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Supporting Information 1 

This online Supporting Information accompanies the paper “A modelling exercise to show why 2 

population models should incorporate distinct life-histories of dispersers” by Jacques A. 3 

Deere, Ilona van den Berg, Gregory Roth and Isabel M. Smallegange. 4 

 5 

The first section describes the methods used to parameterize the character 6 

demography functions and calculation of the mesh points used in the DPM. We also give the 7 

parameter estimates for all the character-demography functions for the DPM. This is followed 8 

by the DPM equations used in the model which can be found in table S1. Figure S1 highlights 9 

how population growth rate, when varying β and 𝛿, is impacted when adult survival rate is 10 

altered.  11 

 12 

Parameter estimation 13 

Life-history data on female bulb mites taken from Deere et al. (2015) were used to 14 

parameterise the DPM. We estimated the parameters using statistical models for the five 15 

character-demography functions: the survival function (1), transition function (2), growth 16 

function (3), reproduction function (4) and the parent-offspring association function (5) (Fig. 17 

2 in main text). 18 

 19 

Non-dispersers 20 

Parameters were estimated following the method used by Smallegange et al. (2014). 21 

Function parameters were estimated using the following statistical models (summarized in 22 

Table A1): (1) Survival - generalised linear mixed model (GLMMs) with binomial error 23 
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structure; (2) Transition rates – GLMM with binomial error structure; (3) Growth – GLMM with 24 

a Gaussian error structure; (4) Fertility rate (Reproduction) – GLMM with a Gaussian error 25 

structure; (5) Parent-offspring association kernel – generalised linear model (GLM) with a 26 

Gaussian error structure. In all cases body length and body length squared were linear 27 

predictors and, with the exception of the parent-offspring association function where we 28 

fitted a GLM, mite identity was included as a random factor. The response variables for the 29 

five functions were: (1) Survival – from time t to time t+1 (this is binary and set as 0 or 1), (2) 30 

Transition - probability of growing to the next stage at time t+1, γs,t+1 (see below), (3) Growth 31 

- mean and variance in body size at time t+1, (4) Fertility - the number of eggs produced at 32 

time t+1, and (5) Parent-offspring association - mean and variance in size of eggs produced at 33 

time t+1 by each individual at time t. In the case of eggs their size at time t+1 equalled their 34 

size at time t as eggs do not increase in size.  35 

During data collection it was not always possible to locate each individual every day. 36 

As such, the days where an individual was not seen but was still alive (i.e. observed alive the 37 

next day), body length was estimated (not including these observations would result in an 38 

underestimation of the survival function). The missing values were filled in by using the 39 

Gompertz function to estimate female body length at age a (Smallegange et al. 2014): 40 

 41 

𝑧𝑎 = 𝑧∞𝑒
−𝑒−𝑘(𝑎−𝑎0)        (Eq. S1) 42 

  43 

where Za is body length (mm) at age a (days), Z is the mean maximum length (mm, at a = ), 44 

k is the instantaneous growth rate at age a0 , and a0 is the inflection point of the curve and 45 

the age at which absolute growth rate begins to decline.  46 
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In the case of function (2), we used duration in the life stage as an indicator of the 47 

transitioning to the next stage (Smallegange et al. 2014); i.e. time spent in the current stage 48 

depends on the probability of growing to the next stage (Caswell 2001). Therefore, γs,t+1 is 49 

given by γs,t+1 = 1/ds,t, where  ds,t is the number of days that an individual still has to spend in 50 

stage s. This means that ds equals the total duration of stage s on the first day that a female is 51 

in stage s, and that when an individual develops from stage s into stage s+1 at time t+1, ds=1 52 

so that γs,t+1 =1. 53 

For function (3) and (5) the minimal model, which generated the predictors of mean 54 

size at time t+1, was utilised to generate the parameters for the variance around the mean 55 

size at t+1 by taking the squared residuals and fitting them against a statistical function of the 56 

same form as the mean size to estimate the variance in size at time t+1. The growth (3) and 57 

parent-offspring association functions (5) were then constructed using the equation following 58 

Easterling et al. (2000): 59 

 60 

𝑦𝑖 = 
1

√2𝜋𝜎𝑖
𝑒

−(𝑧′− 𝜇𝑖)
2

2𝜎𝑖
2

       (Eq. S2) 61 

 62 

where yi is either the growth or parent-offspring association function, μi describes the mean 63 

effect of the significant predictors on growth or parent-offspring association, and σi describes 64 

the squared residuals around μi. 65 

For details on construction of the DPM from these parameters see main text. Note that 66 

mite identity was included in the statistical analyses (except in the parent-offspring 67 

association function) but was not modelled within the DPM. 68 

 69 
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Dispersers  70 

In the case of dispersers the rates for eggs and larvae were the same as for the non-71 

dispersers (see Deere et al. (2015) and Fig. 2 in main text). However, protonymphs can also 72 

develop into a deutonymph and we estimated the probability that a protonymph develops 73 

into a deutonymph, tritonymph or stays as a protonymph using a multinomial logisitic (which 74 

generated the three transition probabilities). For the multinomial logistic the linear predictor 75 

was body length at time t, the response variable was stage at time t+1 and the reference level 76 

was set as the protonymph stage. This gives the probability of developing into a tritonymph, 77 

a deutonymph or remaining as a protonymph as a function of individual size. As such, the 78 

regression coefficients   are the log of the ratio of the two probabilities of developing into 79 

a tritonymph or deutonymph over staying in the protonymph stage (the reference 80 

level/choice). For example, if   represents the effect of µ (size), we expect that for one unit 81 

change in μ, the relative risk of developing into a tritonymph over staying a protonymph will 82 

increase by exp( ) . The multinomial logistic analyses were performed in R (version 3.0.2) 83 

using the ‘mlogit’ package (R Development Core Team 2013). All other parameter estimates 84 

were calculated in the same way, and using the same analyses, as those for non-dispersing 85 

individuals.  86 

In all statistical analyses a model simplification procedure was used. The full model was 87 

fitted, after which the least significant term from the highest order interaction downwards 88 

was identified and removed if the removal resulted in an insignificant increase in deviance. 89 

The full and reduced models are shown in Table A1. Significance of simplified models was 90 

assessed by performing a likelihood ratio test. The likelihood ratio (Λ) is calculated as Λ = 2(LLf 91 

– LLj)/(pf – pj); where LLi is the log-likelihood of the full model and LLj is the log-likelihood of 92 

the reduced model (j  = r) or constant-only model (j = c). pi is the number of estimable 93 
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parameters in the full and pj  is the number of estimable parameters in the reduced and 94 

constant-only model. The likelihood ratio is 
2

  distributed, where   is the difference in 95 

number of estimable parameters. The random factor was never removed during model 96 

simplification. Model assumptions and homoscedacity were confirmed by inspection of 97 

probability plots and error structures. All analyses were performed in R (version 3.0.2) with 98 

models fitted by maximum likelihood in the ‘lme4’ package (R Development Core Team 2013). 99 

 100 

Mesh point calculation 101 

Mesh points were created by dividing the size domain of each stage into very small-102 

width discrete bins. A number of different bin sizes were used and results compared, this was 103 

done as an increase in the number of mesh points increases the numerical accuracy of the 104 

approximation (Ellner and Rees 2006). The body size domain of each stage was eventually 105 

divided into 50 size bins as a higher number of bins did not produce notably different results. 106 

Transition rates for the midpoint of two adjacent mesh points were estimated for each stage 107 

class. In the NM, the final matrix size was 250X250 (50 bins x 5 stages = 250 mesh points); 108 

whereas in the DPM the final matrix size was 400X400 (50 bins x 8 stages = 400 mesh points). 109 

The DPM takes into account the different number of life stages of dispersers and non-110 

dispersers as well two sets of tritonymph and adult life stages (tritonymphs and adults without 111 

dispersal stage, and tritonymphs and adults with dispersal stage) into a single IPM, hence 112 

there are eight stages in the final matrix and not five (Fig. 2 in main text). 113 

  114 
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Parameter values of character-demography functions 115 

In the functions below, B denotes body length (mm) and sample size n is given in between 116 

brackets for each fitted function. E - egg; L – larva; P – protonymph; D – deutonymph; P/D – 117 

protonymph and deutonymph combined; T – tritonymph; TP – tritonymph from non-118 

disperser; TD – tritonymph from disperser; A – adult; AP – Adult from non-disperser; AD – 119 

adult from disperser.  120 

 121 

Survival rates for the DPM (fraction per day) 122 

E: = 0.956y (n = 297); L: = 0.999y  (n = 112); P: = 0.910y  (n = 166); D: = 0.999y  (n = 426); TP: 123 

= 0.999y  (n = 132); TD: 

− +

=

+
( 0.4175 6.9435 )

1
1

1
B

y

e

 (n = 119); AP: = 0.999y  (n = 115); AD: = 0.933y  (n 124 

= 60). 125 

 126 

Life stage transition rates for the DPM (fraction per day) 127 

E→L: =

+
(-1.437+8.674 )

1
1

1
B

y

e

 (n = 97); L→P: =

+
(-6.933 + 29.429 )

1
1

1
B

y

e

 (n = 47);  128 

P→D: =

+
(-2.601 + (-5.673) )

1
1

1
B

y

e

 (n = 137); P→T: =

+
(-11.220 + 26.235 )

1
1

1
B

y

e

 (n = 137); D→T: 129 

− +

=

+ 2(55.05 385.54 654.02 )

1
1

1
B B

y

e

 (n = 155); TP→AP: =

+
(-6.703 + 13.100 )

1
1

1
B

y

e

 (n = 76); TD→AD: 130 

=

+
(-6.275 + 14.933 )

1
1

1
B

y

e

 (n = 45). 131 
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 132 

Reproduction rate for the DPM (no. per day) 133 

AP: = +0.5(-18.446 35.209 )y B  (n = 190); AD: = +0.5(-13.592 33.892 )y B  (n = 172) 134 

 135 

Mean growth rates for the DPM (when staying in the same life stage) (mm) 136 

E: =y L  (n = 65); L: = 0.11739 + 0.64316y B  (n = 29); P: =0.0772 + 0.904y B  (n = 39); D: =y L  (n = 137 

153); TP: = 0.0776 + 0.9538y B  (n = 44); TD: = −0.0772 + 1.3570y B  (n = 23); AP: 138 

= 0.3977 + 0.5359y B  (n = 215); AD: = 0.2816 + 0.6355y B  (n = 238) 139 

 140 

Variance in growth rates for the DPM (when staying in the same life stage) (mm2) 141 

E: = 0.0001y  (n = 65); L: = -0.0008 + 0.0050y B  (n = 29); P: = -0.0007 + 0.0040y B  (n = 39); D:  142 

= 0.0001y  (n = 153); TP: = 0.0039 - 0.0042y B  (n = 44); TD: = −0.0044 - 0.0060y B  (n = 23); AP: 143 

= 0.0009 - 0.0004y B  (n = 215); AD: = 0.0014 - 0.0016y B  (n = 238) 144 

 145 

Parent-offspring association function (mean offspring-mother difference) for the DPM (mm)  146 

AP: = 0.1638y  (n = 96); AD: = 0.1689y   (n = 175) 147 

 148 

Variance around parent-offspring association function for the DPM (mm2) 149 

AP: = 0.00008y  (n = 96); AD: = 0.0001y  (n = 175) 150 
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Table S1. The DPM equations are constructed from the five statistical demography functions: Survival 𝑺(𝒛,𝒔,𝒕), Transition 𝑻(𝒔’|𝒛,𝒔,𝒕), Growth 𝑮(𝒛’|𝒛,𝒔′,𝒕), 152 

Reproduction 𝑹(𝒛,𝒔,𝒕) and Offspring inheritance 𝑶(𝒛’|𝒛,𝒔,𝒕) and the dispersal matrix 𝑫(𝒕). The equations calculate the number of females in each stage s at time 153 

t which is described by 𝒏(𝒛,𝒔,𝒕) with the 𝑹(𝒛,𝒔,𝒕) and the 𝑶(𝒛’|𝒛,𝒔,𝒕) functions zero for all non-adult stages as only adults reproduce.  154 

 Life stage Equation Description 

 
  

 

(3.1) 
𝑛(𝑧′, 1, 𝑡 + 1) = ∫𝑂(𝑧′|𝑧, 5, 𝑡)𝑅(𝑧, 5, 𝑡)𝑛(𝑧, 5, 𝑡)𝑑𝑧            

                           +∫𝑂(𝑧′|𝑧, 8, 𝑡)𝑅(𝑧, 8, 𝑡)𝑛(𝑧, 8, 𝑡)𝑑𝑧 

 
 

Egg production by non-
dispersal and dispersal adults 

 

(3.2) 

𝑛(𝑧′, 𝑠 + 1, 𝑡 + 1) =  ∫ 𝐺(𝑧′|𝑧, 𝑠 + 1, 𝑡)𝑇(𝑠 + 1|𝑧, 𝑠, 𝑡)𝑆(𝑧, 𝑠, 𝑡)𝑛(𝑧, 𝑠, 𝑡)𝑑𝑧

Ωs

𝑛(𝑧′, 𝑠, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 𝑠, 𝑡)𝑇(𝑠|𝑧, 𝑠, 𝑡)𝑆(𝑧, 𝑠, 𝑡)𝑛(𝑧, 𝑠, 𝑡)𝑑𝑧

Ωs }
  
 

  
 

1 ≤ 𝑠 ≥ 2 

Eggs and Larvae developing 
into the next stage and 
staying in the same stage 

 

(3.3) 

𝑛(𝑧′, 3, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 3, 𝑡)𝑇(3|𝑧, 3, 𝑡)𝑆(𝑧, 3, 𝑡)𝑛(𝑧, 3, 𝑡)𝑑𝑧 
Non-dispersal Protonymphs 
staying Protonymphs 

(3.4) 

𝑛(𝑧′, 6, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 6, 𝑡)𝑇(6|𝑧, 3, 𝑡)𝑆(𝑧, 6, 𝑡)𝑛(𝑧, 3, 𝑡)𝑑𝑧 
Deutonymphs developing 
from Protonymphs 

(3.5) 

𝑛(𝑧′, 4, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 4, 𝑡)𝑇(4|𝑧, 3, 𝑡)𝑆(𝑧, 4, 𝑡)𝑛(𝑧, 3, 𝑡)𝑑𝑧 
Non-dispersal Tritonymphs 
developing from Protonymphs 

(3.6) 

𝑛(𝑧′, 4, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 4, 𝑡)𝑇(4|𝑧, 4, 𝑡)𝑆(𝑧, 4, 𝑡)𝑛(𝑧, 4, 𝑡)𝑑𝑧 
Non-dispersal Tritonymphs 
staying Tritonymphs 
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(Table 1 cont.) 

 Life stage Equation Description 

 
  

 

(3.7) 

𝑛(𝑧′, 6, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 6, 𝑡)𝑇(6|𝑧, 6, 𝑡)𝐷(6, 𝑡)𝑆(𝑧, 6, 𝑡)𝑛(𝑧, 6, 𝑡)𝑑𝑧 

Deutonymphs staying 
Deutonymphs 

 
(3.8) 

𝑛(𝑧′, 7, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 7, 𝑡)𝑇(7|𝑧, 6, 𝑡)𝐷(6, 𝑡)𝑆(𝑧, 7, 𝑡)𝑛(𝑧, 6, 𝑡)𝑑𝑧 
Dispersal Tritonymphs 
developing from Deutonymphs 

(3.9) 

𝑛(𝑧′, 8, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 8, 𝑡)𝑇(8|𝑧, 7, 𝑡)𝑆(𝑧, 8, 𝑡)𝑛(𝑧, 7, 𝑡)𝑑𝑧 
Dispersal adults developing 
from dispersal Tritonymphs 

(3.10) 

𝑛(𝑧′, 7, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 7, 𝑡)𝑇(7|𝑧, 7, 𝑡)𝑆(𝑧, 7, 𝑡)𝑛(𝑧, 7, 𝑡)𝑑𝑧 
Dispersal Tritonymph 
staying Tritonymphs 

 

(3.11) 

𝑛(𝑧′, 5, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 5, 𝑡)𝑇(5|𝑧, 5 − 1, 𝑡)𝑆(𝑧, 5 − 1, 𝑡)𝑛(𝑧, 5 − 1, 𝑡)𝑑𝑧 + ∫ 𝐺(𝑧|𝑧, 5, 𝑡)𝑆(𝑧, 5, 𝑡)𝑛(𝑧, 5, 𝑡)𝑑𝑧 

  

Non-dispersal adults 
developing from non-
dispersal Tritonymphs and 
surviving non-dispersal 
adults  
 

 

(3.12) 

𝑛(𝑧′, 8, 𝑡 + 1) = ∫ 𝐺(𝑧′|𝑧, 8, 𝑡)𝑇(8|𝑧, 8 − 1, 𝑡)𝑆(𝑧, 8 − 1, 𝑡)𝑛(𝑧, 8 − 1, 𝑡)𝑑𝑧 + ∫ 𝐺(𝑧|𝑧, 8, 𝑡)𝑆(𝑧, 8, 𝑡)𝑛(𝑧, 8, 𝑡)𝑑𝑧 

  

Dispersal adults 
developing from dispersal 
Tritonymphs and surviving 
dispersal adults 
  

 

  155 
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 156 

 157 

Fig. S1. Joint effect of increasing deutonymph probability (β) and increasing dispersal probability (𝛿) 158 

on population growth rate (λ0). Dispersal probability and deutonymph probability increase from 0 to 1 159 

at 0.01 increments. Side bar indicates λ0, with λ0 increasing from black to white. The two panels 160 

indicate the response of λ0 when adult survival rate within the DPM is set at 0.5 (left panel) and 0.7 161 

(right panel).  162 

 163 

  164 

Deutonymph probability (β) Deutonymph probability (β) 
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