Computational models of human response to urban heat
From physiology to behaviour
Melnikov, V.

Publication date
2021

Citation for published version (APA):
Valentin Melnikov

Computational models of human response to urban heat: from physiology to behaviour

Computational models of human response to urban heat: from physiology to behaviour
Valentin Melnikov

Computational models of human response to urban heat: from physiology to behaviour
Valentin Melnikov
Computational models of human response to urban heat: from physiology to behaviour

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.J. Maex
ten overstaan van een door
het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op woensdag 12 mei 2021, te 13.00 uur

door

Valentin Melnikov
geboren te Sint-Petersburg
Promotiecommissie

Promotor prof. dr. P.M.A. Sloot Universiteit van Amsterdam

Copromotores dr. V. Krzhizhanovskaya Universiteit van Amsterdam
 dr. M.H. Lees Universiteit van Amsterdam

Overige leden prof. dr. ir. A.G. Hoekstra Universiteit van Amsterdam
 prof. dr. D. Borsboom Universiteit van Amsterdam
 prof. dr. ir. L. Bertolini Universiteit van Amsterdam
 prof. dr. G. Schmitt ETH Zürich
 prof. dr. A.V. Boukhanovsky ITMO University

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Abstract

Understanding human response to the dynamic urban thermal environments is crucial for effective adaptation to a changing climate and the preservation of health and well-being of an ever urbanizing humanity. While there exists extensive research examining urban climates within the city, knowledge of human response to the dynamic microclimate in outdoor spaces is still limited. This thesis takes a multi-level computational modelling approach to develop understanding of the complex phenomenon of outdoor thermal comfort (OTC). Human response to the thermal environment is considered on three interacting levels: physiological, perceptional and behavioural. On the physiological level, an advanced system dynamics model of thermal regulation is built and calibrated for a wide range of dynamic thermal environments. We propose translation of the instantaneous thermophysiological state of a person into thermal perception driving human thermoregulatory behaviour. We report an empirical study of pedestrian walking speeds in Singapore and demonstrate computationally that Singaporeans incur additional heat stress due to elevated pace of life. Our research suggests that behavioural adaptation of walking speed could improve their thermal comfort. To analyse and quantify the behaviour of pedestrian sun avoidance, a controlled experiment with human participants in a natural outdoor environment is considered. We propose a novel hierarchical model of path choices to estimate an individual’s perceived effort of walking under the sun. This model provides the means to study and predict pedestrian behaviour in complex urban environments. This thesis presents a comprehensive set of empirical studies, as well as mathematical and computational models of human response to outdoor thermal environments on the individual level. In addition, we apply these models in the study of heat stress effects on the human innate immune system response. That is, we identify regimes of heat exposure and activity intensity, which can positively or negatively impact the performance of the immune system. A proposed approach of computational modelling of OTC
enables its assessment, prediction and improvement in existing and future urban spaces, ultimately making human activities in these spaces a more pleasant and healthy experience. The approach of multi-level modelling of complex human-environment interaction, demonstrated in this thesis using an example of OTC, can be adopted to comprehensively study human response to other environmental stimuli.
Computationele modellen van menselijke reactie op stedelijke hitte: van fysiologie tot gedrag

Samenvatting

Het begrijpen van de reactie van de mens op de dynamische stedelijke thermische omgevingen is cruciaal voor een effectieve aanpassing aan een veranderend klimaat en het behoud van de gezondheid en het welzijn van een steeds verstedelijkende mensheid. Hoewel er uitgebreid onderzoek is gedaan naar het stedelijke klimaat in de stad, is de kennis van de menselijke reactie op het dynamische microklimaat in buitenruimtes nog steeds beperkt. In deze thesis maken we gebruik van een multi-level computationele modellering om inzicht te krijgen in het complexe fenomeen van thermisch comfort buitenshuis (OTC). De menselijke reactie op de thermische omgeving wordt beschouwd op drie op elkaar inwerkende niveaus: fysiologisch, perceptief en gedragsmatig. Op fysiologisch niveau is een geavanceerd systeemdynamisch model van thermische regulering gebouwd en gekalibreerd voor een breed scala aan dynamische thermische omgevingen. We stellen voor om de instantane thermofysiologische toestand van een persoon te vertalen naar thermische perceptie die het thermoregulerende gedrag van de mens aanstuurt. Een empirische studie van de loopsnelheden van voetgangers in Singapore is uitgevoerd. Hierbij is computationeel aangetoond dat Singaporezen extra hittestress oplopen als gevolg van een hoger levensritme. Ons onderzoek suggereert dat gedragsaanpassing van loopsnelheid menselijk thermisch comfort zou kunnen verbeteren. Om het gedrag van voetgangerszonvermijding te analyseren en kwantificeren, wordt een gecontroleerd experiment met menselijke deelnemers in een natuurlijke buitenomgeving overwogen. We stellen een nieuw hiërarchisch model van padkeuzes voor om de waargenomen inspanning van een lopende individu onder de zon in te schatten. Dit model biedt de mogelijkheid om voetgangersgedrag in complexe stedelijke omgevingen te bestuderen en te voorspellen. Deze thesis presenteert een uitgebreide reeks aan empirische studies, evenals wiskundige en computationele modellen van de menselijke reactie op thermische buitenomgevingen op individueel niveau. Bovendien passen we deze modellen toe in de studie van
hittestress-effecten op de menselijke aangeboren immuunsysteemrespons. Dat wil zeggen, we identificeren regimes van blootstelling aan hitte en activiteitsintensiteit, die de prestaties van het immuunsysteem positief of negatief kunnen beïnvloeden. Onze voorgestelde benadering van computationele modellering van OTC maakt het mogelijk om bestaande en toekomstige stedelijke ruimtes te beoordelen, voorspellen en verbeteren. Hierdoor zullen menselijke activiteiten in de stedelijke ruimtes uiteindelijk een aangenamere en gezondere ervaring beleven. De benadering van multi-level modellering van complexe mens-omgeving interactie, aangetoond in deze thesis aan de hand van een voorbeeld van OTC, kan gebruikt worden om de menselijke reactie op andere omgevingsstimuli uitgebreid te bestuderen.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>v</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>3</td>
</tr>
<tr>
<td>1.2 The context of this thesis</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 Current state of the research</td>
<td>5</td>
</tr>
<tr>
<td>Urban climate</td>
<td>6</td>
</tr>
<tr>
<td>Outdoor thermal comfort</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 People in thermal environments</td>
<td>9</td>
</tr>
<tr>
<td>Physiological response: thermal regulation</td>
<td>10</td>
</tr>
<tr>
<td>Psychological response: thermal perception</td>
<td>11</td>
</tr>
<tr>
<td>Behavioural response: thermoregulatory behaviour</td>
<td>13</td>
</tr>
<tr>
<td>1.3 Outline of this thesis</td>
<td>14</td>
</tr>
<tr>
<td>**2 System dynamics of human body thermal regulation in outdoor environ-</td>
<td>17</td>
</tr>
<tr>
<td>ments**</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>18</td>
</tr>
<tr>
<td>2.2 System dynamics representation of the model</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Formulation of the model</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1 Parameters of the model</td>
<td>22</td>
</tr>
<tr>
<td>2.3.2 Model variables</td>
<td>25</td>
</tr>
<tr>
<td>Thermal signals</td>
<td>25</td>
</tr>
<tr>
<td>Blood flow regulation</td>
<td>25</td>
</tr>
<tr>
<td>Masses of nodes</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3 Flows</td>
<td>26</td>
</tr>
<tr>
<td>Flows to and from the core</td>
<td>26</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Core-to-skin heat transfer</td>
<td>27</td>
</tr>
<tr>
<td>Flows to and from the skin</td>
<td>27</td>
</tr>
<tr>
<td>Governing equations for system dynamics of thermal regulation</td>
<td>30</td>
</tr>
<tr>
<td>2.4 Model analysis and results</td>
<td>30</td>
</tr>
<tr>
<td>2.4.1 Initial validation</td>
<td>30</td>
</tr>
<tr>
<td>2.4.2 Model calibration</td>
<td>32</td>
</tr>
<tr>
<td>2.4.3 Performance of the calibrated model</td>
<td>34</td>
</tr>
<tr>
<td>2.4.4 Sensitivity analysis</td>
<td>35</td>
</tr>
<tr>
<td>2.5 Discussion</td>
<td>37</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>39</td>
</tr>
<tr>
<td>3 Models of pedestrian adaptive behaviour in hot outdoor spaces</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Adaptive behaviour overview</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1 Thermal adaptation</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2 Levels and models of pedestrian behaviour</td>
<td>48</td>
</tr>
<tr>
<td>3.3 Models of pedestrian thermal adaptive behaviour</td>
<td>48</td>
</tr>
<tr>
<td>3.3.1 Speed adaptation model</td>
<td>49</td>
</tr>
<tr>
<td>3.3.2 Reactive thermal attraction model</td>
<td>50</td>
</tr>
<tr>
<td>3.3.3 Proactive vision-motivated route planning model</td>
<td>51</td>
</tr>
<tr>
<td>3.3.4 Experience-motivated route alternation model</td>
<td>52</td>
</tr>
<tr>
<td>3.3.5 Heat stress accumulation model</td>
<td>53</td>
</tr>
<tr>
<td>3.4 Simulation results</td>
<td>53</td>
</tr>
<tr>
<td>3.4.1 Speed adaptation simulation results</td>
<td>53</td>
</tr>
<tr>
<td>3.4.2 Reactive thermal attraction simulation results</td>
<td>54</td>
</tr>
<tr>
<td>3.4.3 Proactive route planning simulation results</td>
<td>55</td>
</tr>
<tr>
<td>3.5 Conclusions and future work</td>
<td>56</td>
</tr>
<tr>
<td>4 The impact of pace of life on pedestrian heat stress</td>
<td>59</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>60</td>
</tr>
<tr>
<td>4.2 Methods</td>
<td>62</td>
</tr>
<tr>
<td>4.2.1 Model of human body thermal regulation</td>
<td>62</td>
</tr>
<tr>
<td>4.2.2 Model of internal heat production</td>
<td>64</td>
</tr>
<tr>
<td>4.2.3 Optimal walking speed</td>
<td>66</td>
</tr>
<tr>
<td>4.2.4 Heat-stress-optimal walking speed</td>
<td>66</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>68</td>
</tr>
<tr>
<td>4.3.1 Simulation results</td>
<td>68</td>
</tr>
<tr>
<td>Climate and heat-stress-optimal walking speed</td>
<td>68</td>
</tr>
<tr>
<td>Distance and heat-stress-optimal walking speed</td>
<td>73</td>
</tr>
<tr>
<td>4.3.2 Empirical results</td>
<td>74</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>78</td>
</tr>
<tr>
<td>4.4.1 Heat stress implications of observed walking speeds</td>
<td>78</td>
</tr>
<tr>
<td>4.4.2 Walking speed variation and factors affecting it</td>
<td>79</td>
</tr>
<tr>
<td>4.4.3 Heat stress due to the high pace of life</td>
<td>81</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>81</td>
</tr>
<tr>
<td>5 Empirical study and choice modelling of pedestrian sun avoidance behaviour</td>
<td>85</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>86</td>
</tr>
<tr>
<td>5.2 Results</td>
<td>89</td>
</tr>
<tr>
<td>5.2.1 Description of experiment and resulting dataset</td>
<td>89</td>
</tr>
<tr>
<td>5.2.2 Tree shade is perceived as less intense than building shade</td>
<td>93</td>
</tr>
<tr>
<td>5.2.3 Modelling of the choices reveals perceived cost of walking under the sun</td>
<td>95</td>
</tr>
<tr>
<td>5.3 Discussion</td>
<td>98</td>
</tr>
<tr>
<td>5.4 Methods</td>
<td>100</td>
</tr>
<tr>
<td>5.4.1 Experimental procedure</td>
<td>100</td>
</tr>
<tr>
<td>5.4.2 Data processing</td>
<td>101</td>
</tr>
<tr>
<td>5.4.3 Calculation of the sun-shade composition of the options</td>
<td>103</td>
</tr>
<tr>
<td>5.4.4 Hierarchical model of the choices</td>
<td>104</td>
</tr>
<tr>
<td>5.4.5 Markov chain Monte Carlo estimation of the model parameters</td>
<td>105</td>
</tr>
<tr>
<td>5A Task sets of path choice behavioral experiment</td>
<td>107</td>
</tr>
<tr>
<td>5B Demonstration of the accuracy of shading pattern reproduction by the model of experimental area</td>
<td>109</td>
</tr>
<tr>
<td>6 Computational study of the performance of innate immune system response under exposure to heat stress</td>
<td>111</td>
</tr>
<tr>
<td>6.1 Methods</td>
<td>116</td>
</tr>
</tbody>
</table>
“Pedestrians just need to be loved.”

Ilya Ilf and Yevgeny Petrov,
The Little Golden Calf, 1931