Attention-based Multi-Context Guiding for Few-Shot Semantic Segmentation

Hu, T.; Yang, P.; Zhang, C.; Yu, G.; Mu, Y.; Snoek, C.G.M.

DOI
10.1609/aaai.v33i01.33018441

Publication date
2019

Document Version
Author accepted manuscript

Published in
Thirty-Third AAAI Conference on Artificial Intelligence, Thirty-First Conference on Innovative Applications of Artificial Intelligence, The Ninth Symposium on Educational Advances in Artificial Intelligence

Citation for published version (APA):
Attention-based Multi-Context Guiding for Few-Shot Semantic Segmentation

Tao Hu1,2, Pengwan Yang2, Chiliang Zhang3, Gang Yu4, Yadong Mu2, Cees G. M. Snoek1

1University of Amsterdam, the Netherlands
2Peking University, China
3Tsinghua University, China
4Megvii Inc. (Face++), China

taohu620@gmail.com, yangpengwan2016@gmail.com, zhangcl16@mails.tsinghua.edu.cn
yugang@megvii.com, myd@pku.edu.cn, cgmsnoek@uva.nl

Abstract

Few-shot learning is a nascent research topic, motivated by the fact that traditional deep learning methods require tremendous amounts of data. The scarcity of annotated data becomes even more challenging in semantic segmentation since pixel-level annotation in segmentation task is more labor-intensive to acquire. To tackle this issue, we propose an Attention-based Multi-Context Guiding (A-MCG) network, which consists of three branches: the support branch, the query branch, the feature fusion branch. A key differentiator of A-MCG is the integration of multi-scale context features between support and query branches, enforcing a better guidance from the support set. In addition, we also adopt a spatial attention along the fusion branch to highlight context information from several scales, enhancing self-supervision in one-shot learning. To address the fusion problem in multi-shot learning, Conv-LSTM is adopted to collaboratively integrate the sequential support features to elevate the final accuracy. Our architecture obtains state-of-the-art on unseen classes in a variant of PASCAL VOC12 dataset and performs favorably against previous work with large gains of 1.1\%, 1.4\% measured in mIoU in the 1-shot and 5-shot setting.

Introduction

The state-of-the-art in image classification, detection and segmentation have been greatly advanced by convolution neural networks (CNN). Although CNNs exhibit superior performances in a variety of tasks, it has the key problem of being data hungry. Typically gigantic data with annotations are required for achieving high accuracy. This issue becomes more severe for pixel-level annotations. In recent years, there emerged a new research thrust which learns new concepts from limited data, known as few-shot learning (Vinyals et al. 2016; Snell, Swersky, and Zemel 2017; Ravi and Larochelle 2017). Though widely explored in tasks like image classification, few-shot learning is rarely considered for dense pixel prediction problems.

Most existing methods in few-shot semantic segmentation are based on the framework shown in the top panel of Fig. 1. Conceptually, the framework is comprised of a support branch and a query branch. The support branch provides discriminative support feature to assist the target segmentation, the query branch is the feature extractor for target segmentation. This paradigm has the following difficulties: (1). \textit{Inefficient support feature utilization}. The feature of the support branch is precious, as it determines the final category the network will segment. However, most of the previous methods only consider the single output from the end of the network, which do not take full advantage of the multi-context feature. (2). \textit{Lack of attention}. As the amount of support and query data is often very small, optimization based on a large amount of data is impossible, some self-supervised methods such as attention should be introduced to make the network concentrate on our target class. (3). \textit{Inconvenience in multi-shot learning}. The traditional fusion method for multi-shot semantic segmentation is the logical or operation, this inflexible approach lacks in exploring the inner common feature between various support images.
To attack the above problems in few-shot semantic segmentation, we propose an Attention-based Multi-Context Guiding network (A-MCG) shown in the bottom of Fig. 1. Our A-MCG tries to fuse small-to-large scale context information to globally guide the query branch to make the right segmentation decision. A multi-context feature will largely facilitate the query branch segmentation based on multiple scales of support feature. In addition, we utilize the Residual Attention Module (RAM) (Wang et al. 2017) to carry out a self-supervised attention for further improvement of the segmentation. To deal with multi-shot learning, Conv-LSTM (Xingjian et al. 2015) is incorporated for better fusing multi-shot support feature.

Our A-MCG network makes the following contributions: (1). We first propose a Multi-Context Guiding structure to fuse the small-to-large scale context features between support branch and query branch to globally guide the query branch segmentation. (2). We introduce a Residual Attention Module (Wang et al. 2017) in our MCG network to realize the attention mechanism in few-shot learning of segmentation. (3). We embed the Conv-LSTM (Xingjian et al. 2015) module into the end of our network to better merge the feature map from support set in multi-shot semantic segmentation. (4). Compared with previous methods, our A-MCG reaches state-of-the-art 61.2%, 62.2% measured in mIoU in the 1-shot and 5-shot setting.

Related Work

Semantic Segmentation

During the early period, the CNN is only employed in the classification tasks, most of them (Krizhevsky, Sutskever, and Hinton 2012; Szegedy et al. 2015) are composed of convolution layers and fully connected layers. Fully Convolutional Network (FCN) (Long, Shelhamer, and Darrell 2015) first applies CNN for the task of image semantic segmentation. FCN’s key contribution is building a “fully convolutional” network that takes an input of arbitrary size and produces correspondingly-sized output with efficient inference and learning.

In Deeplab (Chen et al. 2018), Dilated Convolutions are introduced as an alternative to CNN pooling layers in deep part to capture larger context without reducing the image resolution. A module named Atrous Spatial Pyramid Pooling (ASPP) is also included in Deeplab where parallel Dilated Convolution layers with different rates capture multi-scale information. Our method is also illuminated by the multi-context fusion pattern of ASPP and merges the multi-context information by borrowing the multi-scale context from the support branch and the query branch.

Attention Mechanism

In this paper, we mainly talk about two types of attention mechanism: (1). **Spatial Attention** such as Residual Attention Module (RAM) (Wang et al. 2017). Inside each Attention Module, an Hourglass-like (Newell, Yang, and Deng) bottom-up and top-down feedforward structure is used for generating attention map. (2). **Channel Attention** like SENet (Hu, Shen, and Sun 2018). “Squeeze-and-Excitation”(SE) block is designed that adaptively recalibrates channel-wise feature responses by explicitly modeling interdependencies between channels. We employ these two types of attention mechanism into our MCG architecture.

Few-Shot Learning in Semantic Segmentation

The first work in few-shot semantic segmentation is OSLSM (Shaban et al. 2017). They proposed the basic paradigm in few-shot segmentation. The support branch and the query branch are constructed by VGG (Simonyan and Zisserman 2014) to supervise training. However, the structure is not fully convolutional, which leads to inefficient utilization of spatial information. Later co-FCN (Rakelly et al. 2018) turns both of the support and query branches into FCN architecture, but the exploration of multi-scale context is not as thorough as our method.

On the other side, OSVOS (Caelles et al. 2017) tries to solve the task of semi-supervised video object segmentation. OSVOS is also based on a fully-convolutional network architecture and transfers generic semantic information to the task of foreground segmentation. OSVOS shows the effectiveness of fine-tuning for video object segmentation, but fine-tuning for every test video is too time-consuming.

Convolutional Long Short-Term Memory

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber) is proposed as a special RNN structure to model long-range dependencies in various previous studies. However, LSTM is not suitable for handling spatiotemporal data because the input-to-state and state-to-state are all full connections thus no spatial information is encoded. To tackle this problem, Conv-LSTM (Xingjian et al. 2015) is put forward by using a convolution operator in the state-to-state and input-to-state transitions.

In our network, Conv-LSTM works as a memory unit to capture and integrate the previous support set feature for better multi-shot learning in semantic segmentation. Conv-LSTM’s advantage is not only modeling the sequential data, but also sequentially filtering and fusing the data by gate mechanism. This method gives us more interpretability and can better smooth our k-shot learning result compared with traditional fusion method.

Our Method

Problem Formulation

We follow the paradigm and notations in (Shaban et al. 2017), which are detailed in Table 1. The target is to learn a model \(f(I_q, S) \) that, when given a support set \(S \) and query image \(I_q \), predicts a binary mask \(M_q \) for the semantic class l. The \(f \) function is parameterized by neural networks of the
Figure 2: Attention-based Multi-Context Guiding Network Architecture for One-Shot Segmentation. It includes three parts: (1). the support branch. (2). the query branch. (3). A-MCG module. Res1, 2, 3, 4, 5 represent different block in ResNet. C is 1 × 1 convolution unit, stride=2 convolution is employed when the feature map size becomes smaller. We design two exclusive location settings of attention mechanism: A1, A2. The details of the attention architecture are illustrated in Fig. 4.

support branch and the query branch.

During training, the algorithm has access to a large set of image-mask pairs \(D = \{(I_j, Y_j)\}_{j=1}^{N} \) where \(Y_j \in L_{train}^{H \times W} \) is the binary mask for training image \(I_j \). At testing, the query images are only annotated for new(unseen) semantic classes i.e. \(L_{train} \cap L_{test} = \phi \), which leads us to divide the PASCAL VOC12 dataset like Table 2. This is the key difference between one-shot learning for segmentation and traditional segmentation, what we really care about is the segmentation performance on unseen data. Similar to the extension from one-shot learning to k-shot learning in classification task, k-shot learning can also be applied in semantic segmentation. In OSLSM (Shaban et al. 2017), k-shot learning results are fused by a logical OR operation between the k binary masks.

Attention Mechanism Review

Residual Attention Module (RAM) is first proposed by Wang et al. (Wang et al. 2017) for image classification. We here review the structure of RAM in Fig. 4. The original RAM proceeds many ablation studies for its setting, we directly use the explored optimal structure. In our paper, we mainly explore the attention location in our MCG module in Sec. Experimental Result.

The RAM actually utilizes a two-scale(down sample 2 times, then up sample 2 times) Hourglass structure to construct a soft attention mask \(M(x) \). In the original ResNet (He et al. 2016), residual learning is formulated as:

\[
H_{i,c} = x + F_{i,c}(x)
\]

where \(F_{i,c}(x) \) approximates the residual function, \(i \) ranges over all spatial positions and \(c \in \{1, ..., C\} \) is the index of the channel.

In RAM, the attention module is modified as:

\[
H_{i,c} = (1 + M_{i,c}(x)) \ast F_{i,c}(x)
\]

M(x) ranges from [0,1] because of the sigmoid function. With M(x) approximating 0, H(x) will approximate original features F(x). The key of RAM lies in M(x), which works as feature selectors that enhance good features and suppress noises from trunk features. This characteristic of RAM is particularly important for few-shot learning cases.

Except that, we also explored the SE block (Hu, Shen, and Sun 2018), which is a typical channel attention structure. Our later ablation study in Sec. Experimental Result shows that SE block fails to compete with RAM under the condition of same parameters.

Attention-based MCG

We propose an Attention-based Multi-Context Guiding network (A-MCG) illustrated in Fig. 2. Our A-MCG network is composed of three parts: (1). the support branch. (2). the query branch. (3). A-MCG(fusion) branch. The backbones of the support branch, the query branch are ResNet101. We elaborate our network as input image size 320 × 320, and their output feature map size is also marked in Fig. 2. Notably, the convolutions in Res-4, Res-5 blocks are equipped with Dilated Convolution (Chen et al. 2018) whose dilated rate=2. Therefore, the feature map size no long decreases
after Res-3, but the receptive field continues to be enlarged due to Dilated Convolution.

Our A-MCG module tries to utilize multi-context feature from the support branch to globally improve the query branch segmentation. We attempt two types of attention location pattern. In the following, we denote the b_s^i as feature maps after Res-i block in the support branch, b_q^i as feature maps after Res-i block in query branch, C as naive convolution(without ReLU (Nair and Hinton 2010), BN), H as our attention function, F_i as the mixed features after Res-i block of the support branch and the query branch.

Therefore, we mainly come up with three variants.

1. Multi-context guiding module:

\[F_{i+1} = C \{ C(b_s^i) + C(b_q^i) + F_i \} \] \hspace{1cm} (3)

Multi-context information from both branches are mixed by convolution operation. Notably, convolution here doesn’t include ReLU, BN.

2. Multi-context guiding with separate attention:

\[F_{i+1} = C \{ H(C(b_s^i)) + H(C(b_q^i)) + F_i \} \] \hspace{1cm} (4)

which corresponds to A1 in Fig. 2.

Attention mechanism is employed separately both in the query branch and the support branch.

3. Multi-context guiding with share attention:

\[F_{i+1} = C \{ H(C(b_s^i)) + C(b_q^i) + F_i \} \] \hspace{1cm} (5)

which corresponds to A2 in Fig. 2.

Attention mechanism is applied after the fusion of the query branch and the support branch.

Convolutional LSTM for k-shot learning

In previous work, we mainly focus on the circumstance of 1-shot learning in semantic segmentation. How shall we deal with k-shot learning? In OSLSM (Shaban et al. 2017), k-shot learning results are fused by a logical OR operation. However, this straightforward process is unexplainable and fails to utilize the inner relationship between sequential support images.

To better solve this multi-shot learning problem, we attempt to embed Conv-LSTM (Xingjian et al. 2015) at the end of the fusion branch as illustrated in Fig. 2. At last, a 1×1 convolution will be appended to generate segmentation probability map.

Conv-LSTM is first applied to the precipitation nowcasting task. The key idea of Conv-LSTM is to implement all operations, including state-to-state and input-to-state transitions, with kernel-based convolutions. The inner feature of the sequential support image mask can be sustained by Conv-LSTM. We here adopt a popular LSTM variant with “peephole connections” (Gers, Schraudolph, and Schmidhuber 2002). In detail, the three gating functions in Conv-LSTM are calculated according to the equations below:

\[i_t = \sigma(W_{x,i} \otimes X_t + W_{h,i} \otimes H_{t-1} + W_{c,i} \otimes C_{t-1}) \] \hspace{1cm} (6)

\[o_t = \sigma(W_{x,o} \otimes X_t + W_{h,o} \otimes H_{t-1} + W_{c,o} \otimes C_{t-1}) \] \hspace{1cm} (7)

\[f_t = \sigma(W_{x,f} \otimes X_t + W_{h,f} \otimes H_{t-1} + W_{c,f} \otimes C_{t-1}) \] \hspace{1cm} (8)

where we let X_t, H_t be the input/hidden state at time t respectively, \otimes represents spatio-temporal convolution operator.

Investigating previous H and current X, the recurrent model synthesizes a new proposal for the cell state, namely

\[\hat{C}_t = tanh(W_{x,c} \otimes X_t + W_{h,c} \otimes H_{t-1}) \] \hspace{1cm} (9)

The final cell state is obtained by linearly fusing the new proposal \hat{C}_t and previous state C_{t-1}:

\[C_t = f_t \otimes C_{t-1} + i_t \otimes \hat{C}_t \] \hspace{1cm} (10)

where \otimes denotes the Hadamard product. To continue the recurrent process, it also renders a filtered new H:

\[H_t = o_t \otimes tanh(C_t) \] \hspace{1cm} (11)

In our previous structure, the network is trained on one-shot support set. Once Conv-LSTM is imported into our framework, it will enable us to train with k-shot support set. For every batch(if batch size=1), one query image and k support image masks will be fed into our neural network.

We unroll this procedure in Fig. 3 for better understanding the k-shot fusion process. k-shot support image masks enter Conv-LSTM in turn. Conv-LSTM plays a critical role in summarizing the total features of the k-shot support image masks.

For better mixing the feature from the support set in k-shot learning, a function loss is designed as follows:

\[L = -\frac{1}{k \cdot s^2} \sum_{i=0}^{k} \sum_{m=0}^{s} Y_{m,n} \cdot log(X_{m,n}) \] \hspace{1cm} (12)

where Y is binary label, X means the neural network output probability, k is shot number, s represents image size.

This loss enforces our A-MCG module to function well on every support set image rather than only supervises the segmentation of single support image.

Experimental Result

Training details

We implement our code based on the tensorflow framework (Abadi et al. 2016). Specially, a scaffold framework
2017) to conduct our experiment. This dataset originated from PASCAL VOC12 (Everingham et al.) and extended annotations from SDS (Hariharan et al.). The set of 20 classes in PASCAL VOC12 is divided into four sub-datasets as indicated in Table 2. Three sub-datasets are used as the training label-set L_{train}, the left one sub-dataset is utilized for test label-set L_{test}.

The training set D_{train} is composed of all image-mask pairs from PASCAL VOC12 and SDS training sets that include at least one pixel in the segmentation mask from the label-set L_{train}. The masks in D_{train} are modified into binary masks by setting pixels whose semantic class are not in L_{train} as background class l_d. The test set D_{test} is from PASCAL VOC12 and SDS validation sets, and the processing procedure for test set D_{test} is similar with training set D_{train}. Our evaluation mIoU is the average of 5 sub-dataset mIoUs. For a fair comparison with (Shaban et al. 2017), we take the same random seed and sample N=1000 examples for testing each of our models.

Metric: To compare the quantitative performance of the different models, mean intersection over union(mIoU) over two classes is used for our benchmark evaluation. For binary segmentation in our work, we first calculate the 2×2 confusion matrix, then compute the according IoU_l as $\frac{tp_l}{tp_l+fp_l+fn_l}$. tp_l is the number of true positives for class l, fp_l is the number of false positives for class l and fn_l is the number of false negatives for class l. The final mIoU is its average over the set of classes.

Ablation Study

Baseline. Our method is mostly compared with OSLSM (Shaban et al. 2017) and co-FCN (Rakelly et al. 2018). Both of them utilize the VGG (Simonyan and Zisserman 2014) as basic model. Different from them, we adopt ResNet101 (He et al. 2016) as our basic model, for ResNet101 owns much less parameter than VGG16, thus it is less prone to over-fitting. Besides, ResNet also enables larger batch size training in our architecture.

After removing the fully connected layers in the end, our trained tensorpack (Wu and others 2016) is used for quickly setting up our experiment. All our models are trained by Stochastic Gradient Descent(SGD) (Bottou 2010) solver with learning rate=1e-4, momentum=0.99 on one Nvidia Titan XP GPU. To fully fill GPU memory, we set the batch size 12. The weights of the support branch and the query branch are initialized with ImageNet (Deng et al. 2009) pre-trained weights. For the weight initialization of A-MCG module, Xavier initialization (Glorot and Bengio 2010) is adopted.

For the weight initialization of A-MCG module, Xavier initialization (Glorot and Bengio 2010) is adopted. All the images in the support and query branch are resized to 320×320. No further augmentation is employed except the image resizing. For Batch Normalization (BN) (Ioffe and Szegedy 2015), we employ current batch statistics at training and use the moving average statistics of BN during validation time.

We use the cross-entropy loss as the object function for training the network. The loss is summed up over all the pixels in a mini-batch.

When we experiment with Conv-LSTM for k-shot learning, we set k=5 by default. The max batch size can only be 6 because every time k support image masks will be fed into the support branch. Layer Normalization (Ba, Kiros, and Hinton 2016) is utilized in our Conv-LSTM for speeding up convergence.

Dataset and Metric

Dataset: We utilize dataset PASCAL-5i (Shaban et al. 2017) to conduct our experiment. This dataset is originated from PASCAL VOC12 (Everingham et al.) and extended annotations from SDS (Hariharan et al.). The set of 20 classes in PASCAL VOC12 is divided into four sub-datasets as indicated in Table 2. Three sub-datasets are used as the training label-set L_{train}, the left one sub-dataset is utilized for test label-set L_{test}.

<table>
<thead>
<tr>
<th>label set index</th>
<th>Semantic Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>aeroplane, bicycle, bird, boat, bottle</td>
</tr>
<tr>
<td>1</td>
<td>bus, car, cat, chair, cow</td>
</tr>
<tr>
<td>2</td>
<td>diningtable, dog, horse, motorbike, person</td>
</tr>
<tr>
<td>3</td>
<td>potted plant, sheep, sofa, train, tv/monitor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sub-dataset</th>
<th>train label set</th>
<th>val label set</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,2,3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0,2,3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0,1,3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0,1,2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2: PASCAL-i^5 group information. The top table displays 4 groups of label and their semantic classes. The bottom table shows 4 sub-datasets and their training, validation components.

We use the cross-entropy loss as the object function for training the network. The loss is summed up over all the pixels in a mini-batch.

When we experiment with Conv-LSTM for k-shot learning, we set k=5 by default. The max batch size can only be 6 because every time k support image masks will be fed into the support branch. Layer Normalization (Ba, Kiros, and Hinton 2016) is utilized in our Conv-LSTM for speeding up convergence.

Dataset and Metric

Dataset: We utilize dataset PASCAL-5i (Shaban et al. 2017) to conduct our experiment. This dataset is originated from PASCAL VOC12 (Everingham et al.) and extended annotations from SDS (Hariharan et al.). The set of 20 classes in PASCAL VOC12 is divided into four sub-datasets as indicated in Table 2. Three sub-datasets are used as the training label-set L_{train}, the left one sub-dataset is utilized for test label-set L_{test}.

The training set D_{train} is composed of all image-mask pairs from PASCAL VOC12 and SDS training sets that include at least one pixel in the segmentation mask from the label-set L_{train}. The masks in D_{train} are modified into binary masks by setting pixels whose semantic class are not in L_{train} as background class l_d. The test set D_{test} is from PASCAL VOC12 and SDS validation sets, and the processing procedure for test set D_{test} is similar with training set D_{train}. Our evaluation mIoU is the average of 5 sub-dataset mIoUs. For a fair comparison with (Shaban et al. 2017), we take the same random seed and sample N=1000 examples for testing each of our models.

Metric: To compare the quantitative performance of the different models, mean intersection over union(mIoU) over two classes is used for our benchmark evaluation. For binary segmentation in our work, we first calculate the 2×2 confusion matrix, then compute the according IoU_l as $\frac{tp_l}{tp_l+fp_l+fn_l}$. tp_l is the number of true positives for class l, fp_l is the number of false positives for class l and fn_l is the number of false negatives for class l. The final mIoU is its average over the set of classes.

Ablation Study

Baseline. Our method is mostly compared with OSLSM (Shaban et al. 2017) and co-FCN (Rakelly et al. 2018). Both of them utilize the VGG (Simonyan and Zisserman 2014) as basic model. Different from them, we adopt ResNet101 (He et al. 2016) as our basic model, for ResNet101 owns much less parameter than VGG16, thus it is less prone to over-fitting. Besides, ResNet also enables larger batch size training in our architecture.

After removing the fully connected layers in the end, our
Table 3: Ablation Study for fusion width. The experiment is conducted on PASCAL-i5 sub-dataset 0.

<table>
<thead>
<tr>
<th>fusion width</th>
<th>1-shot</th>
<th>#params(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>63.4</td>
<td>85.6</td>
</tr>
<tr>
<td>128</td>
<td>63.3</td>
<td>86.1</td>
</tr>
<tr>
<td>256</td>
<td>63.6</td>
<td>87.2</td>
</tr>
<tr>
<td>512</td>
<td>63.6</td>
<td>89.8</td>
</tr>
<tr>
<td>1024</td>
<td>63.2</td>
<td>96.1</td>
</tr>
</tbody>
</table>

Table 4: Ablation Study for multi-context pattern. The experiment is conducted on PASCAL-i5 sub-dataset 0.

<table>
<thead>
<tr>
<th>Method</th>
<th>1-shot</th>
<th>#params(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>context-2345</td>
<td>63.6</td>
<td>87.2</td>
</tr>
<tr>
<td>context-45</td>
<td>63.2</td>
<td>86.7</td>
</tr>
<tr>
<td>context-5</td>
<td>61.2</td>
<td>86.1</td>
</tr>
</tbody>
</table>

ResNet101 baseline becomes a fully-convolutional structure. Support branch and query branch are fused by element-wise Add between the Res-5 output of them, followed by a naive convolution.

MCG: We explore several factors of our Multi-Context Guiding (MCG) architecture such as (1). fusion width. Fusion width is the channel number in the MCG branch, all the features in the support branch and the query branch will be transformed into features with width of fusion width. Different settings of fusion width are stated in Table 3. (2). multi-context pattern, we try to explore what kind of context combination is better for the few-shot learning in Table 4. The number after “context” is the feature we will adopt for fusion. For example, context-45 means that only features from Res-4, Res-5 are used for fusion. For convenience, we only proceed the ablation study in the sub-dataset 0 in this part.

From Table 3, we can conclude that when the fusion width is too small such as 64,128, the one-shot mIoU is 0.2% lower than width=256. Meanwhile, larger fusion width like 1024 will make the mIoU worse due to over-fitting. Taking into consideration of the balance between mIoU and parameter cost, we choose fusion width=256 as our default setting. The latter ablation study will also adopt the default value.

As the multi-context pattern in Table 4, more level context fusion often leads to a better result. Context-2345 outperforms context-5 nearly 2.4% mIoU. This shows that our multi-context guiding strategy works as our motivation. Multi-context information fusion from both the support branch and the query branch could efficiently “support” the query branch’s segmentation.

Attention Mechanism. We set two variants about the attention module: (1). Spatial Attention. Residual Attention Module (RAM) is applied here as a representative method. (2). Channel Attention. SENet (Hu, Shen, and Sun 2018) is explored in our ablation study. At the same time, two attention location patterns “separate” and “share” are also explored. “sep” denotes the support branch and query branch adopt separate attention. “share” represents the support branch and query branch share the same attention.

As shown in Table 5. We can find that Spatial Attention works much better than Channel Attention under the circumstance of same parameters. We conclude that spatial information is more useful in dense pixel task like image segmentation, while channel information plays a more important role in classification task.

It can be obviously figured out that sharing the same attention is basically better than separate attention. We speculate that for the support branch, the input has been already masked so that it does not need attention mechanism, while sharing attention mechanism will make the query branch pay more attention to the support branch’s input mask.

On the other hand, we demonstrate some images’ feature map visualization and feature map histogram in Fig. 5. From the visualization, we can qualitatively observe that the feature map becomes more focusing on the target segmentation objects. As for the feature map histogram, we can quantitatively discovery that the histogram peak move towards small value. We owe this observation to the fact that the Spatial Attention enhances good features and suppresses noises from trunk features.

Conv-LSTM for k-shot learning. We mainly contrast two loss variants in Conv-LSTM. (1). 1-loss Conv-LSTM. Only output from the last shot is supervised. (2). 5-loss Conv-LSTM. Every output from Conv-LSTM is supervised. As indicated in Table 6, the Conv-LSTM highly boosts our mIOU both in 1-shot and 5-shot learning. 1-shot result on 1-loss Conv-LSTM is 0.7% lower than our baseline, we speculate that 1-loss Conv-LSTM fails to fully supervise single-shot learning. Interestingly, both the 1-shot and 5-shot result
Table 5: Ablation Study for Attention Mechanism. ChannelAttention means SENet Block, SpatialAttention means Residual Attention Block. “sep” denotes the support branch and the query branch adopt separate attention. “share” represents the support branch and the query branch share the same attention.

<table>
<thead>
<tr>
<th>Method</th>
<th>1-shot</th>
<th>5-shot</th>
<th>#params(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCG</td>
<td>63.3</td>
<td>87.2</td>
<td></td>
</tr>
<tr>
<td>MCG-ChannelAttention-sep(^1)</td>
<td>63.6</td>
<td>89.6</td>
<td></td>
</tr>
<tr>
<td>MCG-ChannelAttention-share(^2)</td>
<td>61.7</td>
<td>89.8</td>
<td></td>
</tr>
<tr>
<td>MCG-SpatialAttention-sep</td>
<td>63.3</td>
<td>93.3</td>
<td></td>
</tr>
<tr>
<td>MCG-SpatialAttention-share</td>
<td>65.8</td>
<td>89.5</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) For fair comparison with SpatialAttention method, we change the fusion width to 428 to make #param nearly the same.
\(^2\) For fair comparison with SpatialAttention method, we change the fusion width to 480 to make #param nearly the same.

Table 6: Ablation Study for loss function in Conv-LSTM. Baseline is our A-MCG module, we mainly compare the difference between 1-loss Conv-LSTM and 5-loss LSTM. The experiment is conducted on PASCAL-\(i^5\) sub-dataset 0.

<table>
<thead>
<tr>
<th>Method</th>
<th>1-shot</th>
<th>5-shot</th>
<th>#params(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>65.8</td>
<td>66.2</td>
<td>89.5</td>
</tr>
<tr>
<td>1-loss Conv-LSTM</td>
<td>65.1</td>
<td>67.5</td>
<td>90.8</td>
</tr>
<tr>
<td>5-loss Conv-LSTM</td>
<td>66.1</td>
<td>67.9</td>
<td>90.8</td>
</tr>
</tbody>
</table>

Table 7: COCO Dataset result.

<table>
<thead>
<tr>
<th>Method</th>
<th>1-shot</th>
<th>5-shot</th>
<th>#params(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>49.98</td>
<td>51.2</td>
<td>85.1</td>
</tr>
<tr>
<td>A-MCG-Conv-LSTM</td>
<td>52</td>
<td>54.7</td>
<td>90.8</td>
</tr>
</tbody>
</table>

Conclusion

We propose an Attention-based Multi-Context Guiding network (A-MCG) which incorporates multi-level concentrated context. The benefits of our network are three folds: (1). The shallow part of our network generates low-level semantic features, meanwhile deep part of our network captures high-level semantic features. Context features in equal level are fused by our MCG module, which highly facilitates the support branch to globally “support” the query branch. (2). Spatial Attention is employed along with the whole MCG branch, which makes our network focus on different scales of context information. (3). The import of Conv-LSTM enables the network to better integrate the feature from the support set in multi-shot semantic segmentation. The performance of our model surpasses state-of-the-art in few-shot semantic segmentation. In the future, we will exploit few-shot learning in multi-class segmentation at one time.

Table 8: Result on PASCAL-\(i^5\) Dataset. All results are computed by taking the average of the 5 sub-datasets in PASCAL-\(i^5\). The 5-shot result is obtained by logic or fusion except the method with Conv-LSTM.

<table>
<thead>
<tr>
<th>Method</th>
<th>1-shot</th>
<th>5-shot</th>
<th>#params(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLSLM (Shaban et al. 2017)</td>
<td>40.8</td>
<td>43.9</td>
<td>276.7</td>
</tr>
<tr>
<td>co-FCN(Multi-class) (Rakelly et al. 2018)</td>
<td>50.9</td>
<td>50.9</td>
<td>-</td>
</tr>
<tr>
<td>co-FCN(Overall) (Rakelly et al. 2018)</td>
<td>60.1</td>
<td>60.8</td>
<td>-</td>
</tr>
<tr>
<td>Baseline</td>
<td>53.0</td>
<td>54.8</td>
<td>85.1</td>
</tr>
<tr>
<td>MCG</td>
<td>55.3</td>
<td>56.5</td>
<td>87.2</td>
</tr>
<tr>
<td>A-MCG</td>
<td>57.3</td>
<td>57.8</td>
<td>89.5</td>
</tr>
<tr>
<td>A-MCG-Conv-LSTM</td>
<td>61.2</td>
<td>62.2</td>
<td>90.8</td>
</tr>
</tbody>
</table>
Acknowledgements

This work is supported by NJUST Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information under Grant No. JYB201701 and Beijing Municipal Commission of Science and Technology under Grant No. 181100008918005.

References

