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lethal effect or act in an indirect, nonlethal way by altering the physiology and behavior of ani-
mals [5, 6]. If these nonlethal effects change individual vital rates, such as the probability of
survival or giving birth, they can alter population growth rate or density [7]. Assessing the pop-
ulation consequences of exposure to nonlethal stressors is required under many regulatory
frameworks (e.g., European Habitats Directive 92/43/EEC, United States Marine Mammal
Protection Act, 16 U.S.C. §§ 1361 et seq., and Endangered Species Act, 16 U.S.C. §1531 et
seq.), but it is often challenging to monitor populations at the appropriate scale in order to
detect and avert a population decline in a timely way [8, 9]. Monitoring fitness-related traits,
such as body size or body condition, as well as population density can improve the detectability
of an upcoming population collapse [10–12]. However, the use of fitness-related traits as an
early warning signal for population decline relies on the assumption that shifts in the trait dis-
tribution are the result of changes in environmental conditions [13].

Marine mammals are exposed to a wide range of anthropogenic, nonlethal disturbances,
such as noise from military sonar, pile driving or ship traffic, which may affect their physiology
and behavior [14–16]. In addition, except for land-breeding species, density changes are hard
to monitor with sufficient accuracy due to the elusive appearance of some species and the inac-
cessibility of the marine environment. Finally, many populations are recovering from histori-
cal exploitation and may be approaching levels at which density dependence may be an
important regulatory process [17, 18]. The Population Consequences of Disturbance (PCoD)
conceptual framework was developed to assess the effects of non-lethal disturbances on marine
mammal populations [5, 6]. It links behavioral and physiological responses to disturbance, to
the fitness-related traits that influence vital rates and population dynamics [7]. Bio-energetic
models have been used to implement the PCoD framework for a number of marine mammal
species [19–21]. For example, Hin et al. [21] developed an energy budget model of the long-
finned pilot whale (��������	
�
 ���
�) to study the effects of disturbances that led to cessation
of foraging, which resulted in the depletion of an individual’s energy stores. This model
revealed that short disturbances decreased survival among calves born to young females, while
longer disturbances also reduced survival of calves born to older females and degraded female
survival itself. This led to an overall decrease in expected lifetime reproductive output (
�: the
expected number of female calves born to a female during her life) with increasing distur-
bance. Hin et al. [21] and most other implementations of the PCoD framework model density-
independent population dynamics, in which disturbance reduces survival and reproduction
through negative effects on fitness-related traits and the population grows or declines expo-
nentially depending on whether 
� is greater or smaller than 1 (but see [22, 23]).

Marine mammals generally have low predation rates and high adult survival. In similar popula-
tions of terrestrial, large-sized mammals, population regulation is thought to act primarily through
resource / prey limitation [24–26]. In coupled predator–prey systems, top-down control of prey
will suppress vital rates until the predator population attains a stationary state (carrying capacity),
in which the expected lifetime reproductive output of a female equals 1 (
� = 1). Disturbing a pop-
ulation at carrying capacity may have immediate effects on individual condition, vital rates and
population density, but the subsequent release of density-dependent processes might compensate
for these effects. Currently, it is not well understood how populations regulated by density depen-
dence through prey depletion respond to disturbance when at carrying capacity, nor whether fit-
ness-related traits are reliable indicators of the level of disturbance in such populations.

Here we use the energy budget model of Hin et al. [21] to explore how nonlethal distur-
bance in the form of lost foraging days affect individual body condition, vital rates and popula-
tion dynamics for a marine mammal population that is regulated by density dependence
acting through depletion of its prey. Although specifically tailored for pilot whales, the model
of Hin et al. [21] provides a realistic representation of how the life history of a medium-sized
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models of cetaceans [44–46] and would reduce disturbance effects on female mortality and
increase reproductive output by providing earlier re-initiation of pregnancy. However, these
effects will likely only play a minor role in our density-dependent model setting, because the aver-
age daily costs of pregnancy are relatively low compared to those of lactation [21]. For simplicity,
fetuses were assumed to have no reserves. At birth, each fetus obtained an amount of reserve
mass from its mother such that its body condition equaled &�, �.�. � � r���

1� r�
, with �� � o1�

o2
� being

structural mass at birth. Lactation lasted 1223 days (~3.35 years) and weaning occurred at a
length of 292 cm. Lactation stopped if either the calf or the female died. Because lactation rate
was modeled as an emergent process that depended on the energetic requirements and body con-
dition of both calf and female, the realized lactation rate could approach zero before weaning if
the calf was able to cover all its energy demands by prey feeding, or if its mother’s body condition
fell below &� and she ceased milk supply. Simultaneously lactating and pregnant female pilot
whales have been observed [37], so we allowed lactating whales to enter the waiting period during
the last year of lactation. This prevented females from having two calves simultaneously. Non-
pregnant and non-lactating females that had not entered the waiting period were categorized as
‘resting’. Thus, at any point in time a female whale could be in one of the following reproductive
states: pregnant; lactating; lactating and waiting; lactating and pregnant; waiting; or resting.

Disturbance
As in Hin et al. [21], disturbance was modeled as a yearly recurrent period of consecutive days
of no foraging affecting all individuals in the whale population. Cessation of feeding could for
example occur when individuals are displaced from prey-rich feeding habitats. A disturbance
event was characterized by a starting date (���
/�; day within each year) and a disturbance dura-
tion (�����; number of consecutive days). During a disturbance event, prey feeding of all individ-
uals was set to zero for 24 h per day and compensatory feeding was only possible when
disturbance had ended. Hence, disturbance affected the prey attack rate %
 in Eq (3) as

�
 �
0 ����� ��� 365� � ���
/��&��� ��� 365� < ����
/� � �������

1 ���	����	
�7�

(

Lactation during disturbance was possible. Real-world disturbances are almost certainly less
extreme, might only affect a subset of the population and will probably not result in the loss of
multiple, consecutive days of foraging. We have purposely choose an extreme disturbance sce-
nario to get an idea of the full scope of potential effects of disturbance on the modeled popula-
tion. In addition, we assume that disturbance does not negatively affect the prey field.

Model analysis
We used the Escalator Boxcar Train software package (EBT; [47] available at https://staff.fnwi.
uva.nl/a.m.deroos/EBT/Software/index.html) to simulate prey dynamics and the state vari-
ables of each individual whale. The integration of these ODEs was interrupted by events of
birth, weaning, onset of reproduction (crossing of pregnancy threshold and start of waiting
period) and initiation of pregnancy (end of waiting period). These events also determined
female reproductive status. Prey density followed from the integration of the ODE in Eq (1).
We used R software (v.4.0.2) for handling and plotting of model output [48]. Code to run the
model is available online (���� �� ������ /�������/0).

Here we report on the effect of an increase in disturbance duration (�����) on the whale pop-
ulation and its prey in the absence of seasonality in prey productivity (� 1 0). First, we illus-
trate the effect of density dependence through prey depletion on whale vital rates. Next, we
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present the response to the onset of yearly repeating disturbances of 30 days per year on an
undisturbed whale population at carrying capacity. Then we show how the density of a station-
ary whale population depends on ����� and we examine the distributions of body condition and
patterns of (age-specific) survival and reproductive output of females from these stationary
populations. We assessed robustness of our results to seasonality in prey productivity
(� = 0.25) and timing of disturbance, which was only relevant in seasonal environments. In
this case, we arbitrarily called the season of high and low productivity ‘summer’ and ‘winter’,
respectively. We conducted an analysis of the sensitivity of our results to the parameters whose
values had little or no empirical support (see S2 File).

Results

Density-dependent population dynamics
In absence of disturbance, the whale population initially grew exponentially and depleted the
prey base until it reached a stationary state (Fig 1). During population growth, prey depletion

Fig 1. Density-dependent population dynamics. Changes in whale and prey densities and whale vital rates associated with the approach of the whale
population to a stationary state. Left panels show the outcome of a single simulation with whale densities colored according to sex and reproductive
status (for females only). Right panels show the mean +/- standard deviation of calf survival, pregnancy rate (ratio of pregnant to mature (i.e. age> 8
yrs.) females), female age at first reproduction (yrs.) and female lifetime reproductive output as a function of binned population size (80 bins of size 10
ranging from 0 to 800), derived from 100 replicate simulations. All replicate simulations were initialized with a unique stationary state at a mean
annual prey productivity of � = 0.09 MJ m-3 day-1. Subsequently, � was increased to 0.15 at time zero for each simulation. All other parameters at
default values (Table 1 in S1 File).

https://doi.org/10.1371/journal.pone.0252677.g001
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affected individual-level energetics, which led to changes in vital rates: calf survival and the
fraction of pregnant females decreased, and age at first reproduction increased (Fig 1). At the
population level, the fraction of females that were simultaneously ‘waiting and lactating’, or
‘pregnant and lactating’ was reduced to almost zero when the stationary state was reached. At
the stationary state, mean female lifetime reproductive output equaled 1.

Population response to disturbance
The onset of disturbance in an undisturbed population at stationary state led to a sharp decline
in population density and a peak in prey density due to the lack of prey foraging by whales
(Fig 2). The initial population decline was mainly attributed to a drop in the number of lactat-
ing females and calves. During the first disturbance event, mean body condition of lactating
females dropped below the starvation mortality threshold, indicating that the decrease in the
number of lactating females was driven by starvation-induced mortality. The decrease in mean
body condition of calves was larger than that of lactating females but did not reach as low levels
because calf body condition was much higher pre-disturbance (Fig 2).

After the first disturbance event, whale population density continued to decline more grad-
ually over subsequent disturbance events until it reached a new stationary state. The decline of
whale density was paralleled by an overall increase in prey density, with yearly peaks during
each disturbance event. Once the number of lactating females recovered from the initial distur-
bance episode, some lactating females were observed that were simultaneously ‘waiting’ or
‘pregnant’, while these were absent in the undisturbed population. At the new stationary state,
disturbance events led to changes in the distribution of female reproductive classes and
decreased mean body condition, but no longer affected whale density. Irrespective of age and
reproductive status, mean body condition increased in between disturbances beyond its pre-
disturbed level. This overall increase was such that mean body condition stayed well above the
starvation threshold during later disturbance events.

Effect of disturbance duration on population density
Whale density in the stationary population decreased in a non-linear manner as a function of
the duration of the yearly recurrent disturbances (Fig 3). Mean whale density decreased by
54% as disturbance duration increased from 0 to 34 days per year, while the population went
extinct when disturbance lasted 6 days longer. Overall, longer yearly disturbances decreased
top-down control by whales, leading to an increase in mean prey density (Fig 3). The increased
variation in prey density was caused by the cessation of foraging during each disturbance
event that led to yearly peaks in prey density (Fig 2), whose amplitude was highest for interme-
diate disturbance durations.

Body condition
Body condition of females in a stationary population was highest for calves and lowest for lactat-
ing females, irrespective of disturbance duration (Fig 4). Resting, waiting and pregnant females
(collectively referred to as ‘non-lactating’ in Fig 4) had similar body conditions, although body
condition was generally highest in waiting females and lowest in resting females. Although dis-
turbance induced fluctuations in body condition over time (Fig 2), females that lived in dis-
turbed populations had an overall higher body condition than females from undisturbed
populations (Fig 4). Improvement in body condition occurred because of the increase in prey
density associated with disturbance (Fig 3), which increased per capita prey availability. Higher
prey density led to a higher feeding rate and increased energy reserves of individual whales. The
improvement in body condition occurred irrespective of reproductive status and was largest for
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lactating females, as their normally poor body condition allowed more scope for improvement
(Figs 2 and 4). Disturbance also increased the variation in body condition, especially for non-
calf individuals. In populations subject to 30 days of disturbance, some lactating females, mostly
young animals that were still growing, had a poor body condition.

Age-specific survival and reproduction
The pattern of age-specific survival and reproduction of females in stationary populations
changed in response to disturbance duration (Fig 5). The mean number of female calves born

Fig 2. Population response to disturbance. Response of the population at stationary state to the onset of a
disturbance corresponding to 30 days without foraging repeating every year. Disturbance periods are indicated with
gray shaded bars and the first disturbance event occurred 1 year into the simulation. Preceding 49 simulated years
allow the undisturbed population to reach its stationary state and are not shown. All densities represent the mean
values of 100 replicate simulations. Bottom panel shows mean body condition of calves (age< 1223 days), lactating
females (including ‘waiting and lactating’ and ‘pregnant and lactating’ females) and non-lactating females (‘resting’,
‘waiting’ and ‘pregnant’ females with age> 1223 days) from a single simulation with output collected every 5 days.

https://doi.org/10.1371/journal.pone.0252677.g002

Fig 3. Effect of disturbance duration on population density. Whale (top panel) and prey density (bottom panel) in
the stationary population as a function of disturbance duration (�����). Each point represents the time-averaged density
of 200 simulated years, after an initial 200-year period to allow the population to reach its stationary state. Output was
collected every 5 days (14600 observation per point). Lines connect mean densities and shaded areas indicate min/max
density.

https://doi.org/10.1371/journal.pone.0252677.g003
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to a single female was higher in disturbed populations, across all female ages (Fig 5A). Because
females from disturbed populations were generally in better condition, these females crossed
the pregnancy threshold at a younger age and reproduced earlier (Fig 5B). Mean age at first
reproduction (AfR) was more than one year earlier if the population was disturbed for 30 days

Fig 4. Effect of disturbance duration on body condition. Distributions of body condition per reproductive class for
different disturbance durations (�����). Calves (age< 1223 days) are plotted as a separate reproductive class. Females
that are simultaneously lactating and waiting or lactating and pregnant are referred to as lactating. Females that were
resting, waiting or pregnant are collectively referred to as non-lactating. Data in each panel is derived from a
simulation of a stationary population over 100 years with data collected every 10 days for 1000 randomly selected
females, after an initial transient period of 100 years. Each distribution has a surface area of 1.

https://doi.org/10.1371/journal.pone.0252677.g004

PLOS ONE Density-dependent population consequences of disturbance

PLOS ONE | https://doi.org/10.1371/journal.pone.0252677 June 3, 2021 12 / 24





PLOS ONE Density-dependent population consequences of disturbance

PLOS ONE | https://doi.org/10.1371/journal.pone.0252677 June 3, 2021 14 / 24



disturbance duration (Figs 13 and 14 in S2 File). The effects of parameter changes on whale
and resource density were greatest at high disturbance duration. In some cases, this affected
the disturbance duration at which the whale population went extinct.

Overall, varying these parameters did not affect the relationships between life history statis-
tics and disturbance duration. For all parameter combinations, mean AfR, mean AfW and
female life expectancy decreased with increasing disturbance duration (Figs 16–18 in S2 File),
while mean lifetime reproductive output of females beyond age 10 yrs increased (Fig 19 in S2
File).

Discussion
We used a density-dependent, individual-based population model to investigate how non-
lethal disturbance affects individual body condition (fraction of energy stores to total body
mass), vital rates and population density for a medium-sized cetacean. The undisturbed whale
population was regulated through the effect of prey availability on calf survival and pregnancy
rates and on age at first reproduction of females. Disturbance decreased whale population den-
sity and increased prey availability. This led to a decrease in age at first reproduction and
increased mortality among young females that were raising their first calf. However, females
from populations subject to yearly repeating disturbances had, on average, improved body
condition and higher age-specific reproductive output. Considering the joint effect of distur-
bance on survival and reproduction, there was no net effect on expected lifetime reproductive
output of females (
�), as disturbance merely modified the way in which density dependence
balanced survival and reproduction to obtain a value of 
� equal to 1.

Responses to disturbance are mediated through the overall increase in prey availability that
resulted from the reduction in top-down prey control (Figs 2 and 3). Higher prey availability
increases body condition and the ability to survive prolonged periods without feeding. Because
reproduction is initiated when a female’s energy reserves exceed a predefined threshold, indi-
viduals with more reserves will on average start reproducing at a younger age. In an undis-
turbed environment, the mean age at which females first crossed the pregnancy threshold was
7.0 yrs, well within the age-class range for first ovulation of 6 to 9 years as reported by Martin
and Rothery [37]. This age decreased to a minimum of 4.9 yrs with 38 days of disturbance. The
improvement in body condition in disturbance scenarios also decreased the interval between
reproductive attempts (the inter-birth interval). Both effects increased lifetime reproductive
output for females that survived beyond 10 years of age.

However, there is a limit to which increased prey availability can offset the increase in star-
vation-related mortality induced by disturbance, because the upper limit to an individual’s
body condition also sets an upper limit to the starvation period that it can survive. This limit
depends on an individual’s age and reproductive status (lactating versus non-lactating). Young

Fig 5. Age-specific survival and reproduction. Age-specific patterns of survival and reproduction for different
disturbance durations (colors). Panel a): the cumulative mean number of female calves born per female age class (bin
size of 1 year). Error bars represent 95% confidence intervals of the means derived from non-parametric
bootstrapping. Confidence intervals increase with age due the lower number of females in older age classes. Panel b):
female age at first reproduction (left-most boxplots) and female age at weaning of first calf (right-most boxplots). Boxes
show the 25% quantile (left end), median (vertical bar) and 75% quantile (right end). Whiskers extend 1.5 times the
inter-quartile range beyond the edges of the box, or indicate extreme values if these fall within that range. Panel c): age-
specific survival calculated as 1 minus the cumulative proportion of females that died within each year class. The gray
line represents the survival in absence of starvation mortality (only age-dependent mortality), which is given by:

��
R a

0
�
�
��
. Panel d): the age-specific product of survival (c) and the cumulative reproductive output (a). Over the

entire lifetime of a female, this measure should approach 1 (
�: the expected lifetime reproductive output) in a
population at stationary state.

https://doi.org/10.1371/journal.pone.0252677.g005
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lactating females are especially vulnerable because they are still growing in structural size and
the maximum absolute size of their energy store is therefore smaller. As a result, they suffered
increased mortality with longer disturbance durations. During lactation their body condition
is also lower compared to that of fully-grown females in the same state of lactation. Distur-
bance therefore increased starvation-related mortality among these young lactating females,
even though reproduction was initiated based on absolute surplus energy (instead of body con-
dition) and milk provisioning stopped when body condition dropped below the starvation
threshold. As disturbance duration was increased, the starvation period for young females was
prolonged, which ultimately caused the population to decline towards extinction.

Our results have important implications for the management and monitoring of long-lived
organisms that are affected by non-lethal disturbances. Counter-intuitively, our results indi-
cate that non-lethal disturbance can increase individual body condition and reproductive out-
put if the population is regulated by density dependence acting through prey depletion.
Managers of wildlife populations need to be aware of the potential counter-intuitive responses
caused by compensatory changes in prey availability following the onset of disturbance.

According to our results, population density appears to be the only statistic that can reliably
indicate that a population is suffering from the effects of disturbance. However, this conclusion
should be used with caution, because of the non-linear response of population density to dis-
turbance duration. In addition, one set of traits that are negatively related to fitness (AfR, AfW
and length at first reproduction–Fig 6C and 6D) did decrease in a consistent way with increas-
ing disturbance duration and decreasing population density. Similar changes were observed in
AfR for baleen whales in the Antarctic during the period 1930–1960 (see Fig 6 of [49]), when
population size and average length also declined [10].

Besides changes in mean traits, there is an opportunity to monitor for changes in trait vari-
ance. Our results show increased variation in body condition of females from disturbed popu-
lations, especially for lactating females (Fig 4). This increased variation results from large
annual fluctuations in mean female body condition driven by the recurrent disturbance events
(Fig 2). The occurrence of a large number of individuals in particularly poor conditions at cer-
tain times of the year might act as a warning signal to indicate that a population is suffering
from disturbance. Moreover, effects of disturbance are most severe right after the onset of the
first disturbance event, when there is a mortality peak among lactating females and calves (Fig
2). This mortality peak could potentially be picked up by monitoring programs of sufficient
scale and intensity. The lethal consequences of disturbance fade as whale and prey densities
transit to a new stationary state, which might take several years. This chain of events suggests
that the temporal window of any monitoring program is crucial to get a comprehensive picture
of how wildlife populations respond to disturbance. Ideally, monitoring should start well in
advance of any planned disturbances [8, 9].

Observational and experimental studies of changes in fitness-related traits in relation to
density changes have demonstrated that a decrease in population density is associated with a
decrease in mean body length in response to size-selective harvesting [10] or experimental
reductions in food availability [12]. Our model suggests that non-lethal disturbance that results
in a reduction in population density and an increase in prey availability actually leads to an

Fig 6. Vital rates. Distribution of a) life expectancy; the mean female age at death, b) lifetime reproductive output for
females older than 10 years, c) female length at first reproduction and d) female age at first receptive, first reproduction
and weaning of first calf as a function of disturbance duration. Boxplots show medians (horizontal bars) and 25% and
75% quantiles (box edges). Whiskers extend 1.5 times the inter quartile range beyond the edges of the box, or indicate
extreme values if these fall within this range. Diamonds and connecting lines show means of each distribution. The
color legend applies to bottom panel only.

https://doi.org/10.1371/journal.pone.0252677.g006
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increase in individual body condition, a common used fitness-related trait in cetaceans [34,
50–55]. In our model, we focused on body condition because structural length was a function
of age only and growth in structural size did not depend on prey availability. Future studies
should provide a more comprehensive understanding of how mean structural length is likely
to be affected by disturbance if growth in structural length depends on prey intake rates.
Although body size growth in (marine) mammals is generally considered to be demand-
driven, variation in length-at-age could occur as a result of stunted growth from malnutrition,
which is well-documented in humans [56] and likely applicable to cetaceans too.

Unsurprisingly, the type of sublethal disturbances that we simulated, a continuous, multi-
day period of no feeding, had lethal consequences for the subset of the population that suffered
highest energetic costs and had lowest reserve capacity. The effect on survival will likely be
reduced if disturbances are more sporadic or impact only a subset of the population. In such
case, there might be no differences in the rates of reproduction and survival between disturbed
and undisturbed populations at stationary state, but only an effect on individual body condi-
tion and population density. The lower stationary population density under disturbance
would then be driven solely by the higher prey density that a female would require to produce
one female offspring on average. This is different from the transition phase, as the decrease of
the population following the initial onset of disturbance will be driven by temporary changes
in survival and reproduction, given that immigration and emigration are not considered in
this model. How the response to disturbance depends on the disturbance scenario used is a
pivotal topic for future research for which the current model is well-suited.

Bio-energetic models have been used to investigate the potential effects of disturbance on
vital rates in gray whales (2��	/��	��3� /��3��3� [57, 58]), blue whales (4
�
������/
 �3��3�3�
[20, 59]), elephant seals ($�/�3�5
 ������
 [6, 60]), humpback whales ($�5
���/
 ��6
�
�7
5��
� [61]), sperm whales ( 	0����/ �
�/����	
�3� [44, 45]) and long-finned pilot whales [21].
In all these studies, disturbance was assumed to result in lost energy intake or increased ener-
getic expenditure. These studies showed how reduced energy intake can lead to a prolonged
reproductive cycle, decreased calf survival, or reduced post-weaning survival, either through
reduced calf mass at weaning or early calf weaning. If energy intake is reduced further, female
survival is affected. For pilot whales, Hin et al [21] showed that disturbance in a density-inde-
pendent setting increased mortality of calves born to young females, which increased the age
at which females weaned their first calf and decreased 
�. These life history responses to distur-
bance are in contrast to those reported here. The difference is entirely attributable to the effect
of density dependence.

Marine mammal populations are generally assumed to be regulated by density-dependent
processes [62, 63] and density dependence is fundamental to the provisions of the US Marine
Mammal Protection Act [64], and the Revised Management Procedure used by the Interna-
tional Whaling Commission [65]. With the exception of colonially breeding pinnipeds, where
crowding and availability of suitable breeding sites may limit population size [66], most popu-
lations of marine mammals are assumed to be limited by prey / resource availability [25, 26,
67]. For example, Laws [68] attributed the multiple changes in the demographic rates of large
baleen whales in the Southern Ocean observed during the period of intensive commercial
whaling to a massive reduction in the consumption of krill (23�	
3��
 �3�3/�
) by these
species.

For mammals, most evidence of density effects on individual vital rates (�.�. survival and
reproduction) or fitness-related traits (�.5. body size / condition) comes from terrestrial mam-
mal populations. In ungulates, increased density is correlated with a reduction in adult body
mass [69], a decrease in juvenile survival and an increase in age of first reproduction [70–72].
A review on both large terrestrial herbivores and marine mammals showed that in 66 studies
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(36%), first-year survival was the most important density-dependent demographic parameter
[73]. For North Atlantic fin whales (4
�
������/
 �	0�
�3�), Williams et al. [50] showed that
��/ �
���
 plankton availability—which was inversely related to fin whale abundance–was posi-
tively related to blubber thickness, which in turn determined fin whale pregnancy rates. Den-
sity effects on female pregnancy rate, calf survival and age at first reproduction were produced
by our individual based population model (Fig 1), indicating that our model was able to cap-
ture some aspects of the dynamics of real-world populations. In addition, we have shown that
density dependence can systematically alter the response of populations to disturbance and
this calls for a better understanding of the processes that regulate natural populations of these
long-lived animals.

A recent analysis of survey data for North-East Atlantic long-finned pilot whales revealed
that the population has remained stable during the period 1987–2015 [41]. Although this cor-
responds to our assumption of a stationary population at carrying capacity, it is currently
unclear to what extent processes other than prey availability are responsible for density regula-
tion in this population. Many populations of marine mammals are faced with a multitude of
human-induced stressors [74–76] that might reduce their density below the carrying capacity
set by their environment. The way in which different stressors (�.5. noise disturbance, pollut-
ants, harvesting) interact to affect wildlife populations is an actively developing area of research
[15, 20, 45].

Further examination of the extent to which our results are contingent upon modeling
assumptions that affect the strength of the predator-prey coupling is required. In our modeled
system there is strong predator-prey coupling and the predator is assumed to be at a carrying
capacity determined by the productivity of its prey. In this setting, increased disturbance-
induced mortality among a subset of the whale population leads to reduction of top-down con-
trol and increased prey density. Real marine systems possess many features that might weaken
the interaction between predator and prey, such as spatio-temporal variability in prey produc-
tivity or seasonal movement of the predator. Also, competition by other predatory species can
prevent pilot whales profiting from increased prey availability in post-disturbance periods, and
thus reduce the potential for compensatory feeding. Furthermore, if disturbance also affects
the prey field, by causing prey movement, scattering of dense prey patches or prey mortality
[77–79], the potential for compensatory effect of disturbance will likely be reduced. Lastly, the
pilot whale foraging model described in Eq (3) assumes that prey intake rate is a linear func-
tion of prey density, although whales in good condition will reduce foraging effort. This linear
functional response implies that the prey intake rate of whales in poor body condition is not
limited by the time required for prey handling or searching. Incorporating more realistic activ-
ity budgets that capture the multitude of physiological constraints on foraging behavior of
deep-diving cetaceans [80, 81] will likely reduce the ability of individuals to regain lost
reserves. Further work that addresses these complexities will be required to obtain a more
comprehensive understanding of the population consequences of disturbance in a density-
dependent setting. Nevertheless, a decrease in population density due to non-lethal distur-
bance in a density-dependent setting is bound to translate into some positive, compensatory
effects on individual performance, regardless of the exact mechanism by which such density
dependence operates.
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