CP Properties of Higgs Boson Interactions with Top Quarks in the $t\bar{t}H$ and tH Processes Using $H \to \gamma\gamma$ with the ATLAS Detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.125.061802

Publication date
2020

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Aad, G., & ATLAS Collaboration (2020). CP Properties of Higgs Boson Interactions with Top Quarks in the $t\bar{t}H$ and tH Processes Using $H \to \gamma\gamma$ with the ATLAS Detector. Physical Review Letters, 125(6), [061802]. https://doi.org/10.1103/PhysRevLett.125.061802

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
CP Properties of Higgs Boson Interactions with Top Quarks in the \(\bar{t}tH \) and \(tH \) Processes Using \(H \to \gamma\gamma \) with the ATLAS Detector

G. Aad et al. (ATLAS Collaboration)

(Received 10 April 2020; accepted 15 June 2020; published 5 August 2020)

A study of the charge conjugation and parity (CP) properties of the interaction between the Higgs boson and top quarks is presented. Higgs bosons are identified via the diphoton decay channel \((H \to \gamma\gamma)\), and their production in association with a top quark pair \((\bar{t}tH)\) or single top quark \((tH)\) is studied. The analysis uses 139 fb\(^{-1}\) of proton–proton collision data recorded at a center-of-mass energy of \(\sqrt{s} = 13\) TeV with the ATLAS detector at the Large Hadron Collider. Assuming a CP-even coupling, the \(\bar{t}tH \) process is observed with a significance of 5.2 standard deviations. The measured cross section times \(H \to \gamma\gamma \) branching ratio is \(1.64^{+0.38}_{-0.36}\) \((\text{stat})^{+0.17}_{-0.14}\) \((\text{sys})\) \(\text{fb}\), and the measured rate for \(\bar{t}tH \) is \(1.43^{+0.33}_{-0.31}\) \((\text{stat})^{+0.21}_{-0.15}\) \((\text{sys})\) times the Standard Model expectation. The \(tH \) production process is not observed and an upper limit on its rate of 12 times the Standard Model expectation is set. A CP-mixing angle greater (less) than 43 \((-43)\)\(^\circ\) is excluded at 95\% confidence level.

DOI: 10.1103/PhysRevLett.125.061802

The observation of Higgs boson production in association with top quarks at the LHC [1,2] provides an opportunity to probe the charge conjugation and parity (CP) properties of the Yukawa coupling of the Higgs boson to the top quark. The Standard Model (SM) of particle physics predicts the Higgs boson to be a scalar particle \((\text{SM})\). The Yukawa coupling of the Higgs boson to the top quark. The presence of a \(J^{CP} = 0^{+} \) pseudoscalar admixture, which introduces a second coupling to the top quark, has not yet been excluded. Any measured CP-odd contribution would be a sign of physics beyond the SM and could account for the explanation of the observed baryon asymmetry of the universe. This Letter presents a search for CP violation in this coupling and measurements of the production rate of the Higgs boson, via its decay into two photons, in association with top quarks. Recently, the CMS Collaboration performed a similar study [3].

Studies of CP properties of the Higgs boson interactions with gauge bosons have been performed by the ATLAS and CMS experiments [4–9]; the results show no deviations from the SM predictions. However, these measurements probe the bosonic couplings in which CP-odd contributions enter only via higher-order operators that are suppressed by powers of \(1/\Lambda^2\) [10], where \(\Lambda\) is the scale of the new physics in an effective field theory (EFT). In the case of the Yukawa couplings, the CP-odd contributions are not suppressed by powers of \(1/\Lambda^2\).

The CP properties of the top Yukawa coupling can be probed directly using Higgs boson production in association with top quarks: \(\bar{t}tH \) and \(tH \) processes. The couplings impact the production rates [11–14] and some kinematic distributions. The \(tH \) rate is particularly sensitive to deviations from SM couplings due to destructive interference in the SM between diagrams where the Higgs boson radiates from a top quark and from a W boson. The presence of CP-mixing in the top Yukawa coupling also modifies the gluon–gluon fusion (ggF) production rate and the \(H \to \gamma\gamma \) decay rate.

This analysis is performed using 139 fb\(^{-1}\) of \(\sqrt{s} = 13\) TeV proton–proton \((pp)\) collision data recorded from 2015 to 2018 with the ATLAS detector. The ATLAS detector [15–17] is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and near 4\(\pi\) coverage in solid angle [18]. The trigger system consists of a hardware-based first-level trigger and a software-based high-level trigger [19]. Events used in this analysis were triggered by requiring two photons with a loose identification requirement [20] in the 2015–2016 data-taking period and transverse energies of at least 25 GeV and 35 GeV for the subleading and leading photons, respectively. Due to the greater instantaneous luminosity, the photon trigger identification requirement was tightened in the 2017–2018 data-taking period. The average trigger efficiency is over 98\% for events passing the full diphoton event selection for this analysis.

The EFT definition used in this Letter is provided by the Higgs characterization model [21], which is implemented in the MadGraph5_AMC@NLO generator [22]. Within
this model, the term in the effective Lagrangian that describes the top Yukawa coupling is

\[\mathcal{L} = - \frac{m_t}{v} \left(\bar{t}_i \kappa_i \cos(\alpha) + i \sin(\alpha) \gamma_5 t_j \right) H \]

where \(m_t \) is the top quark mass, \(v \) is the Higgs vacuum expectation value, \(\kappa_i \) (\(> 0 \)) is the top Yukawa coupling parameter, and \(\alpha \) is the \(CP \)-mixing angle. The SM corresponds to a \(CP \)-even coupling with \(\alpha = 0 \) and \(\kappa_1 = 1 \), while a \(CP \)-odd coupling is realized when \(\alpha = 90^\circ \).

Simulated \(\bar{t} t \) and \(t \bar{t} \) samples were generated using \textsc{MadGraph5}@\textsc{NLO} 2.6.2 at next-to-leading order in QCD for different \(\alpha \) and \(\kappa_i \) (for \(t \bar{t} \)) values, with the \textsc{NNPDF30NLO} \cite{28} parton distribution function (PDF) set used for the matrix element (ME) evaluation, and interfaced to \textsc{Pythia 8} \cite{29} using the \textsc{NNPDF23LO} \cite{25} PDF set for parton showering (PS). The \(A_{14} \) parameter set \cite{30}, tuned to data, was used for both PS and underlying event (UE). From these samples, the yields for \(\bar{t} t \) and \(t \bar{t} \) are parameterized as functions of \(\alpha \) and \(\kappa_1 \), which are used in the statistical interpretations. Samples for other Higgs boson production processes, \(ggF \) \cite{27}, vector-boson fusion (VBF) \cite{31}, and vector-boson associated production (\(VH \)) \cite{29,30} were produced with \textsc{powheg-box} v2 generator \cite{32} using the PDF4LHC15 PDF set \cite{32} for ME, with the \textsc{AZNLO} set of tuned parameters \cite{33} and \textsc{pythia 8} for PS using the CTEQ6L1 \cite{34} PDF set. Samples generated with Herwig 7 \cite{35} are used for systematic uncertainty studies that involve modeling of the PS, hadronization and UE. The simulated Higgs boson samples are normalized to the SM cross-section (Ref. \cite{36–54}) times the SM branching ratio (BR) to diphotons (Ref. \cite{36,55–58}) with a Higgs boson mass of 125.09 GeV \cite{59}, and specifically for \(\bar{t} t \), the SM predicted cross section times the \(H \rightarrow \gamma\gamma \) BR is \(\sigma_{\bar{t}t} \times B_{\gamma\gamma} = 1.15^{+0.09}_{-0.12} \) fb.

Although this analysis relies on a data-driven approach for background estimations, a simulated background sample for the \(\bar{t} t \gamma\gamma \) process was generated to optimize the event selection and develop the background model. This sample was generated using the \textsc{MadGraph5}@\textsc{NLO} generator, with the \textsc{NNPDF23LO} PDF set and showered with \textsc{pythia 8}.

All generated Higgs boson events were passed through a full simulation of the ATLAS detector response \cite{60} using \textsc{geant 4} \cite{61}. The \(\bar{t} t \gamma\gamma \) events were processed with a fast simulation in which the full simulation of the calorimeter is replaced with a parameterization of the calorimeter response \cite{62}. The effects of multiple \(pp \) interactions in the same or neighboring bunch crossings are included using events generated with \textsc{pythia 8}. Events are weighted such that the distribution of the average number of interactions per bunch crossing matches that observed in data, which is typically around 30 to 40.

Events are selected by requiring two isolated photon candidates with transverse momenta \(p_T \) greater than 35 GeV and 25 GeV. Both photons must satisfy the tight identification requirement \cite{20}. The identification is constructed from a cut-based selection using the electromagnetic shower shape variables. The leading (subleading) photon must have \(p_T / m_{\gamma\gamma} > 0.35 \) (0.25), and the diphoton invariant mass \(m_{\gamma\gamma} \) is required to be in the range \(m_{\gamma\gamma} \in [105, 160] \) GeV. Jets are reconstructed using the anti-\(k_t \) algorithm \cite{63} with a radius parameter of \(R = 0.4 \). Events are required to have at least one jet with \(p_T > 25 \) GeV containing a \(b \)-hadron (\(b \)-jet), identified using a \(b \)-tagging algorithm with an efficiency of 77\% and a mistagging rate of 0.9\% for light-flavor jets \cite{64}.

Selected events are sorted into two \(\bar{t} t \)-enriched regions. The “Lep” region, targeting top quark decays in which at least one of the resulting \(W \) bosons decays leptonically, requires events to have at least one isolated lepton (muon or electron) candidate with \(p_T > 15 \) GeV passing medium identification requirements (Refs. \cite{20,65}). The “Had” region targets hadronic top quark decays (as well as top quark decays to both hadronically decaying \(\tau \) leptons and unreconstructed leptons) and requires events to have at least two additional jets with \(p_T > 25 \) GeV and no selected lepton.

A boosted decision tree (BDT) used for the top quark reconstruction, denoted by “Top Reco BDT,” is trained with the \(\bar{t} t \) sample by using the \textsc{xgboost} package \cite{63} to extract the three-jet (triplet) combination best matching the hadronic decay products of a top quark. This BDT uses \(p_T, \eta, \phi \), and the energy \(E \) of \(W \) boson and \(b \) jet (where the \(W \) boson candidate is formed by a pair of jets). Furthermore, this BDT uses the angular distance \(\Delta R_{WB} \) between the \(W \) boson and \(b \) jet, \(\Delta R_{jj} \) between the two jets composing the \(W \) boson candidate, and \(b \)-tagging information about all three jets in the triplet and the invariant mass of the triplet. For events in the Had region, the triplet with the highest Top Reco BDT score is taken as the primary top quark candidate (\(t_1 \)). In the Lep region, for events containing only one lepton, a \(W \) boson candidate is first constructed from the lepton and missing transverse momentum \(E_T^{\text{miss}} \). Then \(t_1 \) is reconstructed from this leptonic \(W \) boson candidate and the jet giving the highest Top Reco BDT score. No top quark candidate is reconstructed for events containing more than one lepton. After \(t_1 \) is selected, if there are at least three additional jets, a second top quark candidate (\(t_2 \)) is constructed by selecting the triplet with the highest BDT score from the remaining jets; if there is only one or two additional jets, then \(t_2 \) is taken as the sum of the remaining jets; otherwise no \(t_2 \) is reconstructed.

To improve the analysis sensitivity, selected events are categorized using partitions of a two-dimensional BDT space. Two independent BDTS are trained using the \textsc{xgboost} algorithm: “Background Rejection BDT” and “CP BDT,” and each of them is trained separately in the Had and Lep regions. The Background Rejection BDT is trained to separate \(\bar{t} t \)-like events from background that
are mainly nonresonant diphoton production processes, including $\gamma\gamma + \text{jets}$ and $t\bar{t}\gamma\gamma$. A detailed discussion of this methodology is given in Ref. [1]. The CP BDT is trained to separate CP-even from CP-odd couplings using $t\bar{t}H$ and tH processes. The CP BDT uses p_T and η of the diphoton system, p_T and η of t_1 and t_2, their azimuthal angles calculated relative to the diphoton system $\phi_{t_1t_2}$, $\phi_{t_1t_2}$, as well as their Top Reco BDT scores. It also uses differences in pseudorapidity and azimuthal angle $\Delta\eta_{t_1t_2}$ and $\Delta\phi_{t_1t_2}$ between the two top quark candidates, the invariant mass of the diphoton and primary top quark system $m_{t\bar{t}t_1}$, the invariant mass of the two top quark candidates $m_{t_1t_2}$, the scalar p_T sum of jets H_T, the E_T^{miss} divided by $\sqrt{H_T}$, the number of jets and b-tagged jets, and the minimum and second smallest angular differences ΔR_{ij} between a photon and a jet.

Figure 1 shows the BDT discriminant distributions in the data as well as those expected from CP-even and CP-odd Higgs boson signals in the Had region. The discriminating power can be seen by comparing the CP-even, CP-odd, and data shapes. Events with low values of the Background Rejection BDT response are removed, and the remaining events are categorized. The number of categories and the boundary locations are chosen to optimize the $t\bar{t}H$ significance and the discriminating power between the CP-even and CP-odd cases. There are 20 categories in total: 12 in the Had region and 8 in the Lep region.

The results are impacted by three distinct types of uncertainties: the statistical uncertainty associated with the data, theoretical modeling systematic uncertainties, and experimental systematic uncertainties. The first dominates. Theoretical uncertainties for $t\bar{t}H$ and tH rates in the various categories are assessed. The following effects are considered: the value of the strong coupling constant; alternative generator for the PS, hadronization, and UE; and PDF uncertainty. In the three (two) most CP-even sensitive Had (Lep) categories, each of these uncertainties is less than 10%. The background from ggF is less than 0.25 events in each of the most sensitive categories; conservative uncertainties, including a 100% theoretical uncertainty in the modeling of the radiation of additional heavy-flavor jets, are assigned to it in the Had region. The same heavy-flavor uncertainty is also assigned to the VBF and VH processes.

Experimental uncertainties arise from identification and isolation criteria for photons, electrons, and muons and from their energy scale and resolution [20,65]. Jets have uncertainties from b tagging [64] and vertex identification [67] in addition to the energy scale and resolution [68]. Uncertainties in the measurement of E_T^{miss} [69], which is used in the leptonic categories, are also included. These experimental effects impact the expected event yield in each category and can cause events to migrate between the categories. The overall uncertainty is less than 20% in each category. In addition, uncertainties in the luminosity [70] obtained using the LUCID-2 detector [71] and trigger efficiency [19] are responsible for uncertainties in the overall event yield of 1.7% and 0.4%, respectively.

A simultaneous maximum-likelihood fit is performed to the $m_{\gamma\gamma}$ spectra in all the categories. Signal and background shapes are modeled by analytic functions using the strategy discussed in Ref. [6]. The chosen background function is
based on the simulated $t\bar{t}γγ$ events following the procedure in Ref. [1], which imposes stringent conditions on potential biases in the extracted signal yield to avoid losses in sensitivity. The parameters of the background model and background normalization in each category are left free in the fit. The profile likelihood ratio is used as the test statistic, and the asymptotic approximation [72] is used for statistical interpretations. Yields from $t\bar{t}H$ and tH are extracted after subtracting the very small contribution from other Higgs boson production modes using their SM expected values. Figure 2 shows the distributions of the reconstructed masses for the diphoton system and primary top quark, and the reconstructed primary top quark mass versus reconstructed Higgs boson mass in the data events. The right panels show the projections onto the Higgs boson mass and primary top quark mass axes. In the upper panel, the fitted continuum background (blue), the total background including non-$t\bar{t}H/\gamma H$ Higgs boson production (green), and the total fitted signal plus background (red) are shown. The error bars on data are statistical.

Extraction of values for the top Yukawa coupling requires additional information. In particular, the BR of $H → γγ$ is needed to recover the total Higgs boson production rate, and the Higgs boson coupling to gluons is needed to account for the small ggF background. The corresponding Higgs boson coupling modifiers $κ_γ$ and $κ_τ$ are measured in the Run 2 Higgs boson coupling combination [76]. This combination includes the first 80 fb$^{-1}$ of data used in this paper, and $t\bar{t}H$ and tH analyses from other decay channels. The combination analysis is repeated without the $t\bar{t}H$ and tH inputs, and this result is used to constrain $κ_γ$ and $κ_τ$. The impact on $κ_γ$ and $κ_τ$ of removing input $t\bar{t}H$ and tH analyses from the combination is small. The correlation of the systematic uncertainties between the Higgs boson coupling combination and this analysis is neglected. The correlation has a small impact on $κ_τ$, and a similar effect on $κ_γ$ as on signal strength reported in Ref. [76]. This analysis is insensitive to the potential modifications of ggF kinematics due to CP mixing, which is therefore neglected. The results of the fit for $κ_γ\cos(α)$ and $κ_γ\sin(α)$ are shown as contours in Fig. 3. A limit on $α$ is set without prior constraint on $κ_γ$ in the fit: $|α| > 43°$ is excluded at 95% CL. The expected exclusion is $|α| > 63°$ under the CP-even hypothesis. A value of $α = 90° (180°)$ is excluded at $3.9σ (2.5σ)$. A comparable study from the CMS experiment excluded $α = 90°$ at $3.2σ$ [3]. If $κ_γ$ and $κ_τ$ are parameterized using $α$ and $κ_γ$ [11], the observed (expected) exclusion is $|α| > 43° (56°)$ without prior constraint on $κ_γ$ in the fit. The impact of the systematic uncertainties is negligible.
In summary, the production rate of the Higgs boson in association with top quarks is measured. The non-$t\bar{t}H$ hypothesis is rejected with a significance of 5.2σ, and the measured $\sigma_{t\bar{t}H} \times B_{\gamma\gamma} = 1.64^{+0.38}_{-0.36} (\text{stat})^{+0.17}_{-0.14} (\text{sys})$ fb. The measured rate for $t\bar{t}H$ is $1.43^{+0.33}_{-0.31} (\text{stat})^{+0.21}_{-0.21} (\text{sys})$ times the SM expectation. The $t\bar{t}$ process is not observed, and an upper limit of 12 times the SM expectation is set on its rate at 95% CL. All measurements are consistent with the SM expectations, and the possibility of CP-odd couplings between the Higgs boson and top quark is severely constrained. A pure CP-odd coupling is excluded at 3.9σ, and $|\alpha| > 43^\circ$ is excluded at 95% CL.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MINSW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; and DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions, and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/ GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [77].

FIG. 3. Two-dimensional likelihood contours for $\kappa_1 \cos(\alpha)$ and $\kappa_2 \sin(\alpha)$ with ggF and $H \to \gamma\gamma$ constrained by the Higgs boson coupling combination.

[76] CMS Collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected with the ATLAS experiment, Phys. Rev. D 101, 012002 (2020).

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul, Turkey
4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, University of Texas at Austin, Austin, Texas, USA
12Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12bIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12cDepartment of Physics, Bogazici University, Istanbul, Turkey
12dDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15aPhysics Department, Tsinghua University, Beijing, China
15bDepartment of Physics, Nanjing University, Nanjing, China
15cUniversity of Chinese Academy of Science (UCAS), Beijing, China
15dInstitute of Physics, University of Belgrade, Belgrade, Serbia
16Department of Physics and Technology, University of Bergen, Bergen, Norway
17Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
19Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
21School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22aFacultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, Colombia
22bDepartamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
23aINFN Bologna and Universitá di Bologna, Dipartimento di Fisica, Italy
23bINFN Sezione di Bologna, Italy
24Physikalisches Institut, Universität Bonn, Bonn, Germany
25Department of Physics, Boston University, Boston, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27Transilvania University of Brasov, Brasov, Romania
28aII Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
28bDepartment of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31California State University, California, USA
32Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33aDepartment of Physics, University of Cape Town, Cape Town, South Africa
33bThembalabs, Western Cape, South Africa
33cUniversity Politehnica Bucharest, Bucharest, Romania
34National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
35University Politehnica Bucharest, Bucharest, Romania
36West University in Timisoara, Timisoara, Romania
37Department of Physics, University of Cape Town, Cape Town, South Africa
38aFaculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
39Physics Department, Brookhaven National Laboratory, Upton, New York, USA
40Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
41California State University, California, USA
42Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
43aDepartment of Physics, University of Cape Town, Cape Town, South Africa
43bThembalabs, Western Cape, South Africa
44Department of Physics, University of Cape Town, Cape Town, South Africa
45aPhysics Department, University of Cape Town, Cape Town, South Africa
45bThembalabs, Western Cape, South Africa
46Department of Physics, University of Cape Town, Cape Town, South Africa
47aPhysics Department, University of Cape Town, Cape Town, South Africa
47bThembalabs, Western Cape, South Africa
48Department of Physics, University of Cape Town, Cape Town, South Africa
49aPhysics Department, University of Cape Town, Cape Town, South Africa
49bThembalabs, Western Cape, South Africa
50Department of Physics, University of Cape Town, Cape Town, South Africa
51aPhysics Department, University of Cape Town, Cape Town, South Africa
51bThembalabs, Western Cape, South Africa
52aDepartment of Physics, University of Cape Town, Cape Town, South Africa
52bThembalabs, Western Cape, South Africa
53Department of Physics, University of Cape Town, Cape Town, South Africa
54Physics Department, University of Cape Town, Cape Town, South Africa
55Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
56Department of Physics, University of Cape Town, Cape Town, South Africa
57Department of Physics, University of Cape Town, Cape Town, South Africa
58aDepartment of Physics, University of Cape Town, Cape Town, South Africa
58bThembalabs, Western Cape, South Africa
59Department of Physics, University of Cape Town, Cape Town, South Africa
60aDepartment of Physics, University of Cape Town, Cape Town, South Africa
60bThembalabs, Western Cape, South Africa
61Department of Physics, University of Cape Town, Cape Town, South Africa
62Physics Department, University of Cape Town, Cape Town, South Africa
63aDepartment of Physics, University of Cape Town, Cape Town, South Africa
63bThembalabs, Western Cape, South Africa
64Department of Physics, University of Cape Town, Cape Town, South Africa
65Physics Department, University of Cape Town, Cape Town, South Africa
66Chemistry Department, University of Cape Town, Cape Town, South Africa
67Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
68Department of Physics, University of Cape Town, Cape Town, South Africa
69Department of Physics, University of Cape Town, Cape Town, South Africa
70Physics Department, University of Cape Town, Cape Town, South Africa
71Department of Physics, University of Cape Town, Cape Town, South Africa
72Department of Physics, University of Cape Town, Cape Town, South Africa
73Physics Department, University of Cape Town, Cape Town, South Africa
74Thembalabs, Western Cape, South Africa
75Department of Physics, University of Cape Town, Cape Town, South Africa
76Physics Department, University of Cape Town, Cape Town, South Africa
77Department of Physics, University of Cape Town, Cape Town, South Africa
78Physics Department, University of Cape Town, Cape Town, South Africa
79Department of Physics, University of Cape Town, Cape Town, South Africa
80Department of Physics, University of Cape Town, Cape Town, South Africa
81Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
82Department of Physics, University of Cape Town, Cape Town, South Africa
83Physics Department, University of Cape Town, Cape Town, South Africa
84Thembalabs, Western Cape, South Africa
85Department of Physics, University of Cape Town, Cape Town, South Africa
86Physics Department, University of Cape Town, Cape Town, South Africa
87Department of Physics, University of Cape Town, Cape Town, South Africa
88Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
89Department of Physics, University of Cape Town, Cape Town, South Africa
90Physics Department, University of Cape Town, Cape Town, South Africa
91Department of Physics, University of Cape Town, Cape Town, South Africa
92Physics Department, University of Cape Town, Cape Town, South Africa
93Department of Physics, University of Cape Town, Cape Town, South Africa
94Thembalabs, Western Cape, South Africa
95Department of Physics, University of Cape Town, Cape Town, South Africa
96Physics Department, University of Cape Town, Cape Town, South Africa
97Department of Physics, University of Cape Town, Cape Town, South Africa
98Physics Department, University of Cape Town, Cape Town, South Africa
99Department of Physics, University of Cape Town, Cape Town, South Africa
100Thembalabs, Western Cape, South Africa
101Department of Physics, University of Cape Town, Cape Town, South Africa
102Physics Department, University of Cape Town, Cape Town, South Africa
103Department of Physics, University of Cape Town, Cape Town, South Africa
104Physics Department, University of Cape Town, Cape Town, South Africa
105Department of Physics, University of Cape Town, Cape Town, South Africa
106Department of Physics, University of Adelaide, Adelaide, Australia
33c Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
33d University of South Africa, Department of Physics, Pretoria, South Africa
33e School of Physics, University of the Witwatersrand, Johannesburg, South Africa
34 Department of Physics, Carleton University, Ottawa, Ontario, Canada

35a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
35b Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
35c Faculté des Sciences Semlalia, Université Mohamed Premier and LPTPM, Oujda, Morocco
35d Faculté des sciences, Université Mohammed V, Rabat, Morocco
35e CERN, Geneva, Switzerland
35f Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
35g LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
35h Nevis Laboratory, Columbia University, Irvington, New York, USA
35i Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
35j Dipartimento di Fisica, Università della Calabria, Rende, Italy
35k INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
35l Physics Department, Southern Methodist University, Dallas, Texas, USA
35m Physics Department, University of Texas at Dallas, Richardson, Texas, USA
35n National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
35o Department of Physics, Stockholm University, Sweden
35p Oskar Klein Centre, Stockholm, Sweden
35q Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
35r Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
35s Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
35t Department of Physics, Duke University, Durham, North Carolina, USA
35u SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
35v INFN e Laboratori Nazionali di Frascati, Frascati, Italy
35w Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
35x II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
35y Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
35z Dipartimento di Fisica, Università di Genova, Genova, Italy
35aa INFN Sezione di Genova, Italy
35ab II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
35ac SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
35ad LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
35ae Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
35af Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, Department of Science and Technology of China, Hefei, China
35ag Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
35ah School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
35ai Tsung-Dao Lee Institute, Shanghai, China
35aj Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
35ak Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
35al Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
35am Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
35an Department of Physics, University of Hong Kong, Hong Kong, China
35ao Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
35ap Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
35aq JICLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
35ar Department of Physics, Indiana University, Bloomington, Indiana, USA
35as INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
35at ICTP, Trieste, Italy
35au Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
35av INFN Sezione di Lecce, Italy
35aw Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
35ax INFN Sezione di Milano, Italy
35ay Dipartimento di Fisica,Università di Milano, Milano, Italy
<table>
<thead>
<tr>
<th>Institution / Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre Kurchatov Institute</td>
</tr>
<tr>
<td>Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”</td>
</tr>
<tr>
<td>Physical Review Letters</td>
</tr>
<tr>
<td>Russian Research Center, Joint Institute for Nuclear Research</td>
</tr>
<tr>
<td>Institute for High Energy Physics of the National Research Centre Kurchatov Institute</td>
</tr>
<tr>
<td>Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”,</td>
</tr>
<tr>
<td>Department of Physics, New York University, New York, New York, USA</td>
</tr>
<tr>
<td>Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan</td>
</tr>
<tr>
<td>Ohio State University, Columbus, Ohio, USA</td>
</tr>
<tr>
<td>Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA</td>
</tr>
<tr>
<td>Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA</td>
</tr>
<tr>
<td>Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic</td>
</tr>
<tr>
<td>Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA</td>
</tr>
<tr>
<td>Graduate School of Science, Osaka University, Osaka, Japan</td>
</tr>
<tr>
<td>Department of Physics, University of Oslo, Oslo, Norway</td>
</tr>
<tr>
<td>Department of Physics, Oxford University, Oxford, United Kingdom</td>
</tr>
<tr>
<td>Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA</td>
</tr>
<tr>
<td>Departamento de Instrumentación e Física Experimental de Partículas—LIP, Lisboa, Portugal</td>
</tr>
<tr>
<td>Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal</td>
</tr>
<tr>
<td>Departamento de Física, Universidade de Coimbra, Coimbra, Portugal</td>
</tr>
<tr>
<td>Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal</td>
</tr>
<tr>
<td>Departamento de Física, Universidade do Minho, Braga, Portugal</td>
</tr>
<tr>
<td>Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain</td>
</tr>
<tr>
<td>Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal</td>
</tr>
<tr>
<td>Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal</td>
</tr>
<tr>
<td>Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic</td>
</tr>
<tr>
<td>Czech Technical University in Prague, Prague, Czech Republic</td>
</tr>
<tr>
<td>Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic</td>
</tr>
<tr>
<td>Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom</td>
</tr>
<tr>
<td>IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA</td>
</tr>
<tr>
<td>Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile</td>
</tr>
<tr>
<td>Universidad Andres Bello, Department of Physics, Santiago, Chile</td>
</tr>
<tr>
<td>Instituto de Alta Investigación, Universidad de Tarapacá, Chile</td>
</tr>
<tr>
<td>Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile</td>
</tr>
<tr>
<td>Department of Physics, University of Washington, Seattle, Washington, USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom</td>
</tr>
<tr>
<td>Department of Physics, Shinshu University, Nagano, Japan</td>
</tr>
<tr>
<td>Department Physik, Universität Siegen, Siegen, Germany</td>
</tr>
<tr>
<td>Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada</td>
</tr>
<tr>
<td>SLAC National Accelerator Laboratory, Stanford, California, USA</td>
</tr>
<tr>
<td>Physics Department, Royal Institute of Technology, Stockholm, Sweden</td>
</tr>
<tr>
<td>Departments of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA</td>
</tr>
<tr>
<td>Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom</td>
</tr>
<tr>
<td>School of Physics, University of Sydney, Sydney, Australia</td>
</tr>
<tr>
<td>Institute of Physics, Academia Sinica, Taipei, Taiwan</td>
</tr>
<tr>
<td>E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia</td>
</tr>
<tr>
<td>High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia</td>
</tr>
<tr>
<td>Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel</td>
</tr>
<tr>
<td>Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel</td>
</tr>
<tr>
<td>Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece</td>
</tr>
<tr>
<td>International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan</td>
</tr>
<tr>
<td>Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan</td>
</tr>
<tr>
<td>Department of Physics, Tokyo Institute of Technology, Tokyo, Japan</td>
</tr>
</tbody>
</table>
Tomsk State University, Tomsk, Russia
Department of Physics, University of Toronto, Toronto, Ontario, Canada
\(^{167a}\)TRIUMF, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
\(^{168}\)Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana, Illinois, USA
\(^{167}b\)Also at Department of Physics, King’s College London, London, United Kingdom.
\(^{167}c\)Also at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain.
\(^{167}d\)Also at TRIUMF, Vancouver, British Columbia, Canada.
\(^{167}b\)Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
\(^{167}e\)Also at Physics Department, An-Najah National University, Nablus, Palestine.
\(^{167}f\)Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
\(^{167}g\)Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
\(^{167}h\)Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
\(^{167}i\)Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
\(^{167}j\)Also at Università di Napoli Parthenope, Napoli, Italy.
\(^{167}k\)Also at Institute of Particle Physics (IPP), Vancouver, Canada.
\(^{167}l\)Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy.
\(^{167}m\)Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
\(^{167}n\)Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
\(^{167}o\)Also at Department of Physics, California State University, Fresno, USA.
\(^{167}p\)Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
\(^{167}q\)Also at Centro Studi e Ricerche Enrico Fermi, Italy.
\(^{167}r\)Also at Department of Physics, California State University, East Bay, USA.
\(^{167}s\)Also at Institut Català de Recerca i Estudis Avançats, ICREA, Barcelona, Spain.
\(^{167}t\)Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France.
\(^{167}u\)Also at Graduate School of Science, Osaka University, Osaka, Japan.
\(^{167}v\)Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
\(^{167}w\)Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.
\(^{167}x\)Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
\(^{167}y\)Also at CERN, Geneva, Switzerland.
\(^{167}z\)Also at Joint Institute for Nuclear Research, Dubna, Russia.
\(^{167}a\)Also at Hellenic Open University, Patras, Greece.
\(^{167}b\)Also at The City College of New York, New York, New York, USA.
\(^{167}c\)Also at Department of Physics, California State University, Sacramento, USA.
\(^{167}d\)Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
\(^{167}e\)Also at Louisiana Tech University, Ruston, Louisiana, USA.
\(^{167}f\)Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
\(^{167}g\)Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
\(^{167}h\)Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
\(^{167}i\)Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
\(^{167}j\)Also at National Research Nuclear University MEPhI, Moscow, Russia.

061802-20
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.