videos (720p) and regular iPhone
6 videos with a resolution of 1080p. However, slightly higher correlation values were
measured in the 720p vs. Snapchat comparison. Apart from the outlier, all values in the
1080p vs. Snapchat comparison are below 0.012. In Table 3 the above mentioned highest,
lowest and average correlation values of both comparisons are shown. Here it becomes
clear again that no reliable comparison could be made. None of the values came close to
the limit of 0.15 used by the NFI.

Table 3. Overview of the highest, average and lowest correlation values for both resolutions compared
to Snapchat.

720p vs. Snapchat 1080p vs. Snapchat

Highest correlation value 0.013 0.012
Average correlation value 0.005 0.008
Lowest correlation value −0.002 0.006

Thus, it was found that Snapchat was making a major adjustment, not only on photos,
but also on videos. It also became clear that, partly due to this adaptation, the comparisons
with regular iPhone 6 videos of both 720p and 1080p could not contribute to the reliable
matching of the Snapchat videos. For this reason, it was investigated in which way it could
be determined whether the camera of the iPhone 6 had made the Snapchat images. A
comparison has been made between both sets of the Snapchat videos: part 1 vs. part 2. In
Figure 5 this comparison between the first and second set is shown. The following results
were found: The highest correlation value (correlation value) varies between 0.12 and 0.19.
The average correlation values, between 0.11 and 0.18, for the comparisons are close to the
highest values. The lowest correlation value varies between 0.10 and 0.17.
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Aside from comparisons 6 and 7, this means that the comparison between Snapchat
exceeds 0.15 and can therefore be seen as “reliable”. The difference in the mean correlation
value with the comparisons with the two resolutions (720p and 1080p) is at least 0.17.

4.3. Length of the Video

The last factor consisted of the influence of the length of a video. As mentioned earlier,
only flatfield images were used here. The results of the comparisons made can be observed
in Table 4. Here it becomes clear that with shorter videos (with a length of 10 s) a lower
correlation value arises. The correlation values of the videos with a length of 14, 15 and 16
s are relatively close to each other. These results correspond to the following expectation:
if a video is longer, it contains more frames (single images). So, if the video is longer and
the algorithm extracts a pattern every 10 frames (three per second in this study, since the
framerate is 30 fps), more patterns can be extracted from one video. This creates a more
reliable PRNU-pattern since the average pattern over all frames of that single video is
more stable.

Table 4. Results of the mutual comparisons of both videos with different lengths and videos with the same length (10 s).

Name of
Video

Length in
Seconds

Lowest
Correlation

Highest
Correlation

Name of Cut
Video

New Length
in Seconds

Lowest
Correlation

Highest
Correlation

1a 15 0.669 0.711 1b 10 0.526 0.537
2a 15 0.710 0.808 2b 10 0.534 0.759
3a 15 0.709 0.819 3b 10 0.536 0.725
4a 14 0.702 0.819 4b 10 0.533 0.738
5a 14 0.703 0.814 5b 10 0.533 0.749
6a 10 0.675 0.778 6b 10 0.537 0.744
7a 10 0.669 0.773 7b 10 0.534 0.743
8a 16 0.711 0.836 8b 10 0.526 0.731
9a 16 0.710 0.836 9b 10 0.535 0.757

10a 16 0.709 0.832 10b 10 0.531 0.759

To investigate whether the length of the videos caused a direct difference in the corre-
lation values during the comparison, the same videos of the iPhone 6 were investigated.
These videos were cut to a length of 10 s with QuickTime Player. Table 4 shows the results
of the mutual comparison of the cut videos. Here you can see the correction values of
the comparison of the iPhone images when they were cut to a length of 10 s. This table
clearly shows the difference between the videos that are cut and those that are not. The
highest correlation values of the videos of 10 s are almost all about 0.05 (or more) lower
than the videos of different lengths. The same applies to the lowest correlation values for
the cut videos, which are even >0.10 lower than the videos with different lengths. What
is also striking is that the measurements of the videos of 10 s are all very close to each
other compared to the videos with different lengths. This is possible because a longer
video provides more information about the PRNU-pattern, so that more differences can
be detected. Even the video that was already 10 s long was cut to exactly 10 s. As a result,
a small difference has arisen. In the Table 4, for both the comparison of the images with
a different length and the images with a length of 10 s, the maximum correlation value
that the algorithm always calculates is omitted. This was done because this value was
unimportant in this study, as it was investigated how well the images of the same device
could be matched.

Finally, it was investigated whether a cut video could be matched with the accompa-
nying full video. This has not been processed in a report in this way before and is therefore
interesting. The results of this study are shown in Table 5. The comparison performed is
the following: videos of different lengths (1a to 10a) vs. videos of 10 s (1b to 10b). Table 5
shows whether the match was successful and which correlation values could be linked to
these comparisons. In these results it can be seen that in some cases even a 0.99 correlation
value has been achieved, which is exceptionally high. However, this has the following
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reason: these two videos (video 6 and 7) were already 10 s, only a few milliseconds were
cut out, so only a very small adjustment was made. This has led to the exceptionally high
correlation value of almost 1.00. The other correlation values also offer a positive result: it
is more than clear that the algorithm is able to match cut videos to the original images.

Table 5. The correlation values of the comparison of videos of different lengths (1a to 10a) with
videos of 10 s (1b to 10b).

1b 2b 3b 4b 5b 6b 7b 8b 9b 10b

1a 0.882 0.674 0.675 0.676 0.677 0.674 0.664 0.678 0.677 0.678
2a 0.563 0.946 0.761 0.765 0.760 0.759 0.744 0.766 0.771 0.769
3a 0.559 0.756 0.947 0.778 0.771 0.768 0.752 0.775 0.781 0.779
4a 0.554 0.751 0.767 0.960 0.772 0.769 0.751 0.777 0.782 0.779
5a 0.558 0.746 0.760 0.772 0.959 0.764 0.748 0.771 0.776 0.775
6a 0.537 0.716 0.728 0.738 0.733 0.996 0.718 0.739 0.743 0.742
7a 0.532 0.709 0.719 0.728 0.724 0.725 0.991 0.733 0.738 0.734
8a 0.561 0.759 0.773 0.785 0.779 0.778 0.763 0.948 0.797 0.795
9a 0.558 0.761 0.775 0.786 0.781 0.779 0.767 0.794 0.948 0.797
10a 0.559 0.756 0.771 0.780 0.777 0.775 0.760 0.787 0.792 0.950

5. Discussion

In the investigation into the differences between resolutions and their influence on the
PRNU-pattern, two comparisons stand out: Comparison 1 of the video comparison with
resolution 720p has a striking little spread, the smallest of all 23 comparisons. This could be
due to other factors such as light (settings), which may have caused the video to be clearer
than the other videos. Comparison 10 of the video comparison with resolution 1080p is
noticeable, since it only has a highest correlation value of 0.27. This is lower than the
correlation values of the remaining 22 comparisons. Most likely motion or light caused an
unclear video, which meant that a less good PRNU-pattern could be extracted. Correlation
values differ between the two resolutions, in most cases this difference is above 0.30. This
is a very big difference, as this can indicate whether a match is considered reliable or not.

It was already known that lower resolutions (i.e., resolutions below 720p) resulted
in reduced correlation values [3,4,32]. The same conclusion could be drawn from the
experiment that was carried out. It also appeared that a lower resolution is less stable than
videos of 1080p that were compared. As mentioned earlier, this may be due to the influence
of stabilization and movement. In the literature nothing is known about this, but it is quite
possible to imagine: at a lower resolution, fewer pixels are available to register (major)
changes, so that details are missed.

It is recommended to carry out further research into even higher resolutions and to
involve the framerate. As mentioned, it is possible to change the resolution settings on
many smartphones, it is also possible to adjust the framerate: this increases the number
of frames per second, which may result in an even more stable PRNU-pattern. Further
research on multiple devices might help to increase the reliability of this experiment.

In the experiment on the influence of the compression performed by Snapchat, it
quickly became apparent that a major adjustment was being made. This adjustment was
visible on both images and videos that were created with the Snapchat application. This was
not inconceivable as already known from previous studies that social media applications
almost always make adjustments to visual material [1–3,25]. It was striking that Snapchat
lowers the resolution to 720p with videos. The comparisons with the videos of 720p gave
a slightly higher correlation value than the comparisons with the videos of 1080p. This
can be explained by the fact that the resolution of the Snapchat videos (standard 720p)
corresponds to the videos with a resolution of 720p, so that a more equal performance can
be seen. What emerges from these two comparisons is that the algorithm cannot make a
reliable comparison between videos that were made with Snapchat, and those that were
not. So, if there is a Snapchat video that needs to be investigated whether it comes from a
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certain device, it is recommended not to include reference pictures of the device itself in
the comparison. However, it is recommended to create Snapchat reference images with a
reference device on which the application Snapchat is installed. This allows the creation
of Snapchat reference images that can be compared with the algorithm. Again, it might
be interesting to investigate whether the same correlation values occur with other devices.
Possibly also because there is a difference between the Snapchat that is available for iOS
(the operating system of Apple) and Android (the operating system of almost all other
smartphones). On Android smartphones, a “screengrab” (screenshot of what the camera
receives) is made instead of making an image or video with the camera of the smartphone.
Capturing with the camera is what happens on an iPhone. This leads to the higher quality
of the images and videos that come from an iPhone compared to an android smartphone.

In the research into the influence of the length of a video, one video of 15 s stands
out, which had a lower correlation value than the other videos of 15 s. It is unclear how
this difference could have arisen in this single video. It was investigated whether there
was a direct influence by shortening the length of the video and it was also checked
whether the videos could still be matched to the complete videos after cutting. The videos
from the iPhone 6 have been duplicated and cut to a length of 10 s, using QuickTime
Player. Important here is that cutting images is actually destructive research, therefore
it is not recommended to cut images to an equal length during a case study. The best
solution is to make reference images of the same length as the images to be examined.
Incidentally, QuickTime Player, as mentioned earlier, can still have influence on the final
correlation values. Unfortunately, nothing is known about the influence of this program on
the PRNU-pattern.

Some recommendations have been drawn up on the basis of the research into the
factors discussed above. It summarizes what can be taken into account or where the
method could be adjusted in relation to the current state of affairs. These recommendations
can be found in Table 6.

Table 6. Overview of recommendations for implementation per factor investigated.

Factor Recommendation

Compression
(Snapchat)

With images: virtually no comparison possible due to large differences in
compression. It is recommended to compare as many regular images as possible and

omit Snapchat photos.
With videos: comparison of Snapchat videos with regular videos of the device is not

possible. It might be an option to make reference videos with the Snapchat
application located on the reference device. However, further research is required to

confirm this finding.

Resolution
It is recommended to compare only equal resolutions (was already known). Higher

resolutions give higher correlation values but take into account the fact that
comparisons of lower resolutions are still reliable.

Length of the video

When creating reference images, it is recommended to make videos of the same
length as the suspicious images.

The reference images may also be longer, in this way more information is extracted
from the video, which improves the comparison.

Videos that have been cut can still be compared, the same applies as above: it is best
to use videos of the same length, or longer than the suspicious images, as a reference.

6. Conclusions

From the table (Table A1) that was made, several factors were known that could be
responsible for low correlation values when comparing videos. In addition to this overview,
three factors were examined in this study, which lead to the following conclusions:

Compression has a negative effect on the comparison since it leads to a decrease in
the correlation value. This was already known for many programs, but not specifically for
Snapchat. In this research we found that through Snapchat the images (photos and videos)
can be negatively influenced, in most cases so bad that a match with a normal reference is
not possible. Further research is needed to confirm whether it is actually possible that a
reliable comparison can be made with reference images of Snapchat.
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The better (higher) the resolution, the better (higher) the reliability of the comparison
of videos will be. This was already known with resolutions up to and including 720p. This
research shows that it gets even better with resolutions of 1080p.

The longer the video is, the more reliable the PRNU-pattern that can be extracted from
the video. Vice versa: the shorter the video is, the worse a PRNU-pattern can be made
(however, a reliable match is still possible). It is also possible, as it turns out, to match cut
videos to the original videos. Often even with a very high correlation value.

Thus, it appears from the experiments that many different factors play a part in
comparing videos. Due to the large amount of controllable and non-controllable factors
that influence a PRNU-pattern, it is of great importance that further research is done to
gain clarity on the individual influences that factors exert.
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Appendix A

Table A1. Overview of possible factors that influence a decrease of the (PRNU) correlation value in videos (or images in
general).

Factor Influence

Type of camera

Exposure Variation large, small differences

Focal length Zoom = drop (no identification possible)

Camera setting (general) This has influence

Aperture (with shutter speed) Little difference

Focus Possible factor

Focus (middle or angle) Middle = standard
Angle(s) = more noise, so actually better

Framerate Higher rate = higher correlation (when comparing same rate video to video)
Different rate impossible to compare

Frames More = better (video/video-comparison)
Video/photo-comparison not (yet) possible

I- and P-frames Whole video or single frames highest correlation, not I- and/or P-frames

ISO (CCD) ISO 100 or 200 best for comparing

ISO (CMOS) Everything possible, if comparison with reference is made with equal (and
otherwise middle) ISO value

ISO (foveon x3) Variation large

Quality (camera) Possible factor

Shutter speed Variation large, shorter shutter speed = lower correlation

Temperature (decrease/increase) This has no influence

White balance Variation large

https://drive.google.com/drive/folders/1w_vkluq1oy-lMNTXmtuTIvxSjjhqtXhH?usp=sharing
https://drive.google.com/drive/folders/1w_vkluq1oy-lMNTXmtuTIvxSjjhqtXhH?usp=sharing
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Table A1. Cont.

Factor Influence

Resolution

480p No identification possible

720p Depending on the camera possible or not possible

Resolution (photo) Low = Decrease
High = Increase

Resolution (mutual difference) No identification possible

Resolution (video) Low = Decrease
High = Increase

Photos with Video (resolution) Comparison not (yet) possible

Compression

Compression Possible factor

Compression (online) Compression increase = reliability decrease

Compression (online) 2.0 So much loss, no comparison possible

Compression (comparison) Using the same type of compression, otherwise the correlation value decreases

Compression/Cropped (256 × 256) No loss and faster, lower than this value leads to degradation

Photos with Video (compression) Comparison not (yet) possible

JPEG fine vs. JPEG standard No identification possible

Digital processing

Cropped areas No identification possible

Grayscale (photos) Best way to make reference images for comparison

Increasing image Bad and another research says good (640 × 480 to 1920 × 1080)

Enlarge/reduce (PC) VGA/9M = Best way

Enlarge/reduce (camera) Superfine = Best way

Reducing image This has a positive influence on the comparison

Physical adaptation
Gimbal (drone) In combination with lower quality camera, it leads to a decrease

Switch camera module This has no influence

Other factors

2nd Order filter Best result, match will be higher

Distance to camera Possible factor

Motion of image Identification possible if reference is also in motion

Contrasts Bad results (Usage of homogeneous substrates recommended)

Dark/light
Darker = Decrease
Lighter = Decrease

Middle = Works the best

Halogen light Leads to lower correlation values

Color of reference image Green and gray show high correlation values, red and blue show lower
correlation values

Length of video Mutual difference = Decrease

Light (inside/outside) Different per case

Light (intensity) Possible factor

Fluorescent light This has no direct influence

Aging This has no influence
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