Harvesting forage fish can prevent fishing-induced population collapses of large piscivorous fish

Soudijn, F.H.; van Denderen, P.D.; Heino, M.; Dieckmann, U.; de Roos, A.M.

DOI
10.1073/pnas.1917079118

Publication date
2021

Document Version
Final published version

Published in
Proceedings of the National Academy of Sciences of the United States of America

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Harvesting forage fish can prevent fishing-induced population collapses of large piscivorous fish

*Ecological Dynamics Group, Wageningen Marine Research, 1976 CP Ulmudden, The Netherlands; †Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; ‡Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria; ‡Centre for Ocean Life, Technical University of Denmark Aqua, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; ‡Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway; †Institute of Marine Research, 5005 Bergen, Norway; ‡Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan; and ‡Santa Fe Institute, Santa Fe, NM 87501

Edited by Alan Hastings, University of California, Davis, CA, and approved December 16, 2020 (received for review October 1, 2019)

Fisheries have reduced the abundances of large piscivores—such as gadids (cod, pollock, etc.) and tunas—in ecosystems around the world. Fisheries also target smaller species—such as herring, capelin, and sprat—that are important parts of the piscivores’ diets. It has been suggested that harvesting of these so-called forage fish will harm piscivores. Multispecies models used for fisheries assessments typically ignore important facets of fish community dynamics, such as individual-level bioenergetics and/or size structure. We test the effects of fishing for both forage fish and piscivores using a dynamic, multitrophic, size-structured, bioenergetics model of the Baltic Sea. In addition, we analyze historical patterns in piscivore-biomass declines and fishing mortalities of piscivores and forage fish using global fish-stock assessment data. Our community-dynamics model shows that piscivores benefit from harvesting of their forage fish when piscivore fishing mortality is high. With substantial harvesting of forage fish, the piscivores can withstand higher fishing mortality. On the other hand, when piscivore fishing mortality is low, piscivore biomass decreases with more fishing of the forage fish. In accordance with these predictions, our statistical analysis of global fisheries data shows a positive interaction between the fishing mortalities of forage-fish stocks and piscivore stocks on the strength of piscivore-biomass declines. While overfishing of forage fish must be prevented, our study shows that reducing fishing pressures on forage fish may have unwanted negative side effects on piscivores. In some cases, decreasing forage-fish exploitation could cause declines, or even collapses, of piscivore stocks.

Significance

In many marine ecosystems, fisheries target predatory fish, known as piscivores, as well as their prey fish, known as forage fish. It is generally thought that harvesting of forage fish negatively affects piscivore population abundance and resilience. Here, we show that, contrary to this widely held belief, piscivorous fish stocks exposed to high fishing mortality benefit from harvesting of their forage fish. On the other hand, piscivorous fish stocks exposed to low fishing mortality are reduced by harvesting of their forage fish. The beneficial effect occurs when the harvesting of forage fish releases density dependence in the forage-fish population. Our findings have implications for policy advice regarding the management of forage-fish fisheries and the protection of piscivorous fish stocks.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Published under the PNAS license. See online for related content such as Commentaries.

†To whom correspondence may be addressed. Email: Floor.soudijn@wur.nl.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917079118/-/DCSupplemental.

Published February 2, 2021.
protect large-piscivore populations from fishing-induced collapses. These results challenge the generally accepted idea that large piscivores always benefit from less fishing of their forage fish (6, 15).

Materials and Methods

Below, we present the models used for our analyses in general terms. Details are described in SI Appendix, in Appendix A for the community-dynamics model and in Appendix B for the statistical model. Analysis of the community-dynamics model was carried out by using publicly available C-based simulation programs. The statistical model analysis is based on publicly available data.

Community-Dynamics Model of the Baltic Sea. To analyze the effects of multispecies fishing, we used the stage-structured bioenergetics model of the central Baltic Sea introduced by van Leeuwen et al. (12). The model includes the key ecological interactions between predatory and forage fish and their resources; it is aimed to qualitatively reproduce the dynamics of this system. We improve on the model by van Leeuwen et al. (12) by implementing reproduction as a seasonal process, following Soudijn and de Roos (16). The model structure and size-based, stage-specific parameterization are derived from individual-level data of Baltic cod, sprat, and herring (SI Appendix, Appendix A). Fig. 1 shows the interactions between fish populations in the model. Sprat and herring, the prey fish of cod, are assumed to have a similar ecological role. Hence, they are modeled as a clupeid population that

Fig. 1. Interactions between cod and clupeids in the community-dynamics model of the Baltic Sea. (A) Trophic interactions among fisheries (narrow gray arrows), cod and clupeid stages, and their resources (black arrows; see SI Appendix, Table S4 for the foraging preferences of the cod stages). Individual fish grow through stages from left to right (broad gray arrows). (B) Time series of adult cod biomass (Top) and adult clupeid biomass (Middle), both including reproductive storages; and biomass of the clupeid resource (Bottom) for low (black lines; $F_S = 0.2$ year$^{-1}$) and high (red lines; $F_S = 0.5$ year$^{-1}$) clupeid fishing mortality. The cod fishing mortality is high, $F_C = 0.75$ year$^{-1}$. The time series start from equilibrium biomasses for low cod and clupeid fishing mortalities ($F_C = 0.5$ year$^{-1}$, $F_S = 0.2$ year$^{-1}$). (C) Averages over years 0–10 of the biomass of annual clupeid reproduction (Top), clupeid juvenile biomass (Middle), and the mass-specific net-biomass-production rate of adult clupeids (Bottom) for low (left bars: $F_S = 0.2$ year$^{-1}$) and high (right bars: $F_S = 0.5$ year$^{-1}$) clupeid fishing mortality. Fishing mortality is here measured by the instantaneous fishing mortality rate. All other parameters are set to default values (SI Appendix, Tables S2–S4).
uses the same resource (zooplankton) throughout its life. Cod, the piscivore in this community, forages on zooplankton and small fish while juvenile and switches to benthos and larger fish upon maturation (Fig. 1A). Accordingly, there is direct resource competition between juvenile cod and the clupeids in the model. Using the model, we assess the effects of the instantaneously fishing mortality rates for cod (FC) and clupeids (FK) on the community dynamics.

The stage-structured biomass model (17) is based on the bioenergetics approach originally introduced by Yodzis and Innes (18). Following their approach, assimilated energy is first used to cover maintenance costs. If maintenance costs exceed the assimilated energy, biomass is lost due to starvation mortality, and no growth or reproduction occurs (12, 17). If energy is left after covering maintenance costs, biomass is invested in growth and/or reproduction. Both cod and clupeids consist of a juvenile, small-adult, and large-adult stage (12). Juveniles use all net-energy production for somatic growth. Small adults allocate part of their energy to somatic growth and the remainder to reproduction. Large adults invest all energy in reproduction. The transition rates from the juvenile to the small-adult stage and from the small-adult to the large-adult stage depend on net-energy production and mortality (16). For all adult fish stages, energy allocated to reproduction is stored in reproductive storages until the reproductive season. The reproductive storages are part of the adult body and are thus affected by the same processes as the adults. Biomass in the reproductive storages is converted to juvenile biomass at the start of the reproductive season. The three unstructured resources in the model are assumed to have a constant productivity and turnover rate and, hence, follow semichemo- stat growth in the absence of foraging and decline through ingestion by fish.

Statistical Model of Interactions between Piscivores and their Forage Fish in Ecosystems around the World. We test how our model predictions generalize across ecosystems using historical patterns of stock biomasses and fishing mortalities from the RAM Legacy Stock Assessment Database (ref. 14; version 3.0; publicly accessible at https://www.ramlegacy.org/database/). The stock assessments in the RAM Legacy Stock Assessment Database currently represent the best available syntheses of catch and survey data to derive estimates of stock biomasses and fishing mortalities (SI Appendix, Appendix B). If intermediate harvesting of forage fish can protect piscivores from fishing-induced collapses (Results), an interaction is expected in the effects of forage-fish and piscivore fishing mortalities on changes in piscivore biomass.

We selected time periods with a strong decline of piscivore biomass in the considered fisheries-assessment areas (SI Appendix, Figs. S1 and S2). We used three different methods to derive periods of greatest decline in piscivore biomass (SI Appendix, Appendix B). In addition, we varied the minimum (5 to 14 years) and maximum (8 to 19 years) durations of the periods that could thus be selected (SI Appendix, Tables S8–S10 and Appendix B). In Results, we show results based on a minimum duration of 5 years and a maximum duration of 15 years. The piscivore-biomass decline was measured as the ratio of piscivore biomasses at the end and at the beginning of the decline period.

We determined the degree of spatial overlap for each combination of forage-fish stock and piscivore stock based on the geographical coordinates of the bounding regions of their fisheries-assessment areas (19). We found 23 combinations of forage-fish and piscivore stocks with a spatial overlap in excess of 95% between them. We assumed these stocks to interact trophically. For three other stock combinations, we found spatial overlaps of 50 to 95%. We included these stocks in the analysis, but verified the robustness of results to their inclusion. Stock combinations with spatial overlaps of less than 50% were not included in our analysis. The resultant list of stocks is shown in SI Appendix, Fig. S1 and Table S5. We excluded one stock based on Cook’s distance and two stocks that only increased through time (SI Appendix, Appendix B; Fig. S3, and Table S7). In total, 23 stock combinations were used for the analysis.

For four stock combinations, the biomass of the forage-fish stock was lower than that of the piscivore stock (SI Appendix, Fig. S4). This might suggest that the forage-fish biomass was not sufficient to singly support the piscivore stock. However, forage-fish stock biomass is jointly determined by the forage-fish biomass-production and forage-fish biomass-depletion rates. Without knowledge of these forage-fish stock turnover rates, forage-fish stock biomass cannot easily function as an indicator of the importance of the forage-fish stock for piscivore persistence. We tested the robustness of our results to the exclusion of these stock combinations (SI Appendix, Fig. S4 and Table S6). In Results, we show results with these stock combinations included.

Some of the assessment models used to generate the time series in the RAM Legacy Stock Assessment Database may provide an estimate of the virgin, preharvesting stock biomass prior to periods covered by survey data. Declines in these initial biomass estimates may therefore be model artifacts (SI Appendix, Appendix B). We tested the robustness of our results to the exclusion of four stock combinations exhibiting continuous and long-lasting declines in piscivore biomass from the start of the time series, with little spread in the individual data points (SI Appendix, Table S11). In addition, we tested the robustness of our results to the exclusion of three stock combinations exhibiting declines in piscivore biomass starting prior to 1970 (SI Appendix, Table S12).

We defined the response variable in our statistical analysis as the natural logarithm of the aforementioned piscivore-biomass declines. We defined the corresponding predictor variables as the average annual fishing mortalities of piscivores and forage fish during these periods. For fishing mortality, we used the exploitation rate, as this is the quantity most commonly available in the database (annual catchstock biomass). In some cases, multiple forage-fish stocks overlapped with a single piscivore. If so, forage-fish exploitation rates were, in each year of the decline period, calculated as biomass-weighted averages (when total biomass was not available, spawning-stock biomass was used). We performed a linear ordinary least-squares multiple-regression analysis of the logarithmic biomass ratios on these average fishing mortalities. Based on the Akaike information criterion (AIC) scores for model fits, we tested models with and without an interaction term between piscivore and forage-fish fishing mortalities and with and without the forage-fish fishing mortality.

Results

Fishing for Clupeids Can Protect Cod in the Baltic Sea. Our community-dynamics model of the Baltic Sea demonstrates that fishing for clupeids may prevent a fishing-induced collapse of cod (Fig. 1B). When clupeid harvesting is low, cod is predicted to collapse at high fishing mortality (Fig. 1B). Yet, cod can withstand this high fishing mortality when clupeids are harvested more intensely. In general, cod tolerates much higher fishing mortalities with high harvesting of the clupeids than without (Fig. 24). The positive effect of clupeid fishing on the resilience of cod remains up to a high clupeid fishing mortality of about $F_K = 1.0$ year$^{-1}$ (Fig. 24). Further increases of clupeid harvesting decrease the range of fishing mortalities that cod can withstand, and beyond about $F_K = 1.7$ year$^{-1}$, the cod population goes extinct for any level of cod fishing mortality.

Fishing for clupeids affects cod positively through a change in the clupeid size distribution. When the cod population decreases, the adult clupeid biomass increases as the predation pressure from cod is lessened (Figs. 1B, 2B, and 3). This increase in adult clupeid biomass becomes less pronounced at higher clupeid fishing mortalities. Surprisingly, juvenile clupeid biomass increases with clupeid fishing mortality (Figs. 1C and 3). Harvesting clupeids reduces the adult clupeid biomass, thereby reducing intraspecific competition for food and increasing the density of the resource of the clupeids (Fig. 1B). This enables a higher net-energy production by adult clupeids and, consequently, a higher reproduction and production of juvenile clupeids (Fig. 1C). Finally, the higher production of juvenile clupeids benefits cod, since cod depend strongly on juvenile clupeids in their diet (Fig. 14 and SI Appendix, Table S4).

Fishing for clupeids also decreases the range of cod fishing mortalities with bistability in the cod–clupeoid population dynamics (Fig. 3). The cod–clupeoid system can exhibit two alternative patterns of stable dynamics when cod fishing mortality is low (Fig. 34; $F_C = 0.35$ to 0.5 year$^{-1}$). In this range, whether cod is present or not depends on the initial conditions, and cod cannot invade the system from low densities. Yet, once cod is present at a sufficiently high density, it persists in the system. The range of cod fishing mortalities leading to such alternative stable states shrinks and is shifted to higher values of cod fishing mortality when clupeid harvesting is intense (Fig. 3B). This
Fishing for forage fish can prevent fishing-induced population collapses of large piscivorous fish means that the conditions under which cod is able to (re)colonize the system become more permissive with intensive clupeid harvesting (Fig. 3).

At low cod fishing mortalities, however, fishing for clupeids decreases cod biomass (Fig. 2A). This happens because when cod is present at high density, cod predation keeps the clupeid population at a low level (Figs. 1B and C and 3). Consequently, competition for food in the clupeid population is weak, even without clupeid harvesting.

Fishing for clupeids decreases the maximum yield that can be harvested from the cod population. The highest maximum yield of cod is found for a low clupeid fishing mortality of $F_C = 0.0$ to 0.05 year$^{-1}$, where the clupeid yield is low or zero (Fig. 2C and D). In addition, with intensifying clupeid harvesting, obtaining the maximum cod yield requires an increasingly high fishing mortality (Fig. 2C). On the other hand, the maximum clupeid yield increases with increasing cod fishing mortality (Fig. 2C and D). The highest maximum yield of the clupeids occurs at values where the cod yield is very low or zero, close to or beyond where cod goes extinct.

Fishing for Forage Fish Can Protect Piscivores in Ecosystems around the World. Investigating historical piscivore-biomass declines, we find that the statistical model best explaining the declines includes fishing mortalities of both piscivores and forage fish, as well as their interaction (Table 1, Fig. 4). The interaction is positive, implying that for high piscivore fishing mortalities, piscivore declines are smaller when the fishing mortalities of forage fish are higher. For low piscivore fishing mortalities, the interaction implies the opposite. This finding, based on piscivore stocks and forage-fish stocks in a wide range of marine ecosystems, corroborates the predictions of the community-dynamics model of the Baltic Sea.

We considered several alternative definitions for the periods of largest decline in piscivore biomasses (SI Appendix, Appendix B). For all methods considered, the best model was either a
model including the interaction term or a model including only the piscivore fishing mortality. Most often, the model with the interaction term has the lowest AIC score, while explaining 16% more variance (SI Appendix, Table S7). Neverthe-
Materials and Methods

The piscivore-biomass decline is measured by the ratio of piscivore fishing mortality (horizontal axis) and the average forage-fish fishing mortality (vertical axis). The decline is shown as a function of the average piscivore fish biomass and forage-fish model of piscivore fish stocks and forage-fish stocks in ecosystems around the world. The decline shown is a result of the harvest of cod and the Baltic Sea (12, 29, 30). In addition, the estimated total reproductive output of clupeids in the Baltic Sea shows a steep decline during the years leading up to the collapse of cod (12). These examples show that population biomass and competition for food can both increase in forage-fish populations after or during declines of their piscivorous predators. Moreover, piscivores in the Northwest Atlantic and the Baltic Sea appear to suffer from a reduced body condition since their collapse, which may be indicative of a persistent shortage of food (31–34). While the high biomass of forage fish in these ecosystems seems to imply a high food abundance for the piscivores, the signs of food shortage suggest that prey of the right size may, in fact, be scarce.

A positive effect of forage-fish harvesting on piscivores has not been reported in previous model-based studies (e.g., refs. 15 and 35). However, it has recently been argued that multispecies fisheries models do not incorporate all relevant biological processes (10, 11). For example, multispecies fisheries models do not always consider size-selective predation and harvesting, as well as the size structures of piscivore and forage-fish populations (10, 11). Moreover, the energy budget of fish is often not accounted for in a consistent way (10), as somatic growth is assumed to be independent of food availability, or costs of maintenance and/or food dependence of reproduction are ignored (10). These factors are all included in the community-dynamics model we have used for the present study. Our model predicts a positive effect of clupeid fishing mortality on juvenile clupeid biomass—a phenomenon known as biomass overcompensation, which has been described in both theoretical and experimental studies (17, 36, 37). Crucially, biomass overcompensation does not occur when the size structure of populations is ignored (17, 38). It also does not occur when energy losses through maintenance costs are not explicitly considered (39). Therefore, a consistent treatment of 1) individual energy budgets (in particular, accounting for costs of maintenance), 2) the size structure of fish populations, and 3) feedbacks between trophic levels are indispensable for the effects of fishing mortality on the production of juvenile forage fish to become amenable to analysis (10, 17, 37).

Previous studies have ascribed reduced growth of piscivore populations after a decline of their population to cultivation-depensation mechanisms (40–42). After a piscivore decline, increased forage-fish biomass may, for example, lead to increased competition between juvenile piscivores and forage fish and/or predation of forage fish on eggs and larvae of piscivores (40, 41). These mechanisms could lead to the same net positive effect of harvesting forage fish on piscivore persistence as biomass overcompensation, the mechanism explained above. To determine the importance of the different mechanisms, detailed data on the interaction between forage fish and piscivores are required. Such data are not generally available. For the central Baltic Sea, detailed analyses of available data have shown that biomass overcompensation could explain the lack of recovery of cod in this ecosystem (43), while no sufficient data are available to test whether predatory cultivation depensation could explain the lack of cod recovery. For this reason, we did not include cultivation-depensation mechanisms in our community-dynamics model. The inclusion of these mechanisms in the model would likely strengthen the observed effect.

The global RAM Legacy Stock Assessment Database (14), which we have used for our data analysis, is currently the most extensive source of fish-stock assessment data. While the findings from our statistical model support those from our community-dynamics model, caution is needed, as the former analysis is based on a relatively small number of cases. In addition, the statistical analysis may have biases hindering the detection of effects. For example, no established method is available for choosing the duration of periods of declining piscivore biomass. Furthermore, variability in primary production among the considered fisheries-assessment areas implies that absolute fishing mortalities may not be directly comparable. Moreover, we inferred trophic interactions between forage-fish and piscivorous-fish stocks based on spatial overlap and trophic level. This does not necessarily reflect the trophic interactions that occur in the ecosystems. Finally, a global analysis will always remain correlative, rather than establish causation. In-depth studies of prey size distributions in the stomach contents of piscivores could provide more direct evidence of effects of forage-fish fisheries on the feeding conditions of the corresponding piscivores.

The RAM Legacy Stock Assessment Database is widely used as the authoritative source of stock-abundance data for fisheries analyses (e.g., ref. 44). The estimates of stock biomass in the database result from single-species stock-assessment models, which typically assume natural mortality to be constant over time. The assumption of constant natural mortality potentially leads to confounding effects of declining predator biomass on the estimates of forage-fish fishing mortality (45). Yet, the forage-fish fishing mortalities used in our analysis seem to fluctuate randomly during the periods of piscivore biomass decline (SI Appendix, Fig. S2). The assessment methodology may also raise questions about the representativeness of the resultant estimates. Preferably, validation of a hypothesis is based on multiple lines of evidence. A combination of commercial-landings data and biomass estimates is needed to allow for the analysis of trends in biomasses and fishing mortalities. To the best of our knowledge, there are not sufficient trawl-survey-based biomass estimates available to repeat our analysis with alternative data sources (SI Appendix, Figs. S5 and S6 and Appendix B). While trawl-survey data may be available for longer periods than shown in the figures, there are no recordings of...
Harvesting forage fish can prevent fishing-induced population collapses of large piscivorous fish.

