Searches for lepton-flavour-violating decays of the Higgs boson in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector

The ATLAS Collaboration

DOI
10.1016/j.physletb.2019.135069

Publication date
2020

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):
Searches for lepton-flavour-violating decays of the Higgs boson in \(\sqrt{s} = 13\) TeV pp collisions with the ATLAS detector

The ATLAS Collaboration*

ABSTRACT

This Letter presents direct searches for lepton flavour violation in Higgs boson decays, \(H \to \ell\tau\) and \(H \to \mu\tau\), performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy \(\sqrt{s} = 13\) TeV, corresponding to an integrated luminosity of 36.1 fb\(^{-1}\). No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the lepton-flavour-violating branching ratios are 0.47\% (0.34\%–0.50\%) and 0.28\% (0.37\%–0.16\%) for \(H \to \ell\tau\) and \(H \to \mu\tau\), respectively.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

The search for processes beyond the Standard Model (SM) is one of the main goals of the Large Hadron Collider (LHC) programme at CERN. A possible sign of such processes is lepton flavour violation (LFV) in decays of the Higgs boson [1,2]. Many beyond-SM theories predict LFV decays of the Higgs boson, such as supersymmetry [3,4], other models with more than one Higgs doublet [5,6], composite Higgs models [7], models with flavour symmetries [8] or warped extra dimensions [9–11] models and others [12,13].

In this Letter, searches for LFV decays of the Higgs boson, \(H \to \ell\tau\) and \(H \to \mu\tau\), at the LHC with the ATLAS experiment are presented. Studies are based on proton–proton (pp) collision data recorded in 2015–2016 at a centre-of-mass energy \(\sqrt{s} = 13\) TeV. The dataset corresponds to an integrated luminosity of 36.1 fb\(^{-1}\).

Previous ATLAS searches [14,15] placed an upper limit of 1.04\% (1.43\%) on the \(H \to \ell\tau\) (\(H \to \mu\tau\)) branching ratio (BR) with a 95% confidence level (CL) using Run 1 data collected at \(\sqrt{s} = 8\) TeV, corresponding to an integrated luminosity of 20.3 fb\(^{-1}\). The CMS Collaboration recently provided 95\% CL upper limits on these branching ratios of 0.61\% and 0.25\%, respectively, using data collected at \(\sqrt{s} = 13\) TeV, with an integrated luminosity of 35.9 fb\(^{-1}\) [16].

The searches presented here involve both leptonic (\(\tau \to \ell\nu\nu^\dagger\)) and hadronic (\(\tau \to \text{hadrons} + \nu\)) decays of \(\tau\)-leptons, denoted \(\tau_\ell\) and \(\tau_{\text{had}}\), respectively. The dilepton final state \(\ell\ell\tau\) only considers pairs of different-flavour leptons. Same-flavour lepton pairs are rejected due to the large lepton pair-production Drell-Yan background. Two channels are considered for each of the two searches: \(\tau_\ell\mu\) and \(\tau_{\text{had}}\mu\) for the \(H \to \ell\tau\) search, \(\mu\tau\) and \(\mu\tau_{\text{had}}\) for the \(H \to \mu\tau\) search. The analysis is designed such that any potential LFV signal overlap between the \(H \to \ell\tau\) and \(H \to \mu\tau\) searches is negligible. Many methods are reused from the measurement of the Higgs boson cross-section in the \(H \to \tau\tau\) final state [17].

The ATLAS detector\(^2\) is described in Refs. [18–20]. It consists of an inner tracking detector covering the range \(|\eta| < 2.5\) surrounded by a superconducting solenoid providing a 2 T axial magnetic field, high-granularity electromagnetic (\(|\eta| < 3.2\)) and hadronic calorimeters (\(|\eta| < 4.9\)), and a muon spectrometer (MS) which covers the range \(|\eta| < 2.7\) and includes fast trigger chambers (\(|\eta| < 2.4\)) and superconducting toroidal magnets.

2. Simulation samples

Samples of Monte Carlo (MC) simulated events are used to optimize the event selection, and to model the signal and several of the background processes. The samples were produced with the ATLAS simulation infrastructure [21] using the full detector simulation performed by the GEANT4 [22] toolkit. The Higgs boson mass was set to \(m_H = 125\) GeV [23]. The four leading Higgs boson production mechanisms are considered: the gluon–gluon fusion (ggF), vector-boson fusion (VBF) and two associated production modes

\(^{2}\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the \(z\)-axis along the beam pipe. The azimuthal angle \(\phi\) runs around the beam pipe, the pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\log\tan(\theta/2)\). Angular distance in the \(\eta-\phi\) space is defined as \(\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}\).
(WH, ZH), while the others give negligible contributions and are ignored. The cross-sections of all Higgs boson production processes were normalized to the SM predictions [24]. The LFV Higgs boson decays as well as the $H \rightarrow \tau \tau$ and $H \rightarrow WW$ background decays were modelled with Pythia 8 [25]. Other background processes involve electroweak production of W/Zbosons via VBF, Drell–Yan production of W/Z in association with jets as well as diboson, single top-quark and top-quark pair ($t\bar{t}$) production. The MC generators used for the SM $H \rightarrow \tau \tau$ cross-section measurements [17] were also employed here for all background components. The generators and parton shower models used to simulate different processes are summarized in Table 1.

3. Object reconstruction

The correct identification of $H \rightarrow \ell \tau$ events requires reconstruction of several different objects (electrons, muons, and jets, including those initiated by hadronic decays of τ-leptons) and the missing transverse momentum E_T^{miss}, whose magnitude is called E_T^{miss}.

Electrons are reconstructed by matching tracks in the inner detector to clustered energy deposits in the electromagnetic calorimeter [57]. Loose likelihood-based identification [58], $p_T > 15$ GeV and fiducial volume requirements ($|\eta| < 2.47$, excluding the transition region between the barrel and the endcap calorimeters $1.37 < |\eta| < 1.52$) are applied. Medium identification, corresponding to an efficiency of 87% at $p_T = 20$ GeV, is imposed for the baseline electron selection.

Muons are identified by tracks reconstructed in the inner detector and matched to tracks in the MS. Loose identification [59], $p_T > 10$ GeV and $|\eta| < 2.5$ are applied. Medium identification (efficiency of 96.1% for muons with $p_T > 20$ GeV) is imposed for the baseline muon selection.

Isolation criteria exploiting calorimeter and track-based information are applied to both electrons and muons. The gradient working point is used, featuring an efficiency of 90% (99%) obtained for leptons with $p_T > 25$ GeV (60 GeV) originating from the $Z \rightarrow \ell\ell$ process [58,59].

Jets are reconstructed using the anti-k_t algorithm [60] as implemented by the FastJet [61] package. The algorithm is applied to topological clusters of calorimeter cells [62] with a radius parameter $R = 0.4$. Only jets with $p_T > 20$ GeV and $|\eta| < 4.5$ are considered. Jets from other pp interactions in the same and neighbouring bunch crossings (pile-up) are suppressed using jet vertex tagger (JVT) algorithms [63,64]. Jets containing b-hadrons (b-jets) are identified by the MV2c20 algorithm [65,66] in the central region ($|\eta| < 2.4$). A working point corresponding to 85% average efficiency determined for b-jets in $t\bar{t}$ simulated events is chosen, rejection factors are 2.8 and 28 against c-jets and light-flavour jets respectively.

The reconstruction of the object formed by the visible products of the H decay (H) begins from jets reconstructed by the anti-k_t jet algorithm with a radius parameter $R = 0.4$. Information from the inner detector tracks associated with the energy deposits in the calorimeter is incorporated in the reconstruction. Only $H_{\text{had-vis}}$ candidates with $p_T > 20$ GeV and $|\eta| < 2.5$ are considered.\footnote{The transition region in η is excluded, similarly to electrons.}

One or three associated tracks with an absolute total charge $q = 1$ are required. An identification algorithm [67,68] based on boosted decision trees (BDT) [69–71] is used to reject $H_{\text{had-vis}}$ candidates arising from misidentification of jets or from decays of hadrons with b- or c-quark content. Unless otherwise indicated, a tight identification (ID) working point is used for the $H_{\text{had-vis}}$, corresponding to an efficiency of 60% (45%) for 1-prong (3-prong) candidates. Jets corresponding to identified $H_{\text{had-vis}}$ candidates are removed from the jet collection. The $H_{\text{had-vis}}$ candidates with one track overlapping with an electron candidate with high ID score, as determined by a multivariate (MVA) approach, are rejected. Leptonic τ-decays are reconstructed as electrons or muons.

Events considered in the analysis are triggered with single-electron or single-muon triggers. The p_T thresholds depend on the isolation requirement and data-taking period [72,73]. The lowest trigger thresholds correspond to $25 – 27$ GeV (electrons) and $21 – 27$ GeV (muons).

4. Event selection and categorization

Events selected in the $\ell\tau_\ell$ channel contain exactly one electron and one muon of opposite-sign (OS) charges. Similarly in the H_{had} channel, a lepton and a $H_{\text{had-vis}}$ of OS charges are required, and events with more than one baseline lepton are rejected. The selection criteria are summarized in Table 2 for the analysis categories as well as the control regions (CRs), which are described in Section 5.

In the $\ell\tau_\ell$ channel, ℓ_1 and ℓ_2 denote the leading and subleading lepton in p_T, respectively. Events where the leading lepton is an electron (muon) are used in the search for $H \rightarrow \ell\nu_\ell$ ($H \rightarrow \mu\tau_\mu$). A requirement on the dilepton invariant mass, equal to the invariant mass of the lepton and the visible τ-decay products, $m_{\ell\nu}$, reduces backgrounds with top quarks, and the criterion applied to the track-to-cluster p_T ratio of the electron reduces the $Z \rightarrow \mu\mu$ background where a muon deposits a large amount of energy in the electromagnetic calorimeter and is misidentified as an electron in the μ_2 channel. The contribution from the $H \rightarrow \tau\tau$ decay is reduced by the asymmetric p_T selection of the two leptons.

In the H_{had} channel, the criterion based on the azimuthal separations of μ_2-lepton E_T^{miss} and $H_{\text{had-vis}}$ is $\sum_{i=1}^{2} \Delta R(\mu_i, E_T^{miss})$, reduces the $W +$ jets background whereas the requirement on $|\Delta \eta(\ell_1, H_{\text{had-vis}})|$ reduces backgrounds with misidentified $H_{\text{had-vis}}$ candidates.

For both channels of each search, a b-veto requirement reduces the single-top-quark and $t\bar{t}$ backgrounds. Events are further cate-

Table 1

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>PDF</th>
<th>UEPS</th>
<th>Cross-section order</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH, ZH</td>
<td>Powheg-Box v2 MINLO</td>
<td>PDF4LHC15 NLO</td>
<td>Pythia 8.212</td>
<td>NLO QCD + NLO EW [40–42]</td>
</tr>
<tr>
<td>VV/VVγγ</td>
<td>Sherpa 2.2.1</td>
<td>NNPDF30NNLO</td>
<td>Sherpa 2.2.1</td>
<td>NNLO</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>Powheg-Box v2 ((26–28.48))</td>
<td>CT10 [49]</td>
<td>Pythia 6.288 [50]</td>
<td>NNLO+NLL [51]</td>
</tr>
<tr>
<td>Single t</td>
<td>Powheg-Box v1 ((52,53))</td>
<td>CT10</td>
<td>Pythia 6.288</td>
<td>NLO [53–56]</td>
</tr>
</tbody>
</table>
The ATLAS Collaboration / Physics Letters B 800 (2020) 135069

Table 2
Baseline event selection and further categorization for the $\ell\tau$ and ℓ_{had} channels. The same criteria are also used for the control region (CR) definitions in the $\ell\tau$ channel (Section 5), but one requirement of the baseline selection is inverted to achieve orthogonal event selection. There is no CR in the ℓ_{had} channel.

<table>
<thead>
<tr>
<th>Selection</th>
<th>$\ell\tau$</th>
<th>ℓ_{had}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>exactly 1e and 1μ, OS</td>
<td>exactly 1τ and 1μ-vis, OS</td>
</tr>
<tr>
<td></td>
<td>$p_T^j > 45$ GeV</td>
<td>$p_T^j > 27.3$ GeV</td>
</tr>
<tr>
<td></td>
<td>$p_T^j > 15$ GeV</td>
<td>$p_T^j > 25$ GeV</td>
</tr>
<tr>
<td></td>
<td>$E_T^{\text{miss}} > 150$ GeV</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>30 GeV < m_{vis} < 150 GeV</td>
<td>$\sum</td>
</tr>
<tr>
<td></td>
<td>p_T^j(track)/p_T^j(cluster) < 1.2 (for jets with $p_T^j > 25$ GeV and $</td>
<td>\eta</td>
</tr>
<tr>
<td>Baseline</td>
<td>≥ 2 jets, $p_T^j > 40$ GeV, $p_T^j > 30$ GeV</td>
<td>$p_T^j > 45$ GeV</td>
</tr>
<tr>
<td>VBF</td>
<td>$</td>
<td>\Delta\eta(j_1,j_2)</td>
</tr>
<tr>
<td>Non-VBF</td>
<td>$m_T(t, E_T^{\text{miss}}) > 50$ GeV</td>
<td>$p_T^j > 45$ GeV</td>
</tr>
<tr>
<td></td>
<td>$m_T(\ell, E_T^{\text{miss}}) > 40$ GeV</td>
<td>$p_T^j > 45$ GeV</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>\Delta\phi(\ell, E_T^{\text{miss}})</td>
</tr>
<tr>
<td></td>
<td>$p_T^j/p_T^{2j} > 0.35$</td>
<td>$p_T^j > 45$ GeV</td>
</tr>
<tr>
<td>Top-quark CR</td>
<td>inverted b-veto:</td>
<td>$</td>
</tr>
<tr>
<td>VBF and non-VBF</td>
<td>≥ 1 b-tagged jet ($p_T^j > 25$ GeV and $</td>
<td>\eta</td>
</tr>
<tr>
<td>Z \rightarrow τ CR</td>
<td>inverted p_T^j requirement:</td>
<td>$</td>
</tr>
<tr>
<td>VBF and non-VBF</td>
<td>35 GeV < $p_T^j < 45$ GeV</td>
<td>$</td>
</tr>
</tbody>
</table>

4 The transverse mass of two objects is defined as $m_T = \sqrt{2p_T^1p_T^2(1 - \cos \Delta\phi)}$, where p_T^1, p_T^2 are the individual transverse momenta and $\Delta\phi$ is the angle between the two objects in the azimuthal plane.

agreement between data and simulated distributions of the BDT score and input variables, as well as their correlations.

5. Background modelling

The most significant backgrounds in the search are from events with $Z \rightarrow \tau\tau$ decays or with (single or pair-produced) top quarks, especially in the $\ell\tau$ channel, as well as from events with misidentified objects, which are estimated using data-driven (d.d.) techniques. The relative contribution from misidentified objects to the total background yield is 5–25% in the $\ell\tau$ channel and 25–45% in the ℓ_{had} channel, depending on the search and the analysis category. The shapes of distributions from the $Z \rightarrow \tau\tau$ and top-quark (single-top-quark and tt) processes are modelled by simulation in both the $\ell\tau$ and ℓ_{had} decay channels. In the $\ell\tau$ channel, the relative contributions of $Z \rightarrow \tau\tau$ and top-quark production processes are 20–35% and 20–55%, respectively; the top-quark background dominates in the VBF category. In the ℓ_{had} channel, the top-quark background fraction is 1–10%, while the $Z \rightarrow \tau\tau$ process contributes to 45–55% of the total background. The individual contributions are listed in Tables 4 and 5. Smaller background components are also modelled by simulation and are grouped together: $Z \rightarrow \mu\mu$, diboson production, $H \rightarrow \tau\tau$ and $H \rightarrow WW$.

Good modelling of the background is demonstrated in Fig. 1 for a selection of important BDT input variables. Details of the background estimation techniques are given below.

5.1. $\ell\tau$ channel

Two sets of CRs, as defined in Table 2, are used to constrain the normalization of $Z \rightarrow \tau\tau$ and top-quark background components. These CRs inherit their definitions from the corresponding analysis category but invert one requirement to ensure orthogonality with the nominal selection. The normalization factors are determined during the statistical analysis by fitting the event yields in all signal and control regions simultaneously. For each search, separate $Z \rightarrow \tau\tau$ normalization factors are used for the VBF and non-VBF categories. In the case of the top-quark background, in
which leading jets are produced at a lower order of the perturbative expansion of the scattering process, a combined normalization factor across the two categories is used in the $t\ell\tau$ channel.

Top-quark CRs are almost exclusively composed of top-quark backgrounds; the purity is 95% across both searches and categories, with $t\bar{t}$ process accounting for more than 90% of the top-quark backgrounds. The $Z \rightarrow \tau\tau$ CRs achieved a purity of $\sim 80\%$ in the non-VBF categories, while a lower purity of $\sim 60\%$ is observed in the VBF categories. The contributions of all other background components are normalized to their SM predictions when the likelihood fit (Section 7) is applied.

The shape and normalization of diboson and $Z \rightarrow \mu\tau$ background distributions are validated with data in dedicated regions where their contributions are enhanced. The latter process only contributes sizeably in the $\mu\tau$ channel, where it represents up to 10% of the total background.
Another source of background comes from $W + \text{jets}$, top-quark and multi-jet events, where jets are misidentified as leptons. This background is estimated directly from OS data events where an inverted isolation requirement is imposed on the subleading lepton [17]. Normalization factors are applied to correct for the inverted isolation requirement. The normalization factors are derived in a dedicated region where the leptons are required to have same-sign (SS) charges. Additional corrections are made by reweighting the MC distributions of $\Delta \phi (\ell_1, E_T^{\text{miss}})$ and $\Delta \phi (\ell_2, E_T^{\text{miss}})$ to data in the SS region, which improves the modelling of azimuthal angles between leptons and the E_T^{miss} direction as well as the modelling of $m_T(\ell_2, E_T^{\text{miss}})$. A similar improvement is observed in the nominal OS region. In most of the cases, the misidentified jet mimics the lepton of lower p_T, ℓ_2, while the fraction of events where both leptons are misidentified varies between 2% to 8% across categories. The systematic uncertainties of the estimation of the misidentified lepton background include contributions from closure tests in SS and OS regions enriched with misidentified leptons, from the corrections made to the $\Delta \phi$ distributions, and from the composition of the misidentified lepton background.

5.2. ℓ_T^{had} channel

The main background contributions come from the $Z \rightarrow \tau \tau$ process and events where either a jet or an electron is misidentified as $\tau^{\text{had-vis}}$. The shape of the $Z \rightarrow \tau \tau$ background distribution is modelled by simulation, and the corresponding normalization factors are determined from the simultaneous fit of the event yields in all signal and control regions. The $Z \rightarrow \tau \tau$ normalization factors are fully correlated with those of the ℓ_T^{had} channel, in each VBF and non-VBF category. Top-quark production represents less than 1% of the total background in the ℓ_T^{had} channel and is determined by simulation, including its normalization, which is kept fixed in the fit.

The main contributions to jets misidentified as $\tau^{\text{had-vis}}$ come from multi-jet events and W-boson production in association with jets, and a fake-factor method is used to estimate the contribution of each component separately. A fake factor is defined as the ratio of the number of events where the highest-p_T jet fails to satisfy this τ-ID criterion but satisfies a loosener criterion. The procedure, including systematic uncertainties, is described in Ref. [17]. Since a different τ-ID working point...
is considered in this analysis, fake factors are re-derived as a function of \(p_T \) and track multiplicity of the \(\tau_{\text{had-\text{vis}}} \) candidate.

Electrons misidentified as \(\tau_{\text{had-\text{vis}}} \), denoted by \(Z \rightarrow e e \) (d.d.) in the following figures and tables, represent another background component in the \(e^+e^- \) channel, with a contribution about five times smaller than that of jets misidentified as \(\tau_{\text{had-\text{vis}}} \). While the rate of electrons misidentified as 3-prong \(\tau_{\text{had-\text{vis}}} \) makes a negligible contribution and is modelled by simulation, the rate of electrons misidentified as 1-prong \(\tau_{\text{had-\text{vis}}} \) is determined with a fake-factor method. This time, the fake factor is defined as the ratio of the number of events with tight \(\tau \)-ID to the number of events with anti-identified \(\tau_{\text{had-\text{vis}}} \) (such a candidate satisfies all criteria but the requirement on the high electron ID score is inverted). These fake factors are derived in a dedicated \(Z \rightarrow e e \) enriched region defined by \(|m_{\text{vis}} - m_Z| < 5 \text{ GeV} \), \(m_T(\ell, E_{\text{miss}}) < 40 \text{ GeV} \), and \(m_T(\tau_{\text{had-\text{vis}}}, E_{\text{miss}}^\tau) < 60 \text{ GeV} \), where the \(\tau_{\text{had-\text{vis}}} \) candidate satisfies the medium \(\tau \)-ID (corresponding to an efficiency of 55% and 40% for 1-prong and 3-prong candidates, respectively) but not the tight \(\tau \)-ID criterion to avoid overlap with the \(\tau_{\text{had-\text{vis}}} \) signal region. These fake factors are applied to signal-like events with the anti-identified \(\tau_{\text{had-\text{vis}}} \) to determine the background contribution in the categories of the analysis. The systematic uncertainties include the statistical uncertainty of the fake factors and account for looser \(\tau \)-ID in the \(Z \rightarrow e e \) enriched region as well as for the subtraction of the not misidentified components in this region.

6. Systematic uncertainties

The systematic uncertainties affect the normalization of signal and background, and/or the shape of their corresponding final discriminant distributions. Each source of systematic uncertainty is considered to be uncorrelated with the other sources. The effect of each systematic uncertainty is fully considered in each category, including control regions. Correlations of each systematic uncertainty are maintained across processes, channels, categories and regions. The size of the systematic uncertainties and their impact on the fitted branching ratio are discussed in Section 7. The main sources of systematic uncertainties are related to the estimation of the backgrounds originating from mis-identified leptons/jets and to the jet energy scale uncertainties.

Experimental uncertainties include those originating from the reconstruction, identification, tagging and triggering efficiencies of all signal objects as well as their momentum scale and resolution. These include effects from leptons \([57–59]\), \(\tau_{\text{had-\text{vis}}} \) \([68]\), jets \([63, 64, 77]\) and \(E_{\text{T}}^{\text{miss}} \) \([78]\). Uncertainties affecting the kinematics of the physics objects are propagated to the BDT input variables. The corresponding shape and normalization variations of the BDT discriminant are considered in the statistical analysis. Uncertainties of the luminosity measurement \([79]\), pile-up modelling and uncertainties specific to mis-identified background estimation techniques mentioned in Section 5 are included.

The procedures to estimate the uncertainty of the Higgs boson production cross-sections follow the recommendations of the LHC Higgs Cross-Section Working Group \([80]\). Theoretical uncertainties affecting the ggF signal originate from nine sources \([24]\). Two sources account for yield uncertainties, which are evaluated by an overall variation of all relevant scales and are correlated across all bins of the BDT discriminant distribution \([81]\). Another two sources account for migration uncertainties of zero to one jet and one to at least two jets in the event \([82–84]\), two for Higgs boson \(p_T \) shape uncertainties, one for the treatment of the top-quark mass in the loop corrections, and two for the acceptance uncertainties of ggF production in the VBF phase space from selecting exactly two and at least three jets, respectively \([84, 85]\). For VBF and \(WH, ZH \) production cross-sections, the uncertainties due to missing higher-order QCD corrections are estimated by varying the factorization and renormalization scales up and down by factors of two around the nominal scale. For all signal samples, PDF uncertainties are estimated using 30 eigenvector variations and two \(a_s \) variations using the default PDF set PDF4LHC15 \([32]\). Uncertainties related to the simulation of the underlying event, hadronization and parton shower are estimated by comparing the acceptances when using Pythia 8.212 \([25]\) or Herwig 7.0.3 \([86, 87]\).

The sources of modelling uncertainties considered for the \(Z \rightarrow \tau \tau \) process are the same as in Ref. \([17]\) and their effect on the event migrations between categories and on the shape of the BDT discriminant are considered, since the overall normalizations are determined from data in the statistical analysis. These systematic uncertainties include variations of PDF sets, factorization and renormalization scales, CKKW matching \([88]\), resummation scale and parton shower modelling. The other background processes are either normalized using data (processes with top-quarks and misidentified leptons and \(\tau_{\text{had-\text{vis}}} \) candidates) or their cross-section uncertainties have negligible impact and therefore are not included. The shape uncertainties of these backgrounds originate from experimental uncertainties only.

7. Statistical analysis

The searches for \(H \rightarrow e \tau \) and \(H \rightarrow \mu \tau \) are treated independently. For each search, the analysis exploits the four signal regions and the two control regions specified in Table 2. The BDT score distributions of all signal regions are analysed to test the presence of a signal, simultaneously with the event yields in control regions, which are included to constrain the normalizations of the major backgrounds estimated from simulation. The statistical analysis uses a binned likelihood function \(\mathcal{L}(\mu, \theta) \), constructed as a product of Poisson probability terms over all bins considered in the search. This function depends on the parameter \(\mu \), defined as the branching ratio \(\mathcal{B}(H \rightarrow \ell \ell) \), and a set of nuisance parameters \(\theta \) that encode the effect of systematic uncertainties in the signal and background expectations. All nuisance parameters are implemented in the likelihood function as Gaussian or log-normal constraints. The normalization factors of the single-top-quark and \(t \bar{t} \) backgrounds in the \(\ell \tau \) channel and of the \(Z \rightarrow \tau \tau \) background component are unconstrained parameters of the fit. Estimates of the parameters of interest are calculated with the profile-likelihood-ratio test statistic \(\hat{q}_0 \) \([89]\), and the upper limits on the branching ratios are derived by using \(\hat{q}_0 \) and the CLs method \([90]\).

The discriminant distributions after the fit in each channel are shown in Figs. 2 and 3. Good agreement between data and the background expectation is observed. The event yields after the background-only fit are summarized in Tables 4 and 5. In the non-VBF category, the yields in the \(\ell \tau \) channel are larger than in the \(\ell \tau \) channel due to the looser selection criteria defined for the former channel (Section 4). Table 6 shows a summary of the uncertainties of \(\mathcal{B}(H \rightarrow \ell \ell) \). The uncertainties associated with misidentified leptons and \(\tau_{\text{had-\text{vis}}} \) candidates and those related to the jet energy scale and resolution exhibit the highest impact on the best-fit branching ratios in both searches. The combined impact from all systematic uncertainties and the data statistics ranges from 0.17\% to 0.19\%.

8. Results

The best-fit branching ratios and upper limits are computed while assuming \(\mathcal{B}(H \rightarrow \mu \tau) = 0 \) for the \(H \rightarrow e \tau \) search and \(\mathcal{B}(H \rightarrow e \ell) = 0 \) for the \(H \rightarrow \mu \tau \) search. The best-fit values of the LFV Higgs boson branching ratios are equal to \((0.15^{+0.18}_{-0.17})\%\) and \((-0.22 \pm 0.19)\%\) for the \(H \rightarrow e \tau \) and \(H \rightarrow \mu \tau \) search, respectively.
Fig. 2. Distributions of the BDT score after the background+signal fit in each signal region of the $e\tau$ search, with the LPV signal overlaid, normalized with $B(H \rightarrow e\tau) = 1\%$ and enhanced by a factor 10 for visibility. The top and bottom plots display e_{had} and e_{em} BDT scores respectively. The left (right) column corresponds to the non-VBF (VBF) category. The size of the combined statistical, experimental and theoretical uncertainties of the background is indicated by the hatched bands. The binning is shown as in the statistical analysis.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Impact on $B(H \rightarrow e\tau)$ [$%$]</th>
<th>Impact on $B(H \rightarrow \mu\tau)$ [$%$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Expected</td>
</tr>
<tr>
<td>Electron</td>
<td>+0.05 / -0.05</td>
<td>+0.06 / -0.06</td>
</tr>
<tr>
<td>Muon</td>
<td>+0.04 / -0.04</td>
<td>+0.04 / -0.04</td>
</tr>
<tr>
<td>$e_{\text{had-vis}}$</td>
<td>+0.02 / -0.02</td>
<td>+0.02 / -0.02</td>
</tr>
<tr>
<td>Jet</td>
<td>+0.09 / -0.08</td>
<td>+0.09 / -0.09</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>+0.02 / -0.02</td>
<td>+0.02 / -0.03</td>
</tr>
<tr>
<td>b-tag</td>
<td>+0.02 / -0.03</td>
<td>+0.03 / -0.03</td>
</tr>
<tr>
<td>Mis-ID backg. ($\ell\nu\tau$)</td>
<td>+0.08 / -0.07</td>
<td>+0.09 / -0.08</td>
</tr>
<tr>
<td>Mis-ID backg. ($\ell\nu\mu$)</td>
<td>+0.12 / -0.11</td>
<td>+0.11 / -0.12</td>
</tr>
<tr>
<td>Pile-up modelling</td>
<td>+0.02 / 0.01</td>
<td>+0.01 / -0.01</td>
</tr>
<tr>
<td>Luminosity</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Background norm.</td>
<td>+0.05 / -0.04</td>
<td>+0.05 / -0.03</td>
</tr>
<tr>
<td>Theor. uncert. (backg.)</td>
<td>+0.04 / -0.03</td>
<td>+0.04 / -0.03</td>
</tr>
<tr>
<td>Theor. uncert. (signal)</td>
<td>+0.01 / -0.01</td>
<td>+0.01 / -0.01</td>
</tr>
<tr>
<td>MC statistics</td>
<td>+0.04 / -0.04</td>
<td>+0.03 / -0.03</td>
</tr>
<tr>
<td>Full systematic</td>
<td>+0.17 / -0.16</td>
<td>+0.17 / -0.17</td>
</tr>
<tr>
<td>Data statistics</td>
<td>+0.07 / -0.07</td>
<td>+0.07 / -0.07</td>
</tr>
<tr>
<td>Total</td>
<td>+0.18 / -0.17</td>
<td>+0.18 / -0.18</td>
</tr>
</tbody>
</table>
In the absence of a significant excess, upper limits on the LFV branching ratios are set for a Higgs boson with $m_H = 125$ GeV. The observed (median expected) 95% CL upper limits are 0.47% (0.34$^{+0.14}_{-0.13}$%) and 0.28% (0.37$^{+0.14}_{-0.15}$%) for the $H \rightarrow \ell \tau$ and $H \rightarrow \mu \tau$ searches, respectively. These limits are significantly lower than the corresponding Run 1 limits of Refs. [14,15]. The breakdown of contributions from different signal regions is shown in Fig. 4.

The branching ratio of the LFV Higgs boson decay is related to the non-diagonal Yukawa coupling matrix elements $\{y_{\tau\ell}, y_{\mu\tau}\}$ by the formula

$$|Y_{\tau\ell}|^2 + |Y_{\mu\tau}|^2 = \frac{8\pi}{m_H} \frac{B(H \rightarrow \ell \tau)}{1 - B(H \rightarrow \ell \tau)} \Gamma_H(SM),$$

where $\Gamma_H(SM) = 4.07$ MeV [92] stands for the Higgs boson width as predicted by the Standard Model. Thus, the observed limits on the branching ratio correspond to the following limits on the coupling matrix elements: $\sqrt{|Y_{\tau\ell}|^2 + |Y_{\mu\tau}|^2} < 0.0020$, and $\sqrt{|Y_{\tau\mu}|^2 + |Y_{\mu\tau}|^2} < 0.0015$. Fig. 5 shows the limits on the individual coupling matrix elements $Y_{\tau\ell}$ and $Y_{\mu\tau}$ together with the limits from the ATLAS Run 1 analysis and from $\tau \rightarrow \ell \gamma$ searches [91,93].

9. Conclusions

Direct searches for the decays $H \rightarrow \ell \tau$ and $H \rightarrow \mu \tau$ are performed with proton–proton collisions recorded by the ATLAS detector at the LHC corresponding to an integrated luminosity of 36.1 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. No significant excess is observed above the expected background from Standard Model processes. The observed (expected) upper limits at 95% confidence level on the branching ratios of $H \rightarrow \ell \tau$ and $H \rightarrow \mu \tau$ are 0.47% (0.34$^{+0.14}_{-0.15}$%) and 0.28% (0.37$^{+0.14}_{-0.15}$%), respectively. These limits are more stringent by a factor of 2 (5) than the corresponding limits for the $H \rightarrow \ell \tau$ ($H \rightarrow \mu \tau$) decay determined by ATLAS at $\sqrt{s} = 8$ TeV.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-
Fig. 4. Upper limits at 95% CL on the LFV branching ratios of the Higgs boson, $H \rightarrow e\tau$ (left) and $H \rightarrow \mu\tau$ (right), indicated by solid and dashed lines. Best-fit values of the branching ratios ($\bar{\mathcal{B}}$) are also given, in %. The limits are computed while assuming that either $\mathcal{B}(H \rightarrow e\tau) = 0$ (left) or $\mathcal{B}(H \rightarrow \mu\tau) = 0$ (right). First, the results of the fits are shown, when only the data of an individual channel or of an individual category are used; in these cases the signal and control regions from all other channels/categories are removed from the fit. These results are finally compared with the full fit displayed in the last row.

Fig. 5. Upper limits on the absolute value of the couplings $Y_{\ell\ell}$ and $Y_{\ell\tau}$ together with the limits from the ATLAS Run 1 analysis (light grey line) and the most stringent indirect limits from $\tau \rightarrow e\nu\nu$ searches (dark purple region). Also indicated are limits corresponding to different branching ratios (0.01%, 0.1%, 1%, 10% and 50%) and the naturalness limit (denoted n.l.) $|Y_{\ell\ell}| < 0.001$ [91] where ν is the vacuum expectation value of the Higgs field.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [94].

References

The ATLAS Collaboration

The ATLAS Collaboration

36 CERN, Geneva, Switzerland
37 Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America
38 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
39 Nevis Laboratory, Columbia University, Irvington, NY, United States of America
40 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
41 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
42 Physics Department, Southern Methodist University, Dallas, TX, United States of America
43 Physics Department, University of Texas at Dallas, Richardson, TX, United States of America
44 National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
45 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm, Sweden
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
49 Department of Physics, Duke University, Durham, NC, United States of America
50 SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
52 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
53 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
54 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
55 (a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova, Italy
56 II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
57 SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
58 LPS, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America
60 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (a) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MFPI), Shandong University, Qingdao; (b) School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
61 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Germany
62 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
63 (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
64 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
65 Department of Physics, Indiana University, Bloomington, IN, United States of America
66 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
67 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
68 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
69 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
70 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
71 (a) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
72 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
73 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
74 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
75 INFN-INFN, Università degli Studi di Trento, Trento, Italy
76 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
77 University of Iowa, Iowa City, IA, United States of America
78 Department of Physics and Astronomy, Iowa State University, Ames, IA, United States of America
79 Joint Institute for Nuclear Research, Dubna, Russia
80 (a) Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; (b) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (c) Universidade Federal de São João del Rei (UFSJ), São João del Rei; (d) Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
81 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
82 Graduate School of Science, Kobe University, Kobe, Japan
83 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
84 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
85 Faculty of Science, Kyoto University, Kyoto, Japan
86 Kyoto University of Education, Kyoto, Japan
87 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
88 Instituto de Física La Plata, Universidad Nacional de La Plata y CONICET, La Plata, Argentina
89 Physics Department, Lancaster University, Lancaster, United Kingdom
90 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
91 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
92 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
93 Department of Physics, Royal Holloway University of London, Egham, United Kingdom
94 Department of Physics and Astronomy, University College London, London, United Kingdom
95 Louisiana Tech University, Ruston, LA, United States of America
96 Fysiska institutionen, Lund universitet, Lund, Sweden
97 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
98 Departamento de Física Teórica C-15 and CIAPP, Universidad Autónoma de Madrid, Madrid, Spain
99 Institut für Physik, Universität Mainz, Mainz, Germany
100 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
101 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
102 Department of Physics, University of Massachusetts, Amherst, MA, United States of America
103 Department of Physics, McGill University, Montreal, QC, Canada
104 School of Physics, University of Melbourne, Victoria, Australia
105 Department of Physics, University of Michigan, Ann Arbor, MI, United States of America
106 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States of America
107 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
108 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
109 Group of Particle Physics, University of Montreal, Montreal, QC, Canada