Measurement of the $\bar{t}t$ production cross-section in the lepton+jets channel at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS Collaboration

DOI
10.1016/j.physletb.2020.135797

Publication date
2020

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):
Measurement of the $t\bar{t}$ production cross-section in the lepton+jets channel at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS Collaboration *

A R T I C L E I N F O

Article history:
Received 24 June 2020
Received in revised form 4 September 2020
Accepted 17 September 2020
Available online 22 September 2020
Editor: M. Doser

A B S T R A C T

The top anti-top quark production cross-section is measured in the lepton+jets channel using proton-proton collision data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one charged lepton and four or more jets in the final state, with at least one jet containing b-hadrons, are used to determine the $t\bar{t}$ production cross-section through a profile-likelihood fit. The inclusive cross-section is measured to be $\sigma_{\text{inf}} = 830 \pm 0.4$ (stat.) ± 36 (syst.) ± 14 (lumi.) pb with a relative uncertainty of 4.6%. The result is consistent with theoretical calculations at next-to-next-to-leading order in perturbative QCD. The fiducial $t\bar{t}$ cross-section within the experimental acceptance is also measured.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The top quark is the heaviest elementary particle in the Standard Model (SM), with a mass m_t close to the electroweak symmetry breaking scale ~ 1 TeV. Studies of top-quark production and decays provide a precise probe of the SM as well as its extensions [3]. At the CERN Large Hadron Collider (LHC), top quarks are primarily produced in quark–antiquark pairs ($t\bar{t}$) and form an important background in many searches for physics beyond the SM. Thus, a precise measurement of the $t\bar{t}$ cross-section, and comparison with theoretical predictions of high precision, are a critical part of the LHC physics programme.

A theoretical calculation of the $t\bar{t}$ cross-section, σ_{inf}, is available at next-to-next-to-leading order (NNLO) in quantum chromodynamics (QCD). It includes the resummation of the next-to-next-to-leading logarithmic (NNLL) soft-gluon terms [4–9] and predicts $\sigma_{\text{inf}} = 832^{+20}_{-29}$ (scale) ± 35 (PDF + α_S) pb in proton–proton (pp) collisions at a centre-of-mass energy of 13 TeV, as calculated by the $T_{\text{cdf++}}$ (v2.0) program [10], using the MSTW2008 NNLO PDF set [11,12] as the central PDF set and assuming $m_t = 172.5$ GeV. The scale uncertainty was determined from the envelope of predictions with the QCD renormalisation and factorisation scales varied independently up or down by a factor of two. The combined uncertainty due to the parton distribution functions (PDFs) and the strong coupling constant, α_S, was calculated following the PDF4LHC prescription [13] with the MSTW2008 NNLO, CT10 NNLO [14,15] and NNPDF2.3 5fFFN NNLO [16] PDF sets.

Measurements of inclusive σ_{inf} at 7, 8 and 13 TeV were performed by both the ATLAS [17–19] and CMS [20–24] collaborations. All measurements are consistent with NNLO+NNLL QCD predictions. Additionally, the CMS collaboration performed a measurement of σ_{inf} at $\sqrt{s} = 13$ TeV [25]. At $\sqrt{s} = 13$ TeV, the ATLAS Collaboration used a data sample of 36.1 fb$^{-1}$ and events with an opposite-charge electron–muon pair in the final state to obtain $\sigma_{\text{inf}} = 836.4 \pm 3.6$ (stat.) ± 11.5 (syst.) ± 15.7 (lumi.) ± 1.9 (beam) pb [26], giving a total relative uncertainty of 2.4%.

This Letter documents measurements of the $t\bar{t}$ cross-sections in the full phase space (inclusive) and in a phase space defined to be close to the experimental measurement range (fiducial) at $\sqrt{s} = 13$ TeV, using the full pp dataset collected during 2015–2018. It targets the lepton+jets $t\bar{t}$ decay mode, where one W boson originating from the top quark decays leptonically and the other W boson decays hadronically, i.e. $t\bar{t} \rightarrow W^+W^-bb \rightarrow \ell v\nu\ell v\ell$, producing a final state with one high-momentum electron or muon and four jets, two of which are b-quark-initiated jets. A small contribution from $t\bar{t}$ events with both W bosons decaying leptonically producing the same final state due to one lepton being out of acceptance is treated as signal. A profile-likelihood fit to data in three non-overlapping regions is employed to perform the measurement.

The study presented in this letter probes a final state that is complementary to the one explored in Ref. [26] and is sensitive to different $t\bar{t}$ modelling uncertainties, e.g. uncertainties related to quark jets, the understanding of which is mandatory for a large

1 Events involving $W \rightarrow \tau\nu$ decays with a subsequent decay of the τ lepton into $\nu\nu\nu\nu$ or $\nu\nu\nu\nu$ are included in the signal.
number of top-quark precision measurements and searches beyond the SM.

2. ATLAS detector

ATLAS [27–29] is a multipurpose particle detector designed with a forward–backward symmetric cylindrical geometry and nearly full 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range |η| < 2.5 and is composed of silicon pixel, silicon microstrip, and transition radiation tracking (TRT) detectors. Lead-liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter covering the central pseudorapidity range (|η| < 1.7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to |η| = 4.9. The muon spectrometer surrounds the calorimeters and is based on three large air-core toroidal superconducting magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to keep the accepted event rate below 100 kHz [30]. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average.

3. Data and simulation samples

The analysis is performed using the full Run 2 LHC pp collision data sample at √s = 13 TeV recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb−1 after data quality requirements [31] are imposed. Events are required to pass a single-electron or single-muon trigger with thresholds that were progressively raised during the data collection period to account for the increase of instantaneous luminosity.

Monte Carlo (MC) simulations are used to optimise the analysis and to evaluate efficiencies, fractions and uncertainties in tt signal and all backgrounds except for the multijet background that is estimated using a data-driven technique. The effect of multiple interactions in the same and neighbouring bunch crossings (pile-up) was modelled by overlaying the original hard-scattering event with simulated inelastic pp events generated by Pythia 8.186 [32] using the NNPDF3.0 LO set of PDFs [16] and parameter values set according to the A3 tune [33].

The production of tt events was modelled using the next-to-leading-order (NLO) matrix element (ME) implemented in the HVQ program [34,35] from the POWHEG-Box v2 [36–38] generator with the NNPDF3.0 NLO [39] PDF and the $h_{	ext{tamp}}$ parameter set to 1.5 m_t [40]. The tt sample is normalised to the NNLO+NLL cross-section. The single-top-quark t-channel, s-channel and tW associated production processes were also modelled at NLO in QCD using POWHEG-Box v2. For all top-quark processes, Pythia 8.230 [41], using the A14 tune [42] and the NNPDF2.3 LO PDF set, was interfaced to POWHEG-Box v2 to simulate the parton shower and hadronisation. The diagram removal scheme [43] was employed in the tW simulation to handle the interference with tt production [40].

The V+jets (V = W, Z) backgrounds were simulated with the SHERPA v2.2.1 [44] generator using NLO-accurate MEs for up to two jets, and MEs accurate to leading order (LO) for up to four jets calculated with the Comix [45] and OpenLoops [46,47] libraries. They were matched with the SHERPA parton shower [48] using the MEPS@NLO prescription [49–52] and the tune developed by the SHERPA authors. Diboson production was generated using SHERPA v2.2.2 with MEs computed at NLO accuracy in QCD for up to one additional parton and at LO accuracy for up to three additional partons. The NNPDF3.0 NNLO PDF set [39] was used for the V+jets and diboson samples. The production of ttH and ttV events were modelled at NLO using the POWHEG-Box v2 and MadGraph5_aMC@NLO v2.3.3 [53] generators, respectively, with the NNPDF3.0 NLO PDF set. Pythia 8.230 with the A14 tune and the NNPDF3.0 LO PDF was used to simulate the parton showers.

All simulated background samples are normalised to their cross-sections, computed to the highest order available in perturbation theory. The top-quark mass is set to $m_t = 172.5$ GeV in all simulated samples. The EvtGen v1.6.0 program [54] was used to simulate the decay of bottom and charm hadrons for all event generators except SHERPA.

The nominal tt signal and background samples were processed through the ATLAS simulation software [55] based on GEANT4 [56]. Some of the alternative tt samples used to evaluate systematic uncertainties were processed through a fast detector simulation making use of parameterised showers in the calorimeters [57]. Corrections are applied to the simulated events so that the selection efficiencies, energy scales and resolutions of particle candidates match those determined from data control samples.

4. Object selection

The following sections describe the detector- and particle-level objects used in the inclusive and fiducial cross-section measurements.

4.1. Detector-level objects

Electron candidates are reconstructed from energy clusters in the EM calorimeter that match a reconstructed track. Electrons are identified with a likelihood method [58], and are required to meet the tight identification criterion based on shower shapes in the EM calorimeter, track quality and detection of transition radiation produced in the TRT. Electrons are required to have a calorimeter cluster satisfying $|\eta_{\text{clust}}| < 2.47$. Additionally, electrons in the transition region between barrel and endcap calorimeters with 1.37 < $|\eta_{\text{clust}}| < 1.52$ are excluded. The electron candidates have to pass p_T- and η-dependent isolation requirements based on the track and calorimeter activity around them. Muons are reconstructed using information from both the inner detector and the muon spectrometer. Muon candidates are required to have $|\eta| < 2.5$, to pass medium quality requirements [39] and fulfill isolation criteria based on the calorimeter and tracking information: the calorimeter cluster energy within a cone of size of $\Delta R = 0.2$ around the muon track divided by the muon p_T must be smaller than 0.15 and the ratio of the summed transverse momenta of additional tracks within a cone of $\Delta R = 0.3$ to the muon p_T must be smaller than 0.04. Selected electrons (muons) must have a transverse impact parameter significance $|d_0/d_0| < 5.0 (3)$ and a longitudinal impact parameter |$z_0\sin \theta$| < 0.5 mm relative to the event’s primary vertex [60].

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (ϕ, s) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta s)^2}$.

3 The h_{tamp} parameter controls the transverse momentum, p_T, of the first additional emission beyond the leading-order Feynman diagram in the parton shower and therefore regulates the high-p_T emission against which the tt system recoils.
Jets are formed from clusters of topologically connected calorimeter cells [61] using the anti-kt algorithm [62] with the radius parameter R = 0.4 implemented in Fastjet [63], and are calibrated to particle level as described in Ref. [64]. To suppress jets originating from pile-up collisions, cuts on the Jet Vertex Tagger (JVT) [65] discriminant are applied for jets with p_T below 120 GeV. Jets containing b-hadrons are identified (b-tagged) via a multivariate algorithm, MV2c10, combining observables sensitive to lifetimes, production mechanisms, and decay properties of b-hadrons [66]. A working point with an average efficiency of 60% for b-quark-initiated jets in t¯t events and rejection factors against light-quark/gluon-initiated jets and c-quark-initiated jets of 1200 and 55, respectively, is used [67–69].

The missing transverse momentum with magnitude, E_T^{miss}, is defined as the negative vector sum of the transverse momenta of the reconstructed and calibrated physics objects (electrons, photons, hadronically decaying τ-leptons, jets and muons) and a soft term built from all tracks that are associated with the primary vertex, but not with these objects, is included [70,71].

4.2. Particle-level objects

Particle-level objects are defined in simulated events by using only stable particles, i.e. particles with a mean lifetime greater than 30 ps. The fiducial phase space used for the σ_T measurement is defined using a set of requirements applied to particle-level objects analogous to those used in the selection of the detector-level objects.

Leptons are defined as electrons or muons originating from W decays, including those from intermediate τ-leptons. The four-momentum of each charged lepton is summed with the four-momenta of all radiated photons within a cone of size ΔR = 0.1 about its direction, excluding photons from hadron decays, to account for bremsstrahlung. Leptons are required to have p_T > 25 GeV and |η| < 2.5. Jets are defined using the anti-kt algorithm with a radius parameter of R = 0.4. All stable particles are considered for jet clustering, except for the electrons, muons, and photons used in the lepton definitions. Jets are required to have p_T > 25 GeV and |η| < 2.5 and are identified as b-jets via ghost matching to weakly decaying b-hadrons [62]. The fiducial region is defined by requiring exactly one electron or muon, and at least four jets, one or exactly two of which must be identified as b-jets. Possible double-counting of objects reconstructed at detector- or particle-levels satisfying multiple object definitions is resolved using the same algorithms as in Ref. [72].

5. Analysis strategy

5.1. Event selection

Selected events are required to have exactly one reconstructed electron or muon with p_T > 25 GeV for the 2015 data-taking period, p_T > 27 GeV for the 2016 data-taking period and p_T > 28 GeV for the 2017 and 2018 data-taking periods, to account for different single-lepton trigger thresholds. Events must have at least four reconstructed jets with p_T > 25 GeV and |η| < 2.5 with one or exactly two of the reconstructed jets being b-tagged. To suppress the contribution of the multijet background, events in the electron+jets channel are required to have E_T^{miss} > 30 GeV and m_T(W) > 30 GeV, while in the muon+jets channel, due to a smaller contribution from this background, a looser criterion E_T^{miss} + m_T(W) > 60 GeV is applied. The measurement of the t¯t cross-section is performed by splitting the selected sample into three non-overlapping signal regions according to the number of jets and b-tagged jets. The region with the highest background fraction (SR1) is selected by requiring ≥ 4 jets and exactly 1 b-tagged jet. The SR2 (SR3) region has exactly 4 (≥ 5) jets, exactly two of which must be b-tagged. The SR1 and SR2 regions have different sensitivities to the background and b-jet modelling while the SR3 provides information about modelling of extra radiation in t¯t events.

The number of background events meeting the selection criteria is estimated using MC simulations for all processes with the exception of a small contribution from multijet events with a non-prompt or misidentified lepton arising from photon conversions, heavy-flavour hadrons decaying leptonically, and jets misidentified as leptons. A data-driven matrix method [72] based on the measurement of lepton selection efficiencies using different identification and isolation criteria is used to estimate this background. Expected and observed event yields are shown in Table 1 and are in excellent agreement. The expected yields include all uncertainties described in Section 6.

5.2. Observables used in the fit

The t¯t cross-section is extracted from a simultaneous profile-likelihood fit of data distributions to the sum of signal and background distributions in the three regions. Each region exploits a different fit variable. In SR1, the aplanarity (A) is used, as was done in previous t¯t cross-section measurements [73,74]. It is defined entirely with jet information as A = 2λ_3, where λ_3 is the smallest eigenvalue of the sphericity tensor, S^{ijρ}. In SR2, the minimum lepton–jet mass, m_{l,j}^{min}, calculated as the minimum invariant mass over all lepton–jet pairs, is exploited. In SR3, a system likely originating from a hadronically decaying top quark is constructed. It consists of a b-tagged jet and two other jets, corresponding to the permutation with the highest p_T for the vector

Table 1

Expected event yields including all uncertainties after the event selection compared to data in the three signal regions. The t¯tX category contains t¯tW and t¯tH contributions.

<table>
<thead>
<tr>
<th></th>
<th>SR1</th>
<th>SR2</th>
<th>SR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>t¯t</td>
<td>3.630 ± 0.210</td>
<td>9.900 ± 0.900</td>
<td>9.800 ± 1.000</td>
</tr>
<tr>
<td>W+jets</td>
<td>3.500 ± 0.160</td>
<td>2.400 ± 0.100</td>
<td>10.700 ± 0.900</td>
</tr>
<tr>
<td>Single top</td>
<td>2.550 ± 0.310</td>
<td>5.200 ± 0.700</td>
<td>3.000 ± 0.800</td>
</tr>
<tr>
<td>Z+jets & diboson</td>
<td>8.000 ± 0.400</td>
<td>8.000 ± 0.400</td>
<td>5.800 ± 0.300</td>
</tr>
<tr>
<td>t¯tX</td>
<td>1.560 ± 2.100</td>
<td>2.110 ± 2.900</td>
<td>7.200 ± 1.000</td>
</tr>
<tr>
<td>Multijet</td>
<td>2.100 ± 0.800</td>
<td>2.800 ± 1.000</td>
<td>2.200 ± 0.800</td>
</tr>
<tr>
<td>Total prediction</td>
<td>4.540 ± 0.310</td>
<td>1.110 ± 0.100</td>
<td>1.070 ± 0.100</td>
</tr>
<tr>
<td>Data</td>
<td>4.540 ± 0.886</td>
<td>1.100 ± 0.558</td>
<td>1.103 ± 0.317</td>
</tr>
</tbody>
</table>
sum of four momenta of the three constituent jets. The average angular distance between the three constituent jets, \(\Delta R_{bbj}^{\text{avg}} \), is computed and used in the fit. The choice of variables is driven by their ability to separate \(t\bar{t} \) signal from the backgrounds, the reduced sensitivity to jet-related experimental and \(t\bar{t} \) modelling uncertainties achieved by exploiting ratios of jet momenta (\(A \)) or angular information (\(\Delta R_{bbj}^{\text{avg}} \)), and good agreement between the prediction and data. There is no single variable that satisfies these requirements in all three regions.

6. Systematic uncertainties

Several sources of systematic uncertainties affect the fiducial and inclusive \(t\bar{t} \) cross-section measurements by changing the estimated signal and background rates and the shapes of the distributions used in the fit. All uncertainties are treated as correlated between signal regions, unless explicitly specified otherwise. They can be classified into experimental and modelling uncertainties in the \(t\bar{t} \) signal and in backgrounds.

6.1. Experimental uncertainties

The uncertainty in the combined 2015–2018 integrated luminosity (\(\mathcal{L}_{\text{int}} \)) is 1.7% \cite{77}, obtained using the LHCb-2 detector \cite{78} for the primary luminosity measurements.

Reconstruction, identification, isolation and trigger performance for electrons and muons differ between data and MC simulations. Scale factors are applied to simulated events to correct for the differences. These scale factors, as well as the lepton momentum scale and resolution, are assessed using \(Z \to \ell^+\ell^- \) events in simulation and data with methods similar to those described in Refs. \cite{58,59}. The associated systematic uncertainties are propagated to the distributions used in the fit. Their combined effects on the cross-section measurement are referred to as "Muon reconstruction" and "Electron reconstruction" in Table 3.

The jet energy scale (JES) is calibrated using a combination of test beam data, simulation and in situ techniques \cite{64}. Its uncertainty is decomposed into a set of 29 uncorrelated components, with contributions from pile-up, jet flavour composition, single-particle response, and effects of jets not contained within the calorimeter. The uncertainty of the jet energy resolution (JER) is represented by eight components accounting for jet-\(p_T \) and \(\eta \)-dependent differences between simulation and data \cite{79}. The uncertainty in the efficiency to pass the JVT requirement for pile-up suppression is also considered \cite{65}. The combined effect on the cross-section measurement of jet-related uncertainties is referred to as "Jet reconstruction" in Table 3.

The uncertainties in the \(b \)-tagging calibration are determined separately for \(b \)-jets, c-jets and light-flavour-jets \cite{66,68,69} using an 85-component breakdown (45 for \(b \)-jets, 20 for c-jets and 20 for light-flavour jets). They depend on \(p_T \) for \(b \)- and c-jets, and on \(p_T \) and \(\eta \) for light-flavour jets, and they account for differences between data and simulation. The impact of these uncertainties on the cross-section measurement is referred to as "Flavour tagging" in Table 3.

The uncertainty in \(E_T^{\text{miss}} \) due to a possible miscalibration of its soft-track component is derived from data–simulation comparisons of the \(p_T \) balance between the hard and the soft \(E_T^{\text{miss}} \) components \cite{70}. To account for the difference in pile-up distributions between the simulation and data, the pile-up profile in the simulation is corrected to match the one in data. The uncertainty associated with the correction factor is applied. The combined impact of the \(E_T^{\text{miss}} \) and pile-up uncertainties is referred to as "\(E_T^{\text{miss}} + \text{pile-up} \)" in Table 3.

6.2. Signal modelling

The uncertainty due to missing higher-order QCD corrections in the ME computation is estimated by independently varying the renormalisation (\(\mu_R \)) and factorisation (\(\mu_F \)) scales by factors of 2.0 and 0.5 with respect to the central value. Additionally, uncertainties in the amounts of initial- and final-state radiation (FSR) from the parton shower are assessed by, respectively varying the corresponding parameter of the A14 parton shower tune (Var3c) \cite{42} and by varying by factors of 2.0 and 0.5 the scale \(\mu_F^{\text{FSR}} \). All four variations are taken to be uncorrelated between the signal regions but fully correlated across bins in each region. The combined impact of all scale uncertainties is referred to as "\(t\bar{t} \) scale variations" in Table 3. An uncertainty due to the choice of the \(h_{\text{damp}} \) parameter value is determined by comparing the nominal \(t\bar{t} \) sample with the one produced with the same settings but with the \(h_{\text{damp}} \) parameter set to 3 \(m_t \) and is symmetrised.

The level of agreement between data and prediction for the lepton \(p_T \) and the leading jet \(p_T \) is improved if the top-quark \(p_T \) distribution in the nominal \(t\bar{t} \) simulation is corrected to match the top-quark \(p_T \) calculated at NNLO in QCD with NLO electroweak corrections \cite{80}. In this analysis, the full difference between the nominal and the reweighted simulated \(t\bar{t} \) sample is taken as a systematic uncertainty and symmetrisated. This approach is preferable to applying a correction to the nominal simulation because for some variables the level of agreement between data and prediction deteriorates after applying the correction. To avoid double counting, modelling uncertainties, which are evaluated using alternative samples, are derived as the difference between the nominal and alternative samples, both reweighted to the top-quark \(p_T \) theory prediction.

Uncertainties due to the choice of parton shower and hadronisation model are estimated by comparing the nominal sample from POWHEG-BOX interfaced to PYTHIA with an alternative sample generated with the same POWHEG-BOX set-up but interfaced to HERWIG 7.0.4 \cite{81,82} with angle-ordered parton shower model, the H7UE tune \cite{81} and the MMHT2014LO PDF set \cite{83}. Further details about the sample settings can be found in Ref. \cite{84}. The difference between the two models is split into three components. The first component represents the total \(t\bar{t} \) acceptance in the three regions ("Shower model incl. acceptance" in Fig. 3). The second component is sensitive to the \(t\bar{t} \) yield difference in the individual signal regions ("Shower migration parameter" in Fig. 3). The last component is responsible for the shape effect on the fitted distributions. It is represented by three nuisance parameters (NPs), one per region (referred to as "Shower model shape" followed by a region name in Fig. 3), to ensure that shape effects are uncorrelated between the regions since different variables are used in the fit. All three components are symmetrised. The combined impact of all uncertainties due to the choice of parton shower and hadronisation model is referred to as "\(t\bar{t} \) shower/hadronisation" in Table 3.

The PDF4LHC15 meta-PDFs are used to estimate the systematic effects, including impact on the acceptance, due to uncertainties in the PDF, following the updated PDF4LHC15 prescription \cite{85}. A set of 30 Hessian eigenvectors corresponding to independent PDF variations is included in the fit. The central values of the NNPDF3.0 PDF used to simulate the nominal \(t\bar{t} \) sample and the PDF4LHC15 set are found to be consistent.

6.3. Background modelling

Uncertainties in the multijet background estimation include a 50% uncertainty in the normalisation to cover differences between the data and the matrix method prediction in various control regions enriched in multijet background events \cite{72} and an uncertainty from the choice of parameterisation of the efficiencies for
real and misidentified leptons. These uncertainties are treated as uncorrelated between all regions and between electron+jets and muon+jets events due to different composition of the multijet background in these regions and different choice of efficiency parameterisation in the electron+jets and muon+jets channels. The impact of the multijet background estimation uncertainty on the measurement is referred to as “Multijet background” in Table 3.

The $t\bar{t}$ contribution is the largest among the three single-top-quark production channels. A normalisation uncertainty of 5.4% is applied to the single-top-quark background, corresponding to the theoretical uncertainty of the $t\bar{t}$ cross-section [86]. Similarly to the $t\bar{t}$ modelling uncertainties, the effects of the μ_R and μ_F variations in the ME, the variations of parameters related to initial- and final-state radiation in the parton shower and the impact of the parton shower choice are evaluated for the single-top-quark background. An additional uncertainty arising from the method used to handle interference between tW and $t\bar{t}$ production is determined by comparing the tW simulated sample that uses the diagram-subtraction method [87] with the nominal one based on the diagram-removal technique.

Several uncertainties affect the modelling of the W+jets background. Variations of μ_R and μ_F are used to derive the W+jets normalisation uncertainties in each region. They amount to about 45% and are treated as uncorrelated between the regions selected with 1-b-tag (SR1) and 2-b-tag (SR2 and SR3) requirements. The effects on the shape of the distributions arising from the μ_R and μ_F variations, from the choice of ME to parton-shower CKKW matching scale [51,88] and from the scale used for the resummation of soft-gluon emission in the nominal sample are also included.

A normalisation uncertainty of 50% is applied to the combined Z+jets and diboson background based on the studies of the μ_R and μ_F variations for the W+jets process. A normalisation uncertainty of 13.3% is applied [89] to the $t\bar{t}X$ contribution, based on the theoretical cross-section uncertainties for the $t\bar{t}V$ and $t\bar{t}H$ processes.

For the backgrounds, the systematic uncertainties due to the PDF choice are found to be negligible. The combined effect on the measured cross-section of all MC simulation background modelling uncertainties is referred to as “MC background modelling” in Table 3.

7. Extraction of the $t\bar{t}$ cross-section

Events fulfilling the criteria described in Section 5 are used to perform measurements of the fiducial and inclusive $t\bar{t}$ cross-sections from a profile-likelihood fit to data. The fit uses the distributions of variables described in Section 5.2 in three signal regions, and the systematic uncertainties (see Section 6) are included in the fit as NPs. Statistical uncertainties in each bin due to the limited size of the simulated samples are taken into account by dedicated nuisance parameters using the Barlow-Beeston technique [90] and their effect on the measurement is referred to as “Simulation stat. uncertainty” in Table 3.

The cross-section for producing $t\bar{t}$ events in the fiducial region, σ_{fid}, is defined as $\sigma_{fid} = \frac{N_{fid}}{L_{int}}$, where N_{fid} is the number of $t\bar{t}$ events in the fiducial volume determined by the fit. The inclusive cross-section, σ_{inc}, is related to the fiducial one via $\sigma_{inc} = A_{fid} \times \sigma_{inc}$, where $A_{fid} = N_{fid}/N_{tot}$ is the fiducial acceptance with N_{tot} (N_{tot}) being the number of $t\bar{t}$ events obtained from a simulated signal sample after (before) applying the particle-level selection. For the σ_{inc} measurement, all samples of simulated events used to evaluate the $t\bar{t}$ modelling uncertainties are scaled to the same fiducial acceptance, defined in Section 4.2. The fiducial acceptance is evaluated using the nominal $t\bar{t}$ sample reweighted to match the top-quark p_T theoretical calculation to be consistent with the treatment of the alternative $t\bar{t}$ samples. Such scaling ensures that in each signal region the remaining normalisation uncertainties from $t\bar{t}$ modelling correspond to the uncertainties in the correction factor $C = N_{reco}/N_{fid}$, where N_{reco} is the number of selected events in a given region. The scaled distributions enter the fit to measure σ_{fid}, thus reducing the impact of $t\bar{t}$ modelling uncertainties by reducing the normalisation effects. For the σ_{inc} extraction, the $t\bar{t}$ modelling uncertainties include the uncertainties corresponding to the extrapolation of each systematic uncertainty component to the full phase space. The acceptance A_{fid} for different systematic variations of the $t\bar{t}$ model is shown in Table 2. The PDF uncertainty is calculated following the PDF4LHC15 prescription as a sum in quadrature of uncertainties from 30 independent PDF variations. The relative acceptance uncertainty in the propagation of the fiducial cross-section to the full phase space for the nominal $t\bar{t}$ model is $+1.9_{-2.2}$.

8. Results

The $t\bar{t}$ fiducial cross-section is found to be

$$\sigma_{fid} = 110.7 \pm 0.05 \text{ (stat.)} \pm 4.5 \text{ (syst.)} \pm 1.9 \text{ (lumi.)} \text{ pb}$$

$$= 110.7 \pm 4.8 \text{ pb}.$$

Here, the luminosity uncertainty is obtained by repeating the fit, fixing the corresponding nuisance parameter, and subtracting in quadrature the resulting uncertainty from the total uncertainty of the nominal fit. The systematic uncertainty is determined by subtracting in quadrature the statistical uncertainty, obtained from a fit where all NPs are fixed to the values determined by the fit (post-fit), and the luminosity uncertainty, from the total uncertainty. Fig. 1 displays the post-fit distributions of the observables used in the fit in each region.

Fig. 2 shows pre- and post-fit distributions of one kinematic variable per region, which is not included in the fit, demonstrating that the level of agreement between the prediction and the data improves after the fit. The H_T distribution shows a difference between prediction and data, which is covered by the uncertainties both before and after the fit. This feature has no effect on the variables used in the fit or on the result. The effect of the residual disagreement in the distribution of the fourth largest jet p_T in SR2, which is not fully covered by the post-fit uncertainty.
band, is tested as follows. Pseudo-data are created by reweighting the detector-level prediction for events passing the selection to match the corresponding distribution in data in SR2, and the $t\bar{t}$ cross-section is extracted. No significant impact on the measured cross-section is observed.

Using the measured fiducial cross-section and the acceptance with its uncertainty from Table 2, and assuming that the uncertainties of the $A_{6\delta}$ are not correlated with those obtained in the fit, the $t\bar{t}$ cross-section extrapolated to the full phase space is

$$\sigma_{\text{inc}}^{\text{ext}} = 820 \pm 0.4 \, \text{(stat.)} \pm 37 \, \text{(syst.)} \pm 14 \, \text{(lumi.)} \, \text{pb}$$

$$= 820 \pm 40 \, \text{pb}. $$

The $t\bar{t}$ cross-section in the full phase space, referred to as inclusive cross-section, measured in the dedicated fit is

$$\sigma_{\text{inc}} = 830 \pm 0.4 \, \text{(stat.)} \pm 36 \, \text{(syst.)} \pm 14 \, \text{(lumi.)} \, \text{pb}$$

$$= 830 \pm 38 \, \text{pb}. $$

The two results are compatible within the uncertainties and are in agreement with the theoretical NNLO + NNLL prediction for the top-quark mass of 172.5 GeV. The difference between the central values arises from the different assumptions related to the $t\bar{t}$ modelling uncertainties. For the inclusive measurement, the alternative models are assumed to have the same $\sigma_{t\bar{t}}$ in the full phase space, while for the fiducial measurement they are assumed to have the same cross-section after applying the fiducial selection. This results in different normalisation components of the signal modelling uncertainties, leading to different impacts of these uncertainties on the measured cross-section for the same post-fit values of the corresponding nuisance parameters.

The dependence of the measured inclusive $t\bar{t}$ cross-section on m_t is determined by repeating the fit to data after replacing the nominal input $t\bar{t}$ distributions by those from the samples generated with the same set-up as the nominal but with $m_t = 171, 172, 173$ and 174 GeV, assuming that the $t\bar{t}$ modelling uncertainties are independent of m_t. The dependence is found to be $1/\sigma_{\text{inc}} \times d\sigma_{\text{inc}}/dm_t = -1.7\%$/GeV.

Fig. 3 presents the ranking of the effects of different systematic uncertainties on the inclusive cross-section. The impact of each NP, θ, is computed by comparing the nominal best-fit value of σ_{inc} with the result of the fit whenFixing the considered nuisance parameter to its best-fit value, $\hat{\theta}$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \hat{\theta} \, (\pm \Delta \theta)$. The ranking plot shows that the uncertainty in σ_{inc} is dominated by the difference in the $t\bar{t}$ inclusive acceptance and the migration parameter between the nominal and the alternative parton shower and hadronisation model. The NP corresponding to the migration parameter is constrained, indicating that the normalisation effects of the alternative model vary significantly between the three regions. In SR1 (SR3), the alternative model predicts 1.4% (2.3%) larger yield while in SR2 it predicts 7.1% smaller yield than in the nominal $t\bar{t}$ simulation. These variations are much larger than the data uncertainty and allow the data to constrain this uncertainty. To check that this choice for the normalisation of the parton shower systematic uncertainty does not affect the result, an alternative parameterisation is implemented with three normalisation and three shape NPs uncorrelated between three signal regions. No change in the central value or total uncertainty is observed, while the parameters show similar level of constraints and pull as in the baseline fit. Other significant contributions to the uncertainty arise from the modulation of final-state radiation in SR1 and the top-quark p_T model. As expected, the latter is pulled towards the NNLO prediction, which is approximated here by a one-dimensional top-quark p_T reweighting. The uncertainty in the measured luminosity is the highest-ranked experimental uncertainty.

A breakdown of the contributions from different categories of systematic uncertainties is presented in Table 3. The largest uncertainties, in both the fiducial and inclusive cross-section measurements, arise from the shower and hadronisation modelling and the scale variations. The source of the largest experimental uncertainty is the jet reconstruction category which includes uncertainties from jet identification, calibration, resolution and the JVT requirement.

Several tests were performed to check the stability of the result. To examine the disagreement between data and prediction observed in jet p_T spectra as illustrated in Fig. 2, the impact of changing the minimum jet p_T requirement was studied by repeating the analysis while selecting events with a minimum jet p_T of 30 GeV and 35 GeV instead of 25 GeV. In both cases, the measured cross-section changed by less than 2% and did not show a trend depending on the jet p_T cut.
The approach to performing ME to parton shower matching differs between NLO generators and, in general, can be a source of uncertainty. However, it is not straightforward to separate the effect of the algorithmic difference in the implementation of such matching from other effects when replacing one ME generator by an alternative one, matched to the same parton shower. This may involve changes in the parameters of the parton shower that can lead to a much larger effect than the targeted one. For this reason, the effect of the generator choice is not included in the fit model. However, its impact on the result is checked by comparing two alternative \(t\bar{t} \) samples generated with PowHEG-Box v2 and MadGraph5_aMC@NLO, both interfaced to HERWIG 7.1.3 [91]. A symmetrised difference between these two samples is applied as an additional systematic uncertainty, correlated between regions. No significant impact on the central value or the uncertainty is observed for either the inclusive or the fiducial measurements.

The stability of the result with respect to the choice of correlation scheme for the initial- and final-state radiation uncertainties, and for the \(\mu_R \) and \(\mu_F \) scale variations, was studied. In the alternative scheme, the uncertainties were treated as fully correlated across the signal regions. No effect on either the measured cross-sections or the uncertainties was observed.

9. Conclusion

Measurements of the inclusive and fiducial \(t\bar{t} \) production cross-sections are performed in the lepton+jets channel using proton-proton collision data at \(\sqrt{s} = 13 \text{ TeV} \) recorded by the ATLAS detector at the LHC during 2015–2018, corresponding to an integrated luminosity of 139 fb\(^{-1}\). The analysis is performed in three regions requiring different jet multiplicities and different numbers of \(b \)-tagged jets. The \(t\bar{t} \) production cross-section and its uncertainty are extracted from a profile-likelihood fit to data of the distributions of discriminating variables in these three regions, assuming \(m_t = 172.5 \text{ GeV} \). The fiducial cross-section is measured with a precision of 4.3% to be \(\sigma_{\text{fid}} = 110.7 \pm 4.8 \text{ pb} = 110.7 \pm 0.05 \text{ (stat.)}^{+4.3}_{-4.2} \text{ (syst.)} \pm 1.9 \text{ (lumi.)} \text{ pb} \), and the inclusive cross-section is measured with a precision of 4.6% to be \(\sigma_{\text{inc}} = 830 \pm 38 \text{ pb} = 830 \pm 0.4 \text{ (stat.)} \pm 36 \text{ (syst.)} \pm 14 \text{ (lumi.)} \text{ pb} \). The inclusive result is in agreement with the theoretical NNLO + NNLL
Fig. 3. Ranking plot showing the effect of the ten most important systematic uncertainties on the measured cross-section, normalised to the predicted value, in the inclusive fit to data. The impact of each NP, $Δσ_{inc}/σ_{inc}^{med}$, is computed by comparing the nominal best-fit value of $σ_{inc}/σ_{inc}^{med}$ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $θ$, shifted by its pre-fit and post-fit uncertainties $±Δ0$ ($±Δθ$). The empty boxes show the pre-fit impact while the filled boxes show the post-fit impact of each nuisance parameter on the result. The black dots represent the post-fit value (pull) of each NP where the pre-fit value is subtracted, while the black line represents the post-fit uncertainty normalised to the pre-fit uncertainty. The “JES (pile-up subtraction)” is one of the 29 components of the JES uncertainty, the “FSR model SR1” is the FSR scale uncertainty in SR1 and the “PDF4LHC NP4” is one of the 30 independent PDF variations. Other components are described in Section 6.

Table 3: Impact of different categories of systematic uncertainties and data statistics on the fiducial and inclusive measurements. The quoted values are obtained by repeating the fit, fixing a set of nuisance parameters of the sources corresponding to the considered category, and subtracting in quadrature the resulting uncertainty from the total uncertainty of the nominal fit presented in the last line. The total uncertainty is different from the sum in quadrature of the different components due to correlations between nuisance parameters built by the fit. The categories are defined in Section 6.

<table>
<thead>
<tr>
<th>Category</th>
<th>$Δσ_{inc}/σ_{inc}^{med}$ [%]</th>
<th>$Δσ_{med}/σ_{med}^{med}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal modelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$ shower/hadr. integration</td>
<td>$±2.8$</td>
<td>$±2.9$</td>
</tr>
<tr>
<td>$t\bar{t}$ scales variations</td>
<td>$±1.2$</td>
<td>$±2.0$</td>
</tr>
<tr>
<td>Top p_T NNLO reweighting</td>
<td>$±0.4$</td>
<td>$±1.1$</td>
</tr>
<tr>
<td>$t\bar{t}$ h_{bump}</td>
<td>$±1.5$</td>
<td>$±1.4$</td>
</tr>
<tr>
<td>$t\bar{t}$ PDF</td>
<td>$±1.4$</td>
<td>$±1.5$</td>
</tr>
<tr>
<td>Background modelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC background modelling</td>
<td>$±1.8$</td>
<td>$±2.0$</td>
</tr>
<tr>
<td>Multijet background</td>
<td>$±0.8$</td>
<td>$±0.6$</td>
</tr>
<tr>
<td>Detector modelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet reconstruction</td>
<td>$±2.5$</td>
<td>$±2.6$</td>
</tr>
<tr>
<td>Luminosity</td>
<td>$±1.7$</td>
<td>$±1.7$</td>
</tr>
<tr>
<td>Flavour tagging</td>
<td>$±1.2$</td>
<td>$±1.3$</td>
</tr>
<tr>
<td>p_{T}^{miss} + pile-up</td>
<td>$±0.3$</td>
<td>$±0.3$</td>
</tr>
<tr>
<td>Muon reconstruction</td>
<td>$±0.6$</td>
<td>$±0.5$</td>
</tr>
<tr>
<td>Electron reconstruction</td>
<td>$±0.7$</td>
<td>$±0.6$</td>
</tr>
<tr>
<td>Simulation stat. uncertainty</td>
<td>$±0.6$</td>
<td>$±0.7$</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>$±4.3$</td>
<td>$±4.6$</td>
</tr>
<tr>
<td>Data statistical uncertainty</td>
<td>$±0.05$</td>
<td>$±0.05$</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>$±4.3$</td>
<td>$±4.6$</td>
</tr>
</tbody>
</table>

QCD calculation as well as with the ATLAS measurement in the electron–muon channel and with CMS measurements.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNpq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IFR, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GKSF, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan;CNRSRT, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MINE/FPA, Romania; MES of Russia and NRC 4l, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, Canada, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aisteia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and Gif, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), cc-IN2P3 (France), CERN-SP3, RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [92].

References

The ATLAS Collaboration

Physics Letters B 810 (2020) 135797

[74] D0 Collaboration, Measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV using kinematic characteristics of lepton+jets events, Phys. Rev. D 76 (2007) 092007, arXiv:0705.2788 [hep-ex].

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
\(^p\) Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
\(^q\) Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine; Italy.
\(^r\) Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
\(^s\) Also at Giresun University, Faculty of Engineering, Giresun; Turkey.
\(^t\) Also at Graduate School of Science, Osaka University, Osaka; Japan.
\(^u\) Also at Hellenic Open University, Patras; Greece.
\(^v\) Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
\(^w\) Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
\(^x\) Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
\(^y\) Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.
\(^z\) Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.
\(^\text{aa}\) Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.
\(^\text{ab}\) Also at Institute of Particle Physics (IPP), Vancouver; Canada.
\(^\text{ac}\) Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
\(^\text{ad}\) Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
\(^\text{ae}\) Also at Joint Institute for Nuclear Research, Dubna; Russia.
\(^\text{af}\) Also at Louisiana Tech University, Ruston LA; United States of America.
\(^\text{ag}\) Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
\(^\text{ah}\) Also at National Research Nuclear University MEPhI, Moscow; Russia.
\(^\text{ai}\) Also at Physics Department, An-Najah National University, Nablus; Palestine.
\(^\text{aj}\) Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
\(^\text{ak}\) Also at The City College of New York, New York NY; United States of America.
\(^\text{al}\) Also at TRIUMF, Vancouver BC; Canada.
\(^\text{am}\) Also at Università di Napoli Parthenope, Napoli; Italy.
\(^\text{an}\) Also at University of Chinese Academy of Sciences (UCAS), Beijing; China.
\(^\text{*}\) Deceased.