Understanding and tuning sliding friction

Liefferink, R.W.

Publication date
2021

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
We present sphere-on-ice friction experiments as a function of temperature, contact pressure, and speed. At temperatures well below the melting point, friction is strongly temperature dependent and follows an Arrhenius behaviour, which we interpret as resulting from the thermally activated diffusive motion of surface ice molecules. We find that this motion is hindered when the contact pressure is increased; in this case, the friction increases exponentially, and the slipperiness of the ice disappears. Close to the melting point, the ice surface is plastically deformed due to the pressure exerted by the slider, a process depending on the slider geometry and penetration hardness of the ice. The ice penetration hardness is shown to increase approximately linearly with decreasing temperature and sublinearly with indentation speed. We show that the latter results in a nonmonotonic dependence of the ploughing force on sliding speed. Our results thus clarify the complex dependence of ice friction on temperature, contact pressure, and speed.
5.1 Introduction

It is commonly believed that ice is slippery due to the presence of a layer of liquidlike water on the surface of ice which acts as a lubricant. However, the origin of this layer and the resulting lubrication have been and remains debated for more than 150 years [91–104]. The lubricating layer that allows ice skating has been attributed to pressure-induced [92] or friction-induced [93] melting of the ice surface and to the presence of a premelted layer of ice [94]. More recently, authors have suggested that the diffusion of water molecules over the ice surface is responsible for low ice friction at high temperatures and low sliding speeds [105]. Furthermore, reciprocated ball-on-ice friction measurements performed using a tuning fork have recently revealed that -during reciprocated sliding [106] on ice- a lubricating, viscous mixture of liquid water and ice particles dominates the frictional behaviour [107]. In the context of each of these proposed lubrication mechanisms, the local contact pressure exerted at the slider-on-ice interface is a crucial parameter that remains ill understood.

In this chapter, we therefore take a closer look at this local contact pressure and show that (i) the hardness of ice displays a strong temperature and strain rate dependence that, close to melting, leads to rich ploughing behaviour that is controlled by the temperature, sliding speed, surface topography, and surface geometry; (ii) friction on ice increases exponentially with the local contact pressure, suggesting that this pressure frustrates the mobility of the lubricating layer; (iii) in the water-immersed sphere-on-artificial ice experiment, we observe the onset of mixed lubrication at sliding speeds above 1 m/s, indicating that most of our ball-on-ice experiments are likely boundary lubricated.

5.2 Experiments

To investigate the slipperiness of ice, we move a spherical slider over an ice surface. The custom-made circular sliding setup is adapted, see Section 2.1.2 for more details, where the slider is clamped and rotated at a distance of 5 mm from the rotation axis. The imposed rotation speed and the measured torque can thus be converted into a sliding velocity and a friction force, respectively. We vary the sliding speed from 10^{-6} up to 10^{-1} m/s and measure the normal force N and friction force F exerted at the slider-on-ice interface. The flat ice surface with a controlled temperature is established by repeatedly adding a small amount of demineralised water on top of the already-frozen water. As the added water initially melts the top surface of the
Table 5.1: Mechanical and geometrical details of the sliders used in the friction experiments.

<table>
<thead>
<tr>
<th>Material</th>
<th>Radius (mm)</th>
<th>Roughness (nm)</th>
<th>Hardness (GPa)</th>
<th>Elastic modulus (GPa)</th>
<th>Poisson’s ratio (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon carbide</td>
<td>0.75, 6.00</td>
<td>140</td>
<td>27.0</td>
<td>410</td>
<td>0.14</td>
</tr>
<tr>
<td>Soda-lime glass</td>
<td>1.84</td>
<td>98, 222, 575, 3077</td>
<td>5.7, 65</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Sapphire</td>
<td>1.59</td>
<td>28</td>
<td>21.6</td>
<td>2</td>
<td>0.29</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>≈ 22</td>
<td>856</td>
<td>2.0</td>
<td>200</td>
<td>0.28</td>
</tr>
</tbody>
</table>

ice, a smooth polycrystalline ice surface is formed.

As sliders, we use silicon-carbide spheres (from Latech), soda-lime glass spheres (from SiLibeads), a sapphire sphere (from Edmund Optics) and a model ice skate (stainless steel), see Table 5.1 for details. The microscopic surface topography of the sliders is measured by laser-scanning profilometry as described in Section 2.3. We do not observe significant changes in the surface topography of the sliders after the friction experiments and therefore conclude that the sliders do not wear during the friction experiments. The surface roughness values listed in Table 5.1 refer to the root-mean-square (rms) height variation S_q from the profilometry experiments, after subtracting the curvature of the spheres. As the surface roughness is known to influence the local contact pressure at interfaces, we vary the surface roughness of the soda-lime sliders by inserting them one at a time in a container with sandpaper walls and shaking them for 2 hours to obtain a roughened surface. By varying the sandpaper grits (P3000, P2500, and P150), the resulting surface topography can be controlled ($S_q = 222$ nm, 575 nm, and 3077 nm, respectively). To approximate an ice-skate-on-ice interface in the experiments, we cut a 5-mm piece out of an actual ice skate. This model skate has a width of 1.67 mm and a radius of curvature (along the length) of 22 m. The front and back edges of the model skate are rounded off.

To quantify the penetration hardness P_h of the ice, we perform indentation experiments in which a stainless-steel sphere with radius $R = 1.6$ mm is pushed onto the ice at various temperatures and preset indentation speeds v_{ind}, resulting in
plastic deformation of the ice. The indentation depth δ and indentation force N are measured up to a maximum load of 80 N, see the Appendix A.1. The penetration hardness is quantified over the measured indentation range from 25 to 75 N; for more details see Section 2.2.

Using the mechanical properties of the slider and the ice and the surface topography of the slider, we perform contact calculations as described in Section 2.4 to solve the elastoplastic contact equations through a numerical boundary element model. Here, we make use of the fact that the ice surface has an elastic modulus and Poisson’s ratio of 0.75 GPa and 0.33, respectively [108]. The hardness is measured independently as a function of temperature and velocity. As the surface roughness of ice is relatively low [$S_q = 61$ nm, calculated for the measured surface topography of Figure 5.3(b) bottom] and without a long-range curvature, the surface topography of the sliders dominates the contact calculations. Including the ice topography raises the contact pressure only 4%, and, therefore, the surface topography of ice can be neglected.

5.3 Results

5.3.1 Temperature dependence

Figure 5.1 shows the friction coefficient μ as a function of temperature for the two types of SiC spheres and the model skate. In agreement with earlier measurements [108], we find that the temperature dependence of the friction coefficient can be captured by an Arrhenius-type equation:

$$\mu = c e^{\Delta E/k_B T},$$ \hspace{1cm} (5.1)

with fitting parameter $c = 1.5 \times 10^{-4}$ and activation energy $\Delta E = 11.5$ kJ/mol. As reported in Reference [108], this activation energy matches the activation energy for ice-surface diffusion [109, 110], suggesting that the diffusion of water molecules over the ice surface plays an important role in ice friction. For temperatures above -20^\circC, the spherical slider displays a friction coefficient that is higher than the friction coefficient predicted by the Arrhenius equation and increases with temperature up to the melting point of ice. This increase in friction with temperature is the result of ploughing friction; the slider plastically indents the ice in the normal direction and consequently ploughs through the surface in the lateral direction [111]. The pressure that the slider exerts on the ice surface controls the magnitude of the ploughing force.
5.3 Results

Figure 5.1: Friction coefficient μ as a function of the temperature T for various sliders on ice. At a constant sliding speed v_s of 0.38 mm/s, a small sphere (radius $R = 0.75$ mm, blue circles), a big sphere ($R = 6$ mm, red circles), and a model ice skate ($R \approx 22$ m, width 1.67 m, and length 5 mm; black squares) are slid over an ice surface at a normal force of 2.5 N. Far from the melting point, the friction coefficient follows an Arrhenius temperature dependence with an activation energy of $\Delta E = 11.5$ kJ/mol. Close to the melting point, the friction coefficient increases rapidly as the sliders start to plough through the ice. The error bars represent the standard deviation.

To further investigate the influence of contact pressure and quantify the ploughing force, we vary the contact pressure exerted by the slider by varying its curvature.

5.3.2 Ploughing

In Chapter 3 we have discussed the sliding of a spherical slider ploughing through partially water-saturated granular materials. The presented ploughing model quantitatively reproduces the measured ploughing force based on the geometry and the hardness P_h of the material. The model is not specific for granular materials as ploughing is a typical form of wear that is generically encountered when one of the two contacting materials is much harder than the other. The ploughing force for the measured sphere-on-ice geometry can be calculated by considering plastic indenta-
Figure 5.2: (a) Penetration hardness P_h of ice as a function of temperature, obtained from indentation experiments at a speed of $v_{\text{ind}} = 3.8 \, \mu m/s$. Indentation is performed with a sphere pushed into the ice at various temperatures; see inset (left bottom) for a schematic illustration. The indentation depth δ and force N are monitored to calculate the P_h. The error bars, defined by the standard deviation in the penetration hardness, are smaller than the symbols used. A linear decrease of P_h with temperature is found (black line) up to $-1.5 \, ^\circ\text{C}$ when pressure-induced melting sharply decreases the hardness. Upper inset: P_h versus v_{ind} for various temperatures. (b) Friction coefficient μ as a function of the normal force N for a small (radius $R = 0.75 \, \text{mm}$, blue open and filled circles) and large ($R = 6.00 \, \text{mm}$, red filled circles) SiC spherical slider. The ploughing model [lines, Eq. (5.2)] matches the observed friction coefficient. Inset: schematic illustration of ploughing in ice. The spherical slider of radius R indents the ice in the normal direction with a depth δ and cross section A_P.

In the normal direction, which occurs when the contact pressure exceeds the penetration hardness P_h of the ice. This penetration hardness decreases linearly with increasing temperature [see Fig. 5.2(a)] up to $-1.5 \, ^\circ\text{C}$ when pressure melting sharply decreases the hardness. Similarly as described in Chapter 3, the sphere plastically indents the ice with a depth δ until the contact area A_c has increased enough to support the imposed normal force N [see inset Fig. 5.2(b) and Appendix A.1]. This indentation results in scratching laterally into the ice with a ploughing area A_P and a ploughing force F_P which, based on the geometry, results in a ploughing friction coefficient:
\[\mu_P = \frac{A_P P_h(T)}{N} \]
\[= \frac{4\sqrt{2}}{3\pi^{3/2}R} \sqrt{\frac{N}{P_h(T)}}. \]

Figure 5.2(b) indeed confirms that both a decrease of the radius (red-filled compared to blue-filled circles) and a decrease of hardness (blue-filled compared to blue open circles) result in an increase in ploughing force; the ploughing model captures the experimentally measured variations in the friction coefficient without adjustable parameters. This result is also reflected in the different amounts of ploughing for different spherical sliders observed in Figure 5.1.

These insights into the phenomenon of ploughing translate to the practice of ice skating. During ice skating, low sliding friction is desired to achieve a high sliding speed, but, simultaneously high friction is required to enable changing the sliding direction. Therefore, the blades of ice skates have a large radius of curvature in the sliding direction, \(R = 3 - 22 \) m, and sharp edges with a flat or even negative radius of curvature along the width [112]. A low coefficient of friction can be expected if the skate is perfectly aligned with the ice surface, but if the skate is tilted, a quick increase of the friction coefficient is found [96, 113]. A tilt of the skate results in (deeper) indentation of the ice and therefore an increase of the friction, particularly in the direction perpendicular to the length of the skate because sliding in this direction involves a larger ploughing area. This larger ploughing force gives the skater the opportunity to push forward and make turns. In Figure 5.1, the friction coefficient of a 5-mm section of a long skate blade is measured as a function of temperature (black squares). A large decrease of the friction coefficient with increasing temperature can be found up to \(-8 \) °C, whereafter the friction increases again due to ploughing. The minimum friction for the model ice skate is found for \(T = -7.7 \pm 2.3 \) °C with \(\mu = 0.039 \pm 0.003 \).

Therefore, sliding on ice is largely temperature dependent and can be captured with an Arrhenius-type equation in the elastic regime. Close to the melting point, when the slider plastically indents the ice surface, the friction coefficient increases due to ploughing, where the magnitude of ploughing is set by (a) the hardness of the ice, (b) the slider geometry (radius of curvature), and (c) the exerted normal force.
5.3.3 Local contact pressure

Conventional liquid lubrication is essentially a competition between squeeze flow and sliding (or rolling) induced entrainment of the lubricant. The squeeze flow is driven by an externally applied normal force, which sets the local pressure experienced by the lubricant. To investigate the influence of this local contact pressure on the slider-on-ice friction, we vary the microscopic surface topography of the spherical slider; the sharper the roughness peaks on the slider, the higher the local contact pressure \cite{114}. In Figure 5.3(a), we report the friction force as a function of normal force, measured for glass spheres with surface roughnesses S_q from 98 nm to 3077 nm. We find that the smoothest sphere displays a friction coefficient that is equal to that reported in Figure 5.1 at the corresponding temperature, here set to $-50 \, ^\circ\text{C}$, and described by the Arrhenius equation, Equation (5.1). The spheres with higher surface roughness, and therefore a higher contact pressure, display a significantly higher friction coefficient. For $T = -30$, -70 and $-90 \, ^\circ\text{C}$, a qualitatively similar result is found.

To quantify the contact pressure P_c, we perform contact calculations in which the mechanical properties of the slider and the ice, and the measured surface topography of the slider form the input. The interfacial gap, at each of the in-plane coordinates defined by the topography, forms the output of the calculation for a given normal force. Those locations at which the interfacial gap is zero form the area of real contact where, in addition, the local contact pressure is quantified. See Section 2.4 for a full description of the contact calculations including the comparison to elastic and plastic contact mechanics models. In Figure 5.3(c), we plot the measured surface topography and the calculated area of real contact for glass spheres with increasing roughness at a temperature of $-50 \, ^\circ\text{C}$. We find that the relatively smooth spheres [$S_q = 98 \, \text{nm}$; Fig. 5.3(c), left panel] primarily deform the ice elastically at an average contact pressure of 35 MPa. This result is independent of temperature because the elastic modulus of the ice (and the slider) does not change significantly with temperature. The situation is different for balls with a relatively high surface roughness [$S_q = 3077 \, \text{nm}$ or higher; Fig. 5.3(c), right panel]. As the surface roughness is increased above this level, the calculated average contact pressure increases up to 85 MPa, which equals the hardness of the ice, indicating that plasticity plays an important role in the contact formation for these rougher spheres. The hardness of the ice decreases linearly with temperature and limits the maximal contact pressure; the contact pressure in this regime of plastic deformation varies from 130 MPa at $-90 \, ^\circ\text{C}$ to 70 MPa at $-30 \, ^\circ\text{C}$ (see Appendix A.3). Note that the contact pressure in both the
5.3 Results

Figure 5.3: (a) Friction force as a function of normal force measured for glass spheres with surface roughness S_q of 98, 222, 575, and 3077 nm at a temperature of -50 °C and sliding speed of 0.38 mm/s. The smoothest sphere displays a friction equal to that reported in Fig. 5.1, which can be described by the Arrhenius equation [Eq. (5.1)]. For increasing surface roughness, a higher friction force is measured. (b) Surface topography and corresponding ploughing depth δ in the ice after a sphere with the highest (top) and lowest (bottom) roughness slides over it at a normal force of 0.21 N. The calculated plastic indentation depth δ for a normal force of 0.21 N is added in light gray in the insets. (c) Surface topography (top) and calculated area of real contact (bottom) for the same glass spheres at $T = -50$ °C at a normal force of 0.5 N. A transition from primarily elastic contact for a smooth slider towards elastoplastic contact for a rough slider can be observed.

plastic and the elastic regime is almost independent of the normal force because the area of real contact increases linearly with normal force; see Appendix A.3.

Spheres that deform the ice plastically will plough through the ice when tangentially loaded. In Figure 5.3(b), top, we plot the ploughing track that was left on the ice after a sphere with high roughness, $S_q = 3077$ nm, slid over the ice surface
with a normal force of \(N = 0.21 \text{ N} \) and a speed of \(v \approx 5 \text{ mm/s} \). In contrast, spheres with low roughness \(S_q = 98 \text{ nm} \) do not leave visible damage after sliding on the ice [Fig. 5.3(b), bottom], as expected based on the fact that the calculated average contact pressure for these balls in contact with ice is smaller than the penetration hardness of the ice. Although the plastification during sliding increases the friction force, it only provides a small contribution. The maximum friction due to ploughing, represented by the arrow in Figure 5.3(a), can only explain 30\% of the observed variation in friction with roughness (see Appendix A.4). Therefore, we measure and calculate the interfacial shear stress \(\sigma_s \), which is the friction force divided by the area of real contact at which the friction force is generated.

Perhaps somewhat surprisingly, in the elastic regime, \(\sigma_s \) increases exponentially for increasing contact pressure \(P_c \); see inset of Figure 5.4 for \(-50 ^\circ \text{C}\). Qualitatively similar results are found for \(T = -30, -70, \) and \(-90 ^\circ \text{C} \); the lowest roughness has a shear stress expected based on the Arrhenius behaviour, while increasing the contact pressure up to the penetration hardness of the ice results in an exponential increase of the shear stress. These results are summarised in Figure 5.4 (triangles), where the contact pressure and shear stress are normalised by, respectively, the penetration hardness of the ice \(P_h \) and the Arrhenius temperature dependence of the friction coefficient \(e^{\Delta E/k_B T} \). The exponential increase of interfacial shear stress with pressure is also known as piezo-viscosity; the viscosity of a confined lubricant increases exponentially with the mechanical pressure [115, 116]. The viscosity \(\eta \) is then described empirically as

\[
\eta = \eta_{\text{ref}} e^{\frac{P_c}{P_h}} .
\]

Here, the pressure-viscosity parameter \(\beta \) sets the increase of the viscosity with the exerted pressure starting from the unconfined viscosity \(\eta_{\text{ref}} \). For sliding friction on ice, a qualitatively similar process occurs; the shear stress increases when the contact pressure on the mobile layer is increased. From Figure 5.4, we can model the shear stress as:

\[
\sigma_s = \sigma_0 e^{\frac{\Delta E}{k_B T}} e^{b \frac{P_c}{P_h} \eta_{\text{ref}}} ,
\]

with \(\sigma_0 = 2.1 \text{ kPa} \) and \(b = 3.4 \). The shear stress is set by the mobility of the ice surface, which is decreased, or “frustrated”, for increasing contact pressures up to the plastic limit. The piezo-viscous effect on the shear stress could be interpreted as a result of confinement; the surface water molecules become more strongly confined at the slider-on-ice interface with increasing contact pressure. For nanoconfined water
5.3 Results

Figure 5.4: Normalised shear stress $\sigma_s / e^{\Delta E/|k_bT|}$ as a function of the normalised contact pressure P_c / P_h for various sliders, surface roughnesses, and temperatures at a sliding speed of 0.38 mm/s. The solid line is a fit using Eq. (5.4). Triangles from light green to dark green correspond to glass spheres with a surface roughness S_q of 98, 222, 575, and 3077 nm, where upward, right, down, and left-pointing triangles are measurements at $T = -90, -70, -50, \text{ and } -30 \, ^\circ\text{C}$, respectively. The blue, red, and cyan circles correspond to, respectively, small SiC ($R = 0.75 \, \text{mm}$), a large SiC ($R = 6 \, \text{mm}$), and a sapphire sphere ($R = 1.59 \, \text{mm}$) at $T = -90 \, ^\circ\text{C}$ for closed and $-50 \, ^\circ\text{C}$ for open markers. The error bars represent the standard deviation in the measured friction force. Inset: shear stress as a function of the contact pressure for various glass sliders with increasing surface roughness at $T = -50 \, ^\circ\text{C}$ and a sliding speed of 0.38 mm/s.

molecules, it has been observed that the (apparent) viscosity increases when the gap size is decreased to less than a nanometer [117–119]. Additionally, we include in Figure 5.4 the measurements for the small (0.75-mm radius) and large (6.00-mm radius) SiC spheres and a low-roughness sapphire sphere (1.59-mm radius). For these three spheres, the calculated shear stress and contact pressure based on the measured friction force and surface topography ($T = -50$ and $-90 \, ^\circ\text{C}$; see Appendix A.3) match well with the fit made for the glass spheres. A “slippery” state can therefore only be reached when the exerted contact pressure is sufficiently small, which is the case for a slider (or skate) with a small surface roughness and a large curvature.

Overall, we observe an increase of the friction force when the local contact
5. Sliding friction on ice

pressure is increased. Next to, perhaps, a minor contribution due to ploughing, the increase of friction can be explained by a piezo-viscous effect; for increasing contact pressure up to the plastic limit, the shear stress increases exponentially.

5.3.4 Sliding speed

For a traditional lubricant—for example, a thick grease in a journal bearing—the friction coefficient strongly depends on the sliding velocity. As the sliding speed increases, more lubricant is entrained into the contact resulting in a pressure in the lubricant that can partially support the external load: This process is known as mixed lubrication. At yet higher sliding speeds, the friction may increase with velocity because the lubricant forms a continuous film that separates the solids and undergoes Newtonian flow: Viscous dissipation within the lubricant is responsible for the friction in the hydrodynamic lubrication regime [120, 121].

To investigate the slider-on-ice friction in the context of lubrication, we perform friction experiments at velocities ranging from 1 \(\mu \text{m/s} \) to 10 cm/s and find a nonmonotonic relation between friction and sliding velocity at a temperature of \(-20\, ^\circ\text{C}\) [Fig. 5.5(a), red triangles]. This velocity dependence of the friction can be fully explained using a velocity-dependent ploughing model: During sliding, the slider plastically indents the ice in the normal direction at an indentation speed \(v_{\text{ind}}\) which is a fraction of the sliding speed \(v_s\) (approximately 4%, see Appendix A.2). Consequently, the indentation depth sets the ploughing area \(A_p\), the projected cross-sectional area over which the slider ploughs through the ice. Both during indentation and (subsequent) ploughing, the velocity-dependent penetration hardness of the ice controls the normal and tangential pressure at the interface. Remarkably, the penetration hardness is highly speed dependent; for increasing indentation speed, the penetration hardness increases, as can be seen in the inset of Figure 5.2(a) for various temperatures. The hardness of ice for temperatures up to \(-25\, ^\circ\text{C}\) has been studied before for various loading times when a sphere is pushed into the ice [122–124] and for various impact velocities with a short contact time when a steel sphere is dropped onto the ice [125, 126]. Although both measurement methods and the used definition of hardness vary, an increase of the hardness with decreasing temperature and increasing speed was also observed in these experiments. This observation is in qualitative agreement with our findings for a broad temperature and indentation speed domain. However, the linear dependence of the hardness on temperature in a broad domain from \(-110\, ^\circ\text{C}\) almost up to melting that we report here, to the best of our knowledge, has not been observed before.
Figure 5.5: Friction coefficient μ as a function of the sliding speed v_s for a smooth glass sphere (surface roughness $S_q = 98$ nm). All measurements were performed with increasing and decreasing sliding velocity to confirm that hysteresis was absent. (a) At $-20 \, ^\circ$C (red triangles), a nonmonotonic dependence of the friction on the sliding speed is found, which can be understood based on ploughing [Eq. (5.5), red line]. (b) At $-50 \, ^\circ$C (green triangles) and $-90 \, ^\circ$C (blue triangles), velocity strengthening of the friction is observed, which can be qualitatively described as a result of a stress-augmented thermal process; the stress exerted by the slider at the interface decreases the effective activation barrier, resulting in a logarithmic increase of the stress with the rate or velocity. (c) Dry (open markers) and water-lubricated (solid markers) friction on artificial ice (HDPE) (using the same glass slider) at room temperature and at a normal force of 1 N. The error bars represent the standard deviation in the measured friction force. In panel (c), the error is of the order of the symbol size.
As the velocity domain during ice skating is broad, from standing still up to moving at about 30 m/s, the velocity dependence of the hardness of the ice is of key importance. Thus far, most calculations of friction on ice used either a constant or linear dependence of the hardness on velocity [99, 101, 127–129]. The ploughing force is set by both the penetration hardness in the normal direction (at v_{ind}) and by the penetration hardness in the tangential direction (at v_s). Consequently, we can write, for the friction coefficient,

$$
\mu_p = \frac{4 \sqrt{2N}}{3 \pi^{3/2} R} \frac{P_h(T, v_s)}{P_h(T, v_{\text{ind}})^{3/2}}.
$$

For the data shown in Figure 5.5(a), with a set sliding speed v_s, the corresponding indentation speed v_{ind} for the spherical slider with radius R and average normal force N can be calculated directly (see Appendix A.2). Therefore, without adjustable parameters, the ploughing contribution can now be calculated for the $-20 \degree C$ data and, as shown with the red line in Figure 5.5(a), this calculation is in reasonable agreement with the measured friction coefficient; the ploughing model captures the nonmonotonic dependence of friction on sliding speed.

At $T = -50$ and $-90 \degree C$ [Fig. 5.5(b)], we find velocity-dependencies that cannot be described based on ploughing. This result is expected as, at low temperatures, the penetration hardness of the ice increases and the ice can accommodate the normal force through elastic deformations. At $-90 \degree C$ (blue markers in Fig. 5.5), we observe -in agreement with earlier measurements [108] - velocity strengthening friction; the friction coefficient increases logarithmically from a friction coefficient of $\mu \approx 0.55$ at $\mu m/s$ speeds up to $\mu \approx 0.9$ for speeds on the order of cm/s. A logarithmic increase with speed has been described before for Eyring processes; a stress (or force) can effectively decrease the Arrhenius energy barrier and therefore influence the rate of the process; the Arrhenius process for the ice surface is the diffusive motion of the weakly bonded surface water molecules. In such so-called stress-augmented systems, the relation between the applied stress, or force, and the velocity is logarithmic [47,48], like we observe here. The $-50 \degree C$ case seems to be in between the behaviour of the -20 and the $-90 \degree C$ cases, sharing some of the features of both. A detailed (quantitative) understanding of these observations is not available yet.
5.3.5 Substrate

As the large velocity dependence of ice friction is often attributed to water lubrication, we finally investigate the role of water lubrication in our friction experiments. We replace the ice surface with a material that has similar mechanical properties: high-density polyethylene (HDPE, elastic modulus 1.1 GPa, surface roughness of 207 nm; from Simona). In Figure 5.5(c), the dry (open circles) and water-lubricated (closed circles) friction coefficients, measured at a normal force of 1 N, are plotted as a function of sliding speed. The significant decrease of the water-lubricated friction coefficient observed at sliding speeds higher than 1 m/s indicates the onset of mixed lubrication. At larger sliding speeds, which we cannot reach using our current experimental setup, elastohydrodynamic lubrication is expected to occur. These measurements suggest that, at least up to sliding speeds of 1 m/s, the slipperiness of ice is not the result of mixed or hydrodynamic lubrication from a liquid water film. However, we note that the onset of mixed lubrication can also depend on the surface chemistry and would occur at lower speeds if the contact pressure was reduced.

Altogether, the speed dependence of sliding on ice depends strongly on the contact regime, elastic or plastic deformation. When the contact of the slider on ice is mainly elastic, as observed for low temperatures and smooth spherical sliders, the observed friction can be linked to the mobility of confined water. However, for a plastic contact, the friction is set by the amount of ploughing, which largely depends on the hardness, the slider geometry, and the exerted normal force.

5.4 Discussion

One interesting observation that merits discussion is that during ploughing, tracks and debris particles can be formed when the temperatures and contact pressures are high. Under these conditions, the dynamics of ice debris particles are expected to become important, particularly if the sliding motion is reciprocated on a relatively small section of the ice. Indeed, we have observed that when our sphere is made to oscillate over the same surface area (an option that is readily available on the rheometer) at −5 °C, the frictional response does not reached a steady state after 2 minutes. This was measured with a smooth glass sphere oscillating at a frequency of 20 Hz, with an amplitude of 100 µm and normal force of 2 N.

Another point is that the chemical nature of the slider can be of importance for the frictional behaviour. In winter sports, hydrophobic coatings are used to reduce
the friction [98, 130]. Although sliding on snow, which is a soft porous media of ice and water, is very different than sliding on an ice surface, an influence of the wetting properties could be expected. In our study, the sliders (Table 5.1) are all hydrophilic, and this may explain why there is little variation in the friction that was measured with the various materials. In this context, it would be interesting to conduct similar ice friction experiments with hydrophobic materials in the future.

The thermally activated diffusive motion of surface molecules could also be interpreted as a result of the presence of a premelted (quasi)liquid water layer. This liquidlike layer, starting from one bilayer up to 45 nm, grows above a critical temperature, which has been experimentally reported in the range of −70 up to −2 °C [103, 104, 131–134]. However, in the given temperature domain, we measure a continuous decrease of the friction, independent of the presence or thickness of a liquidlike water layer. Therefore, we interpret the measured Arrhenius behaviour of the friction coefficient as a result of ice-surface diffusion.

In the mid-20th century, frictional melting of the ice was already been suggested as an explanation for the slipperiness of ice [93]. The heat locally generates a lubricating water film that, with increasing sliding velocity, eventually results in a full water film that separates the surfaces (aquaplaning). We observe that ice remains highly slippery at speeds as low as 1 µm/s for −20 °C; therefore, ice remains slippery down to very low sliding speeds, where the rate at which energy is injected into the interface becomes negligible compared to that at higher sliding speeds. This result indicates that the friction coefficient is not very sensitive to frictional heating. We interpret that, for the given microsurface and macrosurface geometry, the slipperiness up to a speed of at least 1 m/s is not the result of mixed or hydrodynamic lubrication. Additionally, the slipperiness does not vary significantly when a silicon carbide or a glass slider is used, although the thermal conductivity of these materials differs by 2 order of magnitude.

5.5 Conclusion

In summary, temperature, pressure, and speed each have an important impact on ice friction, largely through the hardness of the ice. This hardness increases with decreasing temperature and increasing strain rate (indentation speed). On the other hand, the contact pressure exerted at the slider-on-ice interface is set by the slider topography and geometry. When this contact pressure approaches the ice hard-
ness, ploughing friction becomes dominant. This ploughing friction depends on the sliding speed because the rate at which the slider indents the ice in the normal direction and ploughs through the ice in the tangential direction varies with the sliding speed and the speed-dependent hardness. Alternatively, at contact pressures significantly below the ice hardness, no ploughing occurs, and the friction is adhesive in nature. In this elastic regime, ice friction is low and set by the mobility of the confined water at the slider-on-ice interface. Ice friction in this regime is inversely proportional to the mobility of water molecules at the free ice surface, which can be viewed as an activated process with an Arrhenius temperature dependence. Increasing the local contact pressure exerted at the slider-on-ice interface leads to increased confinement and an exponential increase in interfacial shear stress.

Ice friction is thus low due to the high mobility of the water molecules at the slider-on-ice interface at temperatures close to the ice melting point. This slipperiness can be suppressed by increasing the local contact pressure towards the ice hardness. It is the exceptionally high hardness of ice, close to its melting point, that enables the slipperiness of ice and distinguishes ice from other solids. In practice, this means that the optimal ice skate is very smooth and has sharp edges. When the smooth surface makes contact with the ice, the contact pressure, and therefore the sliding friction, is low. When the skate is tilted, the sharp edge plastically penetrates the ice, leading to high ploughing friction that enables grip, which is necessary to accelerate and turn.