Measurement of the Lund Jet Plane Using Charged Particles in 13 TeV Proton-Proton Collisions with the ATLAS Detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.124.222002

Publication date
2020

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Measurement of the Lund Jet Plane Using Charged Particles in 13 TeV Proton-Proton Collisions with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 8 April 2020; revised manuscript received 6 May 2020; accepted 13 May 2020; published 4 June 2020)

The prevalence of hadronic jets at the LHC requires that a deep understanding of jet formation and structure is achieved in order to reach the highest levels of experimental and theoretical precision. There have been many measurements of jet substructure at the LHC and previous colliders, but the targeted observables mix physical effects from various origins. Based on a recent proposal to factorize physical effects, this Letter presents a double-differential cross-section measurement of the Lund jet plane using 139 fb⁻¹ of √s = 13 TeV proton-proton collision data collected with the ATLAS detector using jets with transverse momentum above 675 GeV. The measurement uses charged particles to achieve a fine angular resolution and is corrected for acceptance and detector effects. Several parton shower Monte Carlo models are compared with the data. No single model is found to be in agreement with the measured data across the entire plane.

DOI: 10.1103/PhysRevLett.124.222002

Jets are collimated sprays of particles resulting from high-energy quark and gluon production. The details of the process that underlies the fragmentation of quarks and gluons with quantum chromodynamic (QCD) charge into neutral hadrons is not fully understood. In the soft gluon (“eikonal”) picture of jet formation, a quark or gluon radiates a haze of relatively low energy and statistically independent gluons [1,2]. As QCD is nearly scale invariant, this emission pattern is approximately uniform in the two-dimensional space spanned by ln(1/z) and ln(1/θ), where z is the momentum fraction of the emitted gluon relative to the primary quark or gluon core and θ is the emission opening angle. This space is called the Lund plane [3]. The Lund plane probability density can be extended to higher orders in QCD and is the basis for many calculations of jet substructure observables [4–7].

The Lund plane is a powerful representation for providing insight into jet substructure; however, the plane is not observable because it is built from quarks and gluons. A recent proposal [8] describes a method to construct an observable analog of the Lund plane using jets, which captures the salient features of this representation. Jets are formed using clustering algorithms that sequentially combine pairs of protojets starting from the initial set of constituents [9]. Following the proposal, a jet’s constituents are reclustered using the Cambridge/Aachen (C/A) algorithm [10,11], which imposes an angle-ordered hierarchy on the clustering history. Then, the C/A history is followed in reverse (“declustered”), starting from the hardest proto-jet. The Lund plane can be approximated by using the softer (harder) protojet to represent the emission (core) in the original theoretical depiction. For each proto-jet pair, at each step in the C/A declustering sequence, an entry is made in the approximate Lund plane (henceforth, the “primary Lund jet plane” or LJP) using the observables ln(1/z) and ln(R/ΔR), with

\[
\begin{align*}
\theta &= \frac{p_{T,\text{emission}}}{p_{T,\text{emission}} + p_{T,\text{core}}} \\
\Delta R^2 &= (y_{\text{emission}} - y_{\text{core}})^2 + (\phi_{\text{emission}} - \phi_{\text{core}})^2,
\end{align*}
\]

where \(p_T \) is transverse momentum [12], y is rapidity, R is the jet radius parameter, and \(\Delta R \) measures the angular separation. Using this approach, individual jets are represented as a set of points within the LJP. Ensembles of jets may be studied by measuring the double-differential cross section in this space. The substructure of emissions, which may themselves be composite objects, is not considered in this analysis. To leading-logarithm (LL) accuracy, the average density of emissions within the LJP is uniform [8]:

\[
\frac{1}{N_{\text{jet}}} \frac{d^2 N_{\text{emissions}}}{d \ln(1/z) d \ln(R/\Delta R)} \propto \text{constant},
\]

where \(N_{\text{jet}} \) is the number of jets. This construction of the plane is selected to separate momentum and angular
The Lund plane has played a central role in state-of-the-art QCD calculations of jet substructure [13–18] which have so far only been studied with the jet mass \(m_{\text{jet}} \) [19,20] (which is itself a diagonal line in the LJP: \(\ln 1/z \sim \ln m_{\text{jet}}^2/p_T^2 - 2 \ln R/\Delta R \) and groomed jet radius [21,22]. The number of emissions within regions of the LJP is also calculable and provides optimal discrimination between quark and gluon jets [5].

This Letter presents a double-differential cross-section measurement of the LJP, corrected for detector effects, using an integrated luminosity of 139 fb\(^{-1}\) of \(\sqrt{s} = 13 \) TeV proton-proton (\(pp \)) collision data collected by the ATLAS detector. A unique feature of this measurement is that contributions from various QCD effects such as initial-state radiation, the underlying event and multiparton interactions, hadronization, and perturbative emissions are well localized in the LJP. This factorization is shown in Fig. 1(a), which qualitatively indicates the regions

\[
\ln(1/\Delta R) = \ln \left(\frac{\text{emission}}{\text{core}} \right)
\]

which have so far only been studied with the jet mass \(m_{\text{jet}} \) [21,22]. The number of emissions within regions of the LJP between quark and gluon jets\(^{[5]} \). The number of emissions within regions of the LJP is also calculable and provides optimal discrimination between quark and gluon jets [5].

\[
\Delta R = R - \Delta R(\text{emission, core})
\]

FIG. 1. (a) Schematic representation of the LJP. (b) Ratio of varied parton shower algorithms. (c) Ratio of varied hadronization models. (d) Ratio of varied matrix elements.
populated by soft vs hard, wide-angle vs collinear, and perturbative vs nonperturbative radiation. Since different regions are dominated by factorized processes, the LJP measurement can be useful for tuning nonperturbative models and for constraining the model parameters of advanced parton shower (PS) Monte Carlo (MC) programs [23–26].

The ATLAS detector [27–29] is a general-purpose particle detector which provides nearly 4π coverage in solid angle. The inner tracking detector (ID) is inside a 2 T magnetic field and measures charged-particle trajectories up to |η| = 2.5. The innermost component of the ID is a pixeled silicon detector with fine granularity that is able to resolve ambiguities inside the dense hit environment of jet cores [30], surrounded by silicon strip and transition radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeters, from which topologically connected radiation detectors. Beyond the ID are electromagnetic and hadronic calorimeter...
Emissions at detector level and charged-particle level are uniquely matched in $\eta-\phi$ to construct the response matrix. The matching procedure follows the order of the C/A declustering, starting from the widest-angle detector-level emission and iterating towards the jet core. The closest charged-particle-level match with angular separation $\Delta R < 0.1$ takes precedence. Unmatched emissions from tracks not due to a single charged particle (detector level) and from nonreconstructed charged particles (charged-particle level) are accounted for with purity and efficiency corrections. Corrections are applied before (purity) and after (efficiency) the regularized inversion of the response matrix. Both the purity and efficiency corrections are about 20% for wide-angle, hard emissions (lower-left quadrant of the LJP), increasing to 80% for the most collinear splittings and 50% in the lowest-η bins. For matched emissions, the $\ln(1/\eta)$ and $\ln(R/\Delta R)$ bin migrations between particle and detector levels are largely independent. Furthermore, since the differential cross section varies slowly across the LJP, the purities and efficiencies are approximately the same across the entire LJP. The $\ln(R/\Delta R)$ migrations in a given $\ln(1/\eta)$ bin are less than 60% for the smallest opening angles and decrease to less than 40% for the widest angles. The $\ln(1/\eta)$ migrations decrease from about 50% for the softest to about 20% for the hardest emissions, with some degradation for the softest emissions at small opening angles. Migrations for both observables are nearly symmetric except for $\ln(R/\Delta R) > 3$, where harder-to-resolve small opening angles are measured with asymmetric resolution. In less than 10% of these cases, particle-level and detector-level emissions are mismatched and therefore measured with the wrong $\ln(1/\eta)$. While the $\ln(R/\Delta R)$ migrations are nearly the same when $\ln(1/\eta)$ migrates by one bin, the $\ln(1/\eta)$ migrations increase by about 30% when $\ln(R/\Delta R)$ migrates by one bin.

The unfolded distribution is normalized to the number of jets that pass the event selection, rendering the measurement insensitive to the total jet cross section. After normalization, the integral of the LJP is the average number of emissions within the fiducial region.

Experimental systematic uncertainties are evaluated by applying variations to each source, propagating them through the unfolding procedure, and taking the difference between the modified and nominal results. Theoretical uncertainties arise from jet fragmentation modeling. Different systematic uncertainties are treated as being independent. The size of various sources of uncertainty within selected regions of the LJP is displayed in Fig. 3.

Uncertainties in the jet energy are determined using a mixture of simulation-based and in situ techniques [34]. These uncertainties cause the migration of jets into or out of the fiducial acceptance, and are typically above 3% in total, reaching at most 7%. Uncertainties related to the reconstruction of isolated tracks and tracks within dense environments are considered by modifying the measured p_T of individual tracks or removing them completely [30,64]. These uncertainties are small, contributing less than 0.5%. Other experimental uncertainties related to the modeling of pileup and the stability of the measurement across data-taking periods are less than 1% except for the most collinear splittings, where they reach 5%. A data-driven nonclosure uncertainty is determined by unfolding the detector-level distribution following a reweighting based on a comparison of the corresponding simulated detector-level distribution with the data [65]. This uncertainty is less than 1% except for the most collinear splittings, where it approaches 5%. An uncertainty for the matching procedure between emissions at detector and charged-particle levels is determined by repeating the unfolding and iterating through the C/A declustering sequence in reverse (from collinear to wide-angle emissions), taking the change in the result as an uncertainty. This uncertainty is less than 1% everywhere.

Theoretical uncertainties arise mainly from the accuracy of jet fragmentation modeling. Variations in jet fragmentation impact the result through a combination of sources: efficiency or purity corrections, response matrix, and unfolding prior. These contributions are estimated by repeating the unfolding with SHERPA2.2.1. As the correlation between the uncertainty sources is unknown, an envelope of the 100% and 0% correlation hypotheses is taken as the total modeling uncertainty. This uncertainty ranges between 5% and 20% depending on the region (larger for soft-collinear splittings) and is the largest single source of uncertainty. Experimental uncertainties are found to be comparable to those arising from modeling in some regions of the LJP.
The total systematic uncertainty varies across the LJP; an uncertainty between 5% and 20% is achieved. The uncertainty is found to increase as $k_t = z \Delta R$ decreases: the bin with the smallest k_t is also measured least precisely, and has a total uncertainty of about 20%.

The unfolded LJP is shown in Fig. 2. A triangular region with $k_t \gtrsim \Lambda_{\text{QCD}}$ is populated nearly uniformly by perturbative emissions, agreeing with the LL expectation [Eq. (1)].

A large number of emissions are found at the transition to the nonperturbative regime, as α_s is enhanced for small values of k_t. Emissions beyond the transition fall within the nonperturbative region of the LJP ($k_t \lesssim \Lambda_{\text{QCD}}$), and are suppressed. The average number of emissions in the fiducial region is measured to be $7.34 \pm 0.03(\text{syst}) \pm 0.11(\text{stat})$. The uncertainty is estimated by propagating uncertainties from the measurement in an uncorrelated and symmetrized

\[z = \frac{p_T^{\text{max}}}{(p_T^{\text{max}} + p_T^{\text{em}})} \]

\[\Delta R = \Delta (\text{emission, core}) \]

\[\alpha_s = 1.4 \]

\[\ln(1/z) \]

\[\ln(R/\Delta R) \]

\[3.33 < \ln(R/\Delta R) < 3.67 \]

\[5.13 < \ln(1/z) < 5.41 \]

\[1.80 < \ln(1/z) < 2.08 \]

\[0.67 < \ln(R/\Delta R) < 1.00 \]

\[0.67 < \ln(1/z) < 0.80 \]

\[\mathbf{222002} (2020) \]
The corresponding average emissions for PYTHIA8.230 is 7.64 and 7.67 for POWHEG+PYTHIA8.230. The average value for SHERPA2.2.5 is 6.90 for AHADIC hadronization and 7.30 for Lund string hadronization. The average value for HERWIG is 7.41 for the dipole PS and 7.37 for the angle-ordered PS. While a similar bracketing of the data by PYTHIA and SHERPA with AHADIC hadronization was noted in Ref. [66], the particle multiplicity inside jets has not previously been decomposed into perturbative and non-perturbative components.

Figure 3 shows data from four selected horizontal and vertical slices through the LJP, along with a breakdown of the systematic uncertainties [67]. The data are compared with predictions from several MC generators. While no prediction describes the data accurately in all regions, the HERWIG7.1.3 angle-ordered prediction provides the best description across most of the plane. The differences between the PS algorithms implemented in HERWIG7.1.3 are notable at large values of $k_t = \Delta R$, where the two models disagree most significantly for hard emissions reconstructed at the widest angles [Fig. 3(a) and 3(b)]. The POWHEG+PYTHIA and PYTHIA predictions only differ significantly for hard and wide-angle perturbative emissions, where ME corrections are relevant. The hadronization algorithms implemented in SHERPA2.2.5 are most different at small values of k_t, particularly for soft-collinear splittings at the transition between perturbative and non-perturbative regions of the plane. The ability of the LJP to isolate physical effects is highlighted in Fig. 3(b), where as emissions change from wide angled to more collinear, the jet core well, but all simulations fail to describe the particle multiplicity inside jets has not previously been decomposed into perturbative and non-perturbative effects. The PYTHIA samples describe the data in the collinear region of the jet core well, but all simulations fail to describe the softest, widest-angle emissions, which are characteristic of contributions from the underlying event. The PYTHIA8.186 and SHERPA2.2.1 predictions are not shown, but are consistent with the PYTHIA8.230 and SHERPA2.2.5 (Lund string hadronization) predictions, respectively. These observations indicate that the LJP may provide useful input to both perturbative and nonperturbative model development and tuning.

In summary, a measurement of the jet substructure based on the Lund jet plane is reported. The analysis dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of 13 TeV LHC proton-proton collisions recorded by the ATLAS detector. The measurement is performed on an inclusive selection of dijet events, with a leading jet $p_T > 675$ GeV. Selected jets are reconstructed from topological clusters using the anti-k_t algorithm with $R = 0.4$, and their associated charged-particle tracks are used to construct the observables of interest. The data are presented as an unfolded double-differential cross section, and compared with several Monte Carlo generators with various degrees of modeling accuracy. This measurement illustrates the ability of the Lund jet plane to isolate various physical effects, and will provide useful input to both perturbative and nonperturbative model development and tuning.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sklodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [68].

[12] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

42 Physics Department, Southern Methodist University, Dallas TX, United States of America
43 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
44 National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
45 Department of Physics, Stockholm University, Sweden
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
49 Department of Physics, Duke University, Durham NC, United States of America
50 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
52 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
53 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
54 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
55a Dipartimento di Fisica, Università di Genova, Genova, Italy
55b INFN Sezione di Genova, Italy
56 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
57 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
58 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
60 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
61a Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
61b School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
61c Tsung-Dao Lee Institute, Shanghai, China
61d Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
61e Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
62 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
63a Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
63b Department of Physics, University of Hong Kong, Hong Kong, China
64 Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
65 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
65a JLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
66 Department of Physics, Indiana University, Bloomington IN, United States of America
67a INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
67b ICTP, Trieste, Italy
68a DipartimentopolitecnicodiIngegneriaeArchitettura,UniversitàdiUdine,Udine,Italy
68b INFN Sezione di Lecce, Italy
69a Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
69b INFN Sezione di Milano, Italy
69c INFN Sezione di Napoli, Italy
69d INFN Sezione di Pavia, Italy
69e INFN Sezione di Roma, Italy
69f Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
70a INFN Sezione di Roma Tor Vergata, Italy
70b Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
70c INFN Sezione di Roma Tre, Italy
70d Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
70e INFN-TIFPA, Italy
71a Università degli Studi di Trento, Trento, Italy
71b Dipartimento di Fisica, Università di Trieste, Trieste, Italy
71c INFN Sezione di Trieste, Trieste, Italy
72a Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
73a INFN Sezione di Padova, Italy
73b INFN Sezione di Padova, Italy
73c INFN Sezione di Trieste, Italy
73d INFN Sezione di Trieste, Italy
73e INFN Sezione di Trieste, Italy
74a INFN Sezione di Trieste, Italy
74b Dipartimento di Fisica, Università di Trieste, Trieste, Italy
74c INFN Sezione di Trieste, Italy
74d INFN Sezione di Trieste, Italy
74e INFN Sezione di Trieste, Italy
75a INFN Sezione di Trieste, Italy
75b INFN Sezione di Trieste, Italy
75c INFN Sezione di Trieste, Italy
76a INFN Sezione di Trieste, Italy
76b INFN Sezione di Trieste, Italy
76c INFN Sezione di Trieste, Italy
77 Institute für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
78 University of Iowa, Iowa City IA, United States of America
79 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
80 Joint Institute for Nuclear Research, Dubna, Russia
81 Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
82 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
83 Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil
84 Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
85 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
86 Graduate School of Science, Kobe University, Kobe, Japan
87 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
88 Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
89 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
90 Faculty of Science, Kyoto University, Kyoto, Japan
91 Kyoto University of Education, Kyoto, Japan
92 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
93 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
94 Physics Department, Lancaster University, Lancaster, United Kingdom
95 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
96 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
97 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
98 Department of Physics, Royal Holloway University of London, Egham, United Kingdom
99 Department of Physics and Astronomy, University College London, London, United Kingdom
100 Louisiana Tech University, Ruston LA, United States of America
101 Physik, Universität Mainz, Mainz, Germany
102 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
103 Department of Physics and Astronomy, University College London, London, United Kingdom
104 Department of Physics, McGill University, Montreal QC, Canada
105 Louisiana Tech University, Ruston LA, United States of America
106 School of Physics and Astronomy, University of Michigan, Ann Arbor MI, United States of America
107 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
108 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
109 Department of Physical Problems of Byelorussian State University, Minsk, Belarus
110 Group of Particle Physics, University of Montpellier, Montpellier QC, Canada
111 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
112 National Research Nuclear University MEPhI, Moscow, Russia
113 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
114 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
115 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
116 Nagasaki Institute of Applied Science, Nagasaki, Japan
117 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
118 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
119 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
120 National Research Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
121 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
122 Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia
123 Novosibirsk State University Novosibirsk, Russia
124 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia
125 Department of Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”, Moscow, Russia
126 Department of Physics, New York University, New York NY, United States of America
127 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
128 Ohio State University, Columbus OH, United States of America
129 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
130 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
131 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
132 Institute for Fundamental Science, University of Oregon, Eugene, OR, United States of America
138 Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
140 Department of Physics, University of Pittsburgh, Pittsburgh PA, United States of America
140 Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal
140 Departamento de Física, Universidade de Lisboa, Lisboa, Portugal
140 Departamento de Física, Universidade do Minho, Braga, Portugal
140 Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain
140 Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
140 Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
140 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
140 Czech Technical University in Prague, Prague, Czech Republic
140 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
140 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
140 IFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
140 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
140 Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
140 Universidad Andres Bello, Departament de Física, Santiago, Chile
140 Instituto de Alta Investigación, Universidad de Tarapacá, Chile
140 Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
140 Department of Physics, University of Washington, Seattle WA, United States of America
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
140 Department of Physics, Simon Fraser University, Burnaby BC, Canada
140 SLAC National Accelerator Laboratory, Stanford CA, United States of America
140 Physics Department, Royal Institute of Technology, Stockholm, Sweden
140 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
140 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
140 School of Physics, University of Sydney, Sydney, Australia
140 Institute of Physics, Academia Sinica, Taipei, Taiwan
150 E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
150 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
150 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
150 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
150 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
150 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
150 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
150 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
150 Tomsk State University, Tomsk, Russia
150 Department of Physics, University of Toronto, Toronto ON, Canada
150 TRIUMF, Vancouver BC, Canada
150 Department of Physics and Astronomy, York University, Toronto ON, Canada
150 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
150 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
150 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
150 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
150 Department of Physics, University of Illinois, Urbana IL, United States of America
150 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
150 Department of Physics, University of British Columbia, Vancouver BC, Canada
150 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
150 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
150 Department of Physics, University of Warwick, Coventry, United Kingdom