Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS Collaboration

DOI
10.1140/epjc/s10052-020-8102-8

Publication date
2020

Document Version
Final published version

Published in
European Physical Journal C

License
CC BY

Citation for published version (APA):
ATLAS Collaboration (2020). Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector. European Physical Journal C, 80(8), Article 737. https://doi.org/10.1140/epjc/s10052-020-8102-8
Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Received: 29 April 2020 / Accepted: 31 May 2020 / Published online: 13 August 2020
© CERN for the benefit of the ATLAS collaboration 2020

Abstract A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state is presented. The analysis of 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton–proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $\tilde{t} \rightarrow t^{(*)}\tilde{\chi}_0^{0}$, with $t^{(*)}$ denoting an on-shell (off-shell) top quark and $\tilde{\chi}_0^{0}$ the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $m_{\tilde{t}_1} > m_t + m_{\tilde{\chi}_0^{0}}$, top squark masses are excluded in the range 400–1250 GeV for $\tilde{\chi}_0^{0}$ masses below 200 GeV at 95% confidence level. In the situation where $m_{\tilde{t}_1} \sim m_t + m_{\tilde{\chi}_0^{0}}$, top squark masses in the range 300–630 GeV are excluded, while in the case where $m_{\tilde{t}_1} < m_t + m_{\tilde{\chi}_0^{0}}$ (with $m_{\tilde{t}_1} - m_{\tilde{\chi}_0^{0}} \geq 5$ GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300–660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below 1240 GeV when considering only leptoquark decays into a top quark and a neutrino.

1 Introduction

Supersymmetry (SUSY) [1–6] is an extension of the Standard Model (SM) that can resolve the gauge hierarchy problem [7–10] by introducing supersymmetric partners of the SM bosons and fermions. The SUSY partner to the top quark, the top squark, plays an important role in cancelling out potentially large top-quark loop corrections to the Higgs boson mass [11,12]. Naturalness arguments suggest that the superpartners of the third-generation quarks may be $\mathcal{O}(\text{TeV})$, and thus experimentally accessible at the Large Hadron Collider (LHC) [13,14]. The superpartners of the left- and right-handed top quarks, \tilde{t}_L and \tilde{t}_R, mix to form two mass eigenstates, \tilde{t}_1 and \tilde{t}_2, where \tilde{t}_1 is the lighter one. Throughout this paper, it is assumed that \tilde{t}_2 has sufficiently high mass such that the analysis is sensitive to \tilde{t}_1 only, which is labelled \tilde{t} in the following.

R-parity-conserving SUSY models [15] may also provide a dark-matter candidate through the lightest supersymmetric particle (LSP), which is stable [16,17]. In these models, the supersymmetric partners are produced in pairs. At the LHC, top squarks are produced mostly via gluon–gluon fusion as well as quark–antiquark annihilation. In a simplified scenario where the first- and second-generation squarks and gluinos are decoupled, the cross section of direct top squark pair production is largely decoupled from the specific choice of SUSY model parameters except for the top squark mass. This production cross section falls steeply with increasing top squark mass, ranging from 10.0 ± 6.7 pb for $m_{\tilde{t}_1} = 300$ GeV to 0.89 ± 0.13 fb for $m_{\tilde{t}_1} = 1300$ GeV [18–21].

In this paper, each top squark is assumed to decay into a top quark (that may be either on-shell or off-shell) and the LSP, which is assumed to be the lightest neutral mass eigenstate of the partners of the electroweak gauge and Higgs bosons, i.e. the lightest neutralino, $\tilde{\chi}_1^{0}$. The degree to which the top quark is off-shell is directly related to the mass difference between \tilde{t} and $\tilde{\chi}_1^{0}$. The top squark decay scenarios considered are shown in Fig. 1a–c: the top quark is on-shell in two-body decays ($\tilde{t} \rightarrow t\tilde{\chi}_1^{0}$), three-body decays contain an off-shell top quark but the W boson is on-shell ($\tilde{t} \rightarrow t^*\tilde{\chi}_1^{0} \rightarrow bW\tilde{\chi}_1^{0}$), and in four-body decays both the top quark and W boson are off-shell ($\tilde{t} \rightarrow t^*\tilde{\chi}_1^{0} \rightarrow bW^*\tilde{\chi}_1^{0} \rightarrow bf'\tilde{\chi}_1^{0}$, where f and f' are fermions originating from the off-shell W boson decay). Only hadronic W boson decays are considered in the following.

This paper presents a search for top squark pair production with an experimental signature of at least two jets, large missing transverse momentum, and no electrons or muons, using 139 fb$^{-1}$ of proton–proton (pp) collision data provided

*e-mail: atlas.publications@cern.ch
Fig. 1 Decay topologies of the signal models considered in the analysis: a two-body, b three-body, e four-body top squark decays, the top quarks being produced in pairs, and d up-type, third-generation scalar leptoquark pair production, with both leptoquarks decaying into a top quark and a neutralino or a bottom quark and a τ-lepton. For simplicity, no distinction is made between particles and antiparticles. Only hadronic W boson decays are shown.

by the LHC at a centre-of-mass energy of $\sqrt{s} = 13$ TeV and collected by the ATLAS detector in 2015–2018. Previous searches have been performed by both the ATLAS [22–28] and CMS [29–37] collaborations. In this search, enhanced sensitivity to two-body top squark decays, where $m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$ is greater than the top quark mass, m_t, is achieved by the analysis of the full LHC Run 2 dataset and the exploitation of techniques designed to efficiently reconstruct top quarks that are Lorentz-boosted in the laboratory frame. Sensitivity to compressed scenarios, where $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} \sim m_t$, is extended compared with previous searches through the analysis of events in which high-transverse-momentum jets from initial-state radiation (ISR) boost the top squark system in the transverse plane. Finally, sensitivity to the four-body decay scenario where $m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$ is less than the sum of the W boson mass, m_W, and the b-quark mass, m_b, is achieved by extending the identification efficiency for low-transverse-momentum b-hadron decays through the use of charged-particle tracking information, adding sensitivity to the all-hadronic channel in comparison with previous searches. All sensitivities are also increased thanks to global enhancements in detector performance achieved by the end of LHC Run 2, including more precise estimates of the statistical significance of missing transverse momentum in an event [38] and improved identification efficiencies for jets containing b-hadrons [39]. The interpretation of the results uses simplified models [40–42].

As has been demonstrated previously [23–25,43,44], top squark searches are sensitive to a variety of additional signal models such as top squarks originating from gluino decays [40–42], top squark decays via charged electroweak SUSY partners [40–42], mediator-based dark-matter models [45–50], scalar dark-energy models [51], and third-generation scalar leptoquarks [52–58]. In this paper, the results are interpreted in models considering the pair production of up-type, third-generation scalar leptoquarks (LQ_3^u), as shown in Fig. 1d, assuming that the LQ_3^u only interact with leptons and quarks from the same generation [59]. Similar LQ_3^u interpretations have been performed by both the ATLAS [44] and CMS [60] collaborations. The third-generation leptoquark production cross section is identical to that of top squark production and the $LQ_3^u \rightarrow t\nu$ decay channel has the same experimental signature as heavy top squarks decaying into massless neutralinos, and thus additional sensitivity is achieved compared with previous LQ_3^u results.
2 ATLAS detector

The ATLAS experiment [61–63] at the LHC is a multipurpose particle detector with a cylindrical forward–backward- and \(\phi \)-symmetric geometry and an approximate 4\(\pi \) coverage in solid angle.\(^1\) It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range \(|\eta| < 2.5\). It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter covering the central pseudorapidity range (\(|\eta| < 1.7\). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to \(|\eta| = 4.9\). The muon spectrometer surrounds the calorimeters and features three large air-core toroidal superconducting magnets with eight coils each, providing coverage up to \(|\eta| = 2.7\), as well as a system of precision tracking chambers and fast detectors for triggering. The field integral of the toroids ranges between 2 and 6 T⋅m across most of the detector.

3 Data collection and simulated event samples

The data were collected from 2015 to 2018 at a \(pp \) centre-of-mass energy of 13 TeV with 25 ns bunch spacing, resulting in a time-integrated luminosity of 139.0 ± 2.4 fb\(^{-1}\) [64], measured using the LUCID-2 detector [65]. Multiple \(pp \) interactions occur per bunch crossing (pile-up) and the average number of these interactions in the data was measured to be \(\langle \mu \rangle = 34 \). A two-level trigger system [66] is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the event rate to at most 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz (on average) for offline storage.

Selected events are required to pass a missing transverse momentum (whose magnitude is denoted by \(E_T^{\text{miss}} \)) trigger [67], which is efficiently used for events with reconstructed \(E_T^{\text{miss}} > 250 \) GeV (the \(E_T^{\text{miss}} \) reconstruction is described in Sect. 4). In order to estimate the background originating from SM processes, events are also selected at lower values of \(E_T^{\text{miss}} \) using single-electron, single-muon, and single-jet triggers. Electron and muon triggers yield an approximately constant efficiency in the presence of a single isolated electron or muon with transverse momentum \((p_T)^\text{miss}\) above 27 GeV (see Sect. 4 for details of the electron, muon, and jet reconstruction); these triggers are needed for the estimation of \(Z \rightarrow \nu \bar{\nu} \) production in association with heavy-flavour jets \((Z + \text{jets})\) and top pair production in association with \(Z \rightarrow \nu \bar{\nu} (t\bar{t} + Z) \) backgrounds. Triggers based on the presence of a single jet were used to collect data samples for the estimation of the multijet and all-hadronic \(t\bar{t} \) backgrounds. The jet \(p_T \) thresholds after energy calibration ranged from 50 to 400 GeV. In order to stay within the bandwidth limits of the trigger system, only a fraction of the events passing the jet triggers were recorded to permanent storage.

Monte Carlo (MC) simulations are used to model the SUSY and leptoquark signals, as well as to aid in the description of the background processes. SUSY signal models were all generated with \textsc{MadGraph5_aMC@NLO} 2.6.2 [68] at leading order (LO) in QCD, while leptoquark signals were generated with \textsc{MadGraph5_aMC@NLO} 2.4.3 at next-to-leading order (NLO) in QCD. All signal samples were interfaced to \textsc{Pythia} 8.230 [69] for the parton showering (PS) and hadronisation, and with \textsc{EvtGen} 1.6.0 [70] for the \(b \)- and \(c \)-hadron decays.

The parton distribution function (PDF) set used for the generation of the signal samples is \textsc{NNPDF2.3_LO} [71] for SUSY signals and \textsc{NNPDF3.0_NLO} [72] for leptoquark signals, with the A14 [73] set of tuned underlying-event and parton shower parameters (UE tune). Matching of the matrix element (ME) with parton showering was performed following the CKKW-L prescription [74], with a matching scale set to one quarter of the mass of the top squark or leptoquark. All signal cross sections are calculated to approximate next-to-next-to-leading order (NNLO) in the strong coupling constant, adding the resummation of soft gluon emission at next-to-next-to-leading-logarithm accuracy (approximate NNLO+NNLL) [18, 19, 75, 76].

The top squark mixing parameter between \(\tilde{t}_L \) and \(\tilde{t}_R \) was set to be maximal.\(^2\) Finally, the top quark mass was set to 172.5 GeV in all simulated samples.

SM background samples were generated with different MC event generators depending on the process. Details of the generators and parton showering used for the different processes are shown in Table 1.

The detector simulation [94] was performed using either \textsc{GEANT4} [95] or a fast simulation framework, where the showers in the electromagnetic and hadronic calorimeters

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the normal interaction point (IP) in the centre of the detector and the \(z \)-axis along the beam pipe. The \(x \)-axis points from the IP to the centre of the LHC ring, and the \(y \)-axis points upwards. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the \(z \)-axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \). Angular distance is measured in units of \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \).

\(^2\) This refers to the Higgs–top-squark trilinear mixing term; the scenario of maximal mixing allows the top squark masses to be as light as possible, given a 125 GeV Higgs mass [77].
all jets in the event with $p_T > 20$ GeV and $|\eta| < 4.5$ must satisfy a set of loose jet-quality requirements \[105\]. In the four-body analysis, the leading jet in p_T must satisfy a set of tighter jet-quality requirements. These requirements are designed to reject jets originating from sporadic bursts of detector noise, large coherent noise or isolated pathological cells in the calorimeter system, hardware issues, beam-induced background or cosmic-ray muons \[105\]. If these jet requirements are not met, the event is discarded. All jets are required to have $p_T > 20$ GeV and $|\eta| < 2.8$ to be considered in this analysis. In addition, the ‘medium’ working point of the track-based jet vertex tagger \[106,107\] is required for jets with $p_T < 120$ GeV and $|\eta| < 2.5$, to reject jets that originate from pile-up interactions.

Jets which contain b-hadrons and are within the inner-detector acceptance ($|\eta| < 2.5$) are identified as ‘b-tagged’ using a multivariate algorithm that exploits the impact parameters\(^3\) of the charged-particle tracks, the presence of secondary vertices, and the reconstructed flight paths of b- and c-hadrons inside the jet \[39\]. The output of the multivariate algorithm is a single b-tagging output score, which signifies the likelihood of a jet to contain b-hadrons. The average identification efficiency of jets containing b-hadrons is 77\% as determined in simulated $t\bar{t}$ events. Using the same simulated sample, a rejection factor of approximately 110 (5) is reached for jets initiated by light quarks and gluons (charm quarks).

In order to identify low-p_T b-hadrons that are not contained in jets passing the $p_T > 20$ GeV requirement, ‘track-jets’ are reconstructed from inner-detector tracks using the anti-k_T algorithm with radius parameter $R = 0.4$. Tracks considered for inclusion in track-jets are required to have $p_T > 500$ MeV, $|\eta| < 2.5$, at least seven hits in the silicon microstrip and pixel detectors, no more than one hit shared by multiple tracks in the pixel detector, no more than one

\(^3\) The transverse impact parameter, d_0, is defined as the distance of closest approach of a track to the beam-line, measured in the transverse plane. The longitudinal impact parameter, z_0, corresponds to the z-coordinate distance between the point along the track at which the transverse impact parameter is defined and the primary vertex.
missing hit in the pixel detector, and no more than two missing hits in the silicon microstrip detector. Additional requirements on the longitudinal impact parameter projected along the beam direction ($|z_0|\sin(\theta) < 3 \text{ mm}$) reduce the pile-up contributions and improve the efficiency in selecting tracks from the hard-scatter vertex. Track-jets are required to have $p_T > 5 \text{ GeV}$, more than one track within the jet radius, $|\eta| < 2.5$, and not overlap with the leading non-b-tagged jet in the event ($\Delta R > 0.4$). The standard b-tagging algorithm is employed for track-jets \cite{108} and the selection requirement is tighter than for regular jets, due to the larger amount of background at low p_T. The average identification efficiency for jets containing b-hadrons is 70\% as determined in simulated $\mu\mu$ events. Using the same simulated sample, a rejection factor of approximately 200 (10) is reached for jets initiated by light quarks and gluons (charm quarks).

Electron candidates are reconstructed from clusters of energy deposits in the electromagnetic calorimeter that are matched to a track in the inner detector. They are required to have $|\eta| < 2.47$ and $p_T > 4.5 \text{ GeV}$, and must pass a loose likelihood-based selection \cite{109,110}. The impact parameter along the beam direction is required to be less than 0.5 mm. The electromagnetic shower of an electron can also be reconstructed as a jet such that a procedure is required to resolve this ambiguity. In the case where the separation\footnote{For the overlap removal, rapidity (γ) is used instead of pseudorapidity: $\gamma = \frac{1}{2} \ln \frac{E + |p_z|}{E - |p_z|}$, where E is the energy and p_z is the z-component of the momentum of the object. The separation is then defined as $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2}$.} between an electron candidate and a non-b-tagged (b-tagged) jet is $\Delta R_\gamma < 0.2$, the candidate is considered to be an electron (b-tagged jet). This procedure uses a b-tagged jet definition that is looser than the one described earlier, to avoid selecting electrons from heavy-flavour hadron decays. If the separation between an electron candidate and any jet satisfies $0.2 < \Delta R_\gamma < 0.4$, the candidate is considered to be a jet, and the electron candidate is removed.

Muons are reconstructed by matching tracks in the inner detector to tracks in the muon spectrometer and are required to have $|\eta| < 2.7$ and $p_T > 4 \text{ GeV}$ \cite{111}. The impact parameter along the beam direction is required to be less than 0.5 mm. Events containing muons identified as originating from cosmic rays, $|d_0| > 0.2 \text{ mm}$ and $|z_0| > 1 \text{ mm}$, or as poorly reconstructed, $\sigma(|q/p|)/(|q/p|) > 0.2$, are removed. Here, $\sigma(q/p)|/(q/p)$ is a measure of the momentum uncertainty for a particle with charge q. Muons are discarded if they are within $\Delta R = 0.4$ of jets that survive the electron–jet overlap removal, except when the number of tracks associated with the jet is less than three, where the muon is kept and the jet discarded.

The requirements on electrons and muons are tightened for the selection of events in background control regions (described in Sect. 6) containing at least one electron or muon. The electrons and muons passing the tight selection are called ‘control’ electrons or muons in the following, as opposed to ‘baseline’ electrons and muons, which are only required to pass the requirements described above. Control electrons and muons are required to satisfy the ‘FCLoose’ p_T-dependent track-based and calorimeter-based isolation criteria \cite{112}. The calorimeter-based isolation is determined by taking the ratio of the sum of energy deposits in a cone of $\Delta R = 0.2$ around the electron or muon candidate to the sum of energy deposits associated with the electron or muon. The track-based isolation is estimated in a similar way but using a variable cone size with a maximum value of $\Delta R = 0.2$ for electrons and $\Delta R = 0.3$ for muons. Electron candidates are required to pass a ‘tight’ likelihood-based selection. The impact parameter of the electron in the transverse plane is required to be less than five times the transverse impact parameter uncertainty (σ_{d_0}). Further selection criteria are also imposed on reconstructed muons: muon candidates are required to pass a ‘medium’ quality selection and meet the $|d_0| < 3\sigma_{d_0}$ requirement.

The p_T^{miss} vector is the negative vector sum of the p_T of all selected and calibrated electrons, muons, and jets in the event, plus an extra term (‘soft’ term) added to account for energy depositions in the event that are not associated with any of the objects. The ‘soft’ term is calculated from inner-detector tracks ($p_T > 500 \text{ MeV}$ and matched to the primary vertex, to make it resilient to pile-up contamination) not associated with selected objects \cite{113,114}. The missing transverse momentum calculated using only the tracking system (denoted by $p_T^{\text{miss,track}}$, with magnitude $E_T^{\text{miss,track}}$) is computed from the vector sum of the inner-detector tracks with $p_T > 500 \text{ MeV}$ and $|\eta| < 2.5$ that are associated with the event’s primary vertex.

Hadronically decaying τ-lepton candidates are identified as non-b-tagged jets with $|\eta| < 2.5$ and a maximum of four inner-detector tracks matched to them. They are only used in some regions to veto events with τ-lepton candidates most likely originating from $W \rightarrow \tau v$ decays, which are identified with the additional requirement that the $\Delta \phi$ between the τ-lepton candidate and the p_T^{miss} is less than $\pi/5$.}

5 Signal region definitions

The experimental signature of this search, for all signal topologies, consists of multiple jets, one or two of which are b-tagged, no electrons and muons (following the baseline definition described in Sect. 4), and large missing transverse momentum. The E_T^{miss} trigger is used to collect the data in all signal regions.

Beyond these common requirements, four sets of signal regions (SRA–D) are defined to target each decay topology
and kinematic regime, as shown in Fig. 2. SRA (SRB) is sensitive to the production of high-mass \(\tilde{t} \) pairs that each undergo a two-body decay with large (medium) \(\Delta m(\tilde{t}, \tilde{\chi}^0_1) \), or the production of high-mass leptoquark pairs. Both SRA and SRB employ top-quark mass-reconstruction techniques to reject background, of which the dominant source is associated production of a \(Z \) boson with heavy-flavour jets, with the \(Z \) decaying into neutrinos (\(Z \) + jets). SRC targets two/three-body top squark decays with \(\Delta m(\tilde{t}, \tilde{\chi}^0_1) \sim m_t \) and has \(t\bar{t} \) production as the dominant background contribution. A common preselection is defined for SRA–C: at least four jets are required (\(N_j \geq 4 \)), at least two of which must be \(b \)-tagged (\(N_b \geq 2 \)), and the leading four jets must satisfy \(p_T > 80, 80, 40, 40 \) GeV. SRD targets highly compressed four-body top squark decays and uses track-jets to identify \(b \)-hadrons with low \(p_T \). As in SRA and SRB, the dominant source of background in SRD is \(Z + \) jets. In both SRC and SRD, a high-\(p_T \) jet originating from ISR is used to improve sensitivity to the targeted decays.

5.1 Signal regions A and B

SRA is optimised for exclusion at 95% confidence level (CL) of the scenario where \(m_{\tilde{t}} = 1300 \) GeV and \(m_{\tilde{\chi}^0_1} = 1 \) GeV, while SRB is optimised for \(m_{\tilde{t}} = 700 \) GeV and \(m_{\tilde{\chi}^0_1} = 400 \) GeV. SRA and SRB have the best sensitivity to up-type, third-generation scalar leptoquarks, when leptoquarks decay via \(\text{LO}_1 \rightarrow t\nu \).

To avoid a loss of efficiency when the top quark has \(p_T > 200 \) GeV and its daughters are close to each other, the two hadronic top candidates are reconstructed by using the anti-
\(k_t \) algorithm to cluster \(R = 0.4 \) jets, using radius parameters of \(R = 0.8 \) and \(R = 1.2 \), similar to the technique used in the previous ATLAS search [23]. Each reclustered jet is assigned a mass which is computed from the four-momenta of its jet constituents. Two \(R = 1.2 \) reclustered jets, representing top candidates, are required, and the leading reclustered \(R = 1.2 \) jet must have a mass \((m_{\tilde{t}}^{R=1.2}) \) greater than 120 GeV. To optimise signal efficiency regardless of the subleading top candidate reconstruction success (measured by how close the candidate mass is to the top quark mass), the events are divided into three categories based on the subleading \(R = 1.2 \) reclustered jet mass \((m_{\tilde{t}}^{R=1.2}) \): the ‘TT’ category includes events with \(m_{\tilde{t}}^{R=1.2} > 120 \) GeV, corresponding to successfully reconstructing a subleading top candidate; the ‘TW’ category contains events with \(60 < m_{\tilde{t}}^{R=1.2} < 120 \) GeV, corresponding to successfully reconstructing a subleading \(W \) candidate; and the ‘T0’ category represents events with \(m_{\tilde{t}}^{R=1.2} < 60 \) GeV, corresponding to not reconstructing a top nor a \(W \) candidate.

In SRA, in addition to using the mass of the reclustered jets, information about the flavour content of the reclustered jet is used to improve background rejection. For all SRA categories, a \(b \)-tagged jet is required to be within \(\Delta R = 1.2 \) of the leading reclustered \(R = 1.2 \) jet, \(j_{1b}^{R=1.2}(b) \), while in the SRA-TT category, the same selection is made for the subleading \(R = 1.2 \) jet, \(j_{2b}^{R=1.2}(b) \). A requirement is also made on the leading \(R = 0.8 \) reclustered jet mass \((m_{\tilde{t}}^{R=0.8}) > 60 \) GeV in SRA.

In order to reject events with mismeasured \(E_T^{\text{miss}} \) originating from multijet and hadronic \(t\bar{t} \) decays, the minimum difference in azimuthal angle between the \(E_T^{\text{miss}} \) and the leading four jets \((|\Delta \phi_{\text{min}}(p_T, 1–4, E_T^{\text{miss}})|) \) is required to be greater than 0.4.

The most powerful rejection of background comes from requiring that the object-based \(E_T^{\text{miss}} \) significance \((S) \) is greater than 25 (14) in SRA (SRB). This variable characterises the \(E_T^{\text{miss}} \) according to the \(p_T \), \(p_T \) resolution, and \(\phi \) resolution of all objects in the event, and is defined as:

\[
S = \frac{E_T^{\text{miss}}}{\sqrt{\sigma_L^2 (1 - \rho_{LT}^2)}}
\]

where \(\sigma_L \) is the expected resolution of the total longitudinal momentum (relative to the direction of \(E_T^{\text{miss}} \)) of all objects in the event as a function of the \(p_T \) of each object. Likewise, \(\rho_{LT} \) is the correlation factor between the longitudinal and transverse momentum resolutions for all objects.

Substantial \(t\bar{t} \) background rejection is provided by additional requirements to reject events in which one \(W \) boson decays via a lepton plus neutrino. The first requirement is that the transverse mass \((m_{T}) \) calculated from the \(E_T^{\text{miss}} \) and the \(b \)-tagged jet closest in \(\phi \) to the \(p_T^{\text{miss}} \) direction and defined as:

\[
m_T^{b,\min} = \sqrt{2 p_T^{b,\min} E_T^{\text{miss}} [1 - \cos \Delta \phi(p_T^{b,\min}, p_T^{\text{miss}})]},
\]
Table 2 Selection criteria for SRA and SRB. Each signal region is separated into three categories based on reconstructed top candidate masses. A dash indicates that no selection is applied

<table>
<thead>
<tr>
<th>Variable/SR</th>
<th>SRA-TT</th>
<th>SRA-TW</th>
<th>SRA-T0</th>
<th>SRB-TT</th>
<th>SRB-TW</th>
<th>SRB-T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 250 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_j</td>
<td>Exactly 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_T</td>
<td>≥ 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T,2$</td>
<td>> 80 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T,4$</td>
<td>> 40 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi_{min} (p_T,1-4, p_T^{miss})</td>
<td>$</td>
<td>> 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_b</td>
<td>≥ 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_T^{b}_min$</td>
<td>> 200 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ-veto</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_T^{R=1.2}$</td>
<td>> 120 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_T^{R=1.2}$</td>
<td>> 120 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_T^{R=0.8}$</td>
<td>> 120 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_R (b_1, b_2)$</td>
<td>> 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_T^{b_max}$</td>
<td>> 200 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>> 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_T^{2}</td>
<td>> 450 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Selection criteria for SRC. The signal regions are separated into five categories based on ranges of R_{ISR}

<table>
<thead>
<tr>
<th>Variable/SR</th>
<th>SRC1</th>
<th>SRC2</th>
<th>SRC3</th>
<th>SRC4</th>
<th>SRC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td></td>
<td></td>
<td></td>
<td>E_T^{miss}</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 250 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_j</td>
<td>Exactly 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_T</td>
<td>≥ 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T,2$</td>
<td>> 80 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T,4$</td>
<td>> 40 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_b</td>
<td>≥ 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_T^{miss, track}$</td>
<td>> 30 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi \left(p_T^{miss, track}, p_T^{miss}\right)</td>
<td>$</td>
<td>< $\pi/3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi \left(p_T^{miss, track}, p_T^{miss}\right)</td>
<td>$</td>
<td>> 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_S^S</td>
<td>≥ 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_S^b</td>
<td>≥ 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_T^{ISR}</td>
<td>> 400 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T^{ISR, b}$</td>
<td>> 50 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T^{ISR, 1}$</td>
<td>> 50 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_S</td>
<td>> 400 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi \left(p_T^{ISR}, p_T^{miss}\right)</td>
<td>$</td>
<td>> 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{ISR}</td>
<td>0.30–0.40</td>
<td>0.40–0.50</td>
<td>0.50–0.60</td>
<td>0.60–0.70</td>
<td>> 0.70</td>
</tr>
</tbody>
</table>
must be above 200 GeV. The second requirement consists of vetoing events containing hadronic τ-lepton candidates likely to have originated from a $W \to \tau \nu$ decay (τ-veto).

To reject events that contain b-tagged jets from gluon splitting, requirements are made on the angular distance between the two leading b-tagged jets, $\Delta R (b_1, b_2)$. In SRB, an additional requirement of $m_T^{b,\text{max}} > 200$ GeV is made, where $m_T^{b,\text{max}}$ is analogous to $m_T^{b,\text{min}}$ except that the transverse mass is computed with the b-tagged jet that has the largest $\Delta\phi$ relative to the p_T^{miss} direction. This requirement is a more stringent version of $m_T^{b,\text{min}}$, requiring that the leading two b-tagged jets are not near the p_T^{miss}.

Finally, to allow the statistical combination of SRA and SRB, SRA is required to have the m_{T2,χ^2} variable greater than 450 GeV, while SRB is required to have $m_{T2,\chi^2} < 450$ GeV. The m_{T2,χ^2} variable is based on m_{T2} [115,116] and is constructed from the direction and magnitude of p_T^{miss} and the direction of each of the top candidates, reconstructed using a χ^2-like method with $R = 0.4$ jets as inputs. The minimisation for finding the top candidates used in m_{T2,χ^2} is performed in terms of a χ^2-like penalty function, $\chi^2 = (m_{\text{cand}} - m_{\text{true}})^2 / m_{\text{true}}$, where m_{cand} is the top quark or W boson candidate mass and m_{true} is set to 80.4 GeV for W boson candidates and 173.2 GeV for top quark candidates.\footnote{These mass values were the world averages of the W boson and top quark masses at the time of the development of this method which was for the last iteration of this search [23]. Updated measurements of the masses of the W boson and top quark have a negligible effect on this method and thus were not included.}

Initially, single or pairs of R jets are set to 173.2 GeV, while SRB is required to have m_{T2,χ^2} < 450 GeV.

In addition to SRA and SRB, which are optimised for high m_T via a statistical combination, a signal region is optimised for discovery. This region, SRA-TT-Disc, has the same requirements as SRA-TT, with the exception of a less stringent requirement of $S > 11$. When setting exclusion limits on specific signal models, SRA-TT-Disc is not considered.

5.2 Signal regions C

SRC is optimised for the case where $\Delta m(\tilde{t}, \tilde{\chi}^0_1) \sim m_t$, a regime in which the signal topology is similar to SM $t\bar{t}$ production. In the presence of high-momentum ISR jets, the di-top-squark system is boosted in the transverse plane and better discrimination can be achieved. A recursive jigsaw reconstruction technique, as described in Ref. [117], is used to divide each event into an ISR hemisphere (denoted by ‘ISR’) and a sparticle hemisphere (denoted by ‘S’), where the latter consists of the pair of candidate top squarks.

Objects are grouped together according to their proximity in the laboratory frame’s transverse plane by minimising the reconstructed transverse masses of the ISR system and sparticle system, simultaneously over all choices of object assignment. Kinematic variables are then defined, based on this assignment of objects to either the ISR system or the sparticle system.

The ratio of the E_T^{miss} to the p_T of the ISR system (p_T^{ISR}), defined as R_{ISR}, is proportional to the ratio of the $\tilde{\chi}^0_1$ and t masses [118,119]:

$$R_{\text{ISR}} \equiv \frac{E_T^{\text{miss}}}{p_T^{\text{ISR}}} \sim \frac{m_{\tilde{\chi}^0_1}}{m_t}.$$

Due to the scaling of R_{ISR} with the ratio of $m_{\tilde{\chi}^0_1}$ to m_t, signals with $\Delta m(\tilde{t}, \tilde{\chi}^0_1) \sim m_t$ are expected to form a peak in the R_{ISR} distribution, with the location of the peak depending on $m_{\tilde{\chi}^0_1}$ divided by m_t. In order to maximise the sensitivity for a wide range of $m_{\tilde{\chi}^0_1}$ to m_t; ratio values, the events are divided into five categories, defined by non-overlapping ranges of R_{ISR} and targeting different top squark and $\tilde{\chi}^0_1$ masses. For instance, SRC1 is optimised for $m_t = 225$ GeV and $m_{\tilde{\chi}^0_1} = 52$ GeV, and SRC5 is optimised for $m_t = 600$ GeV and $m_{\tilde{\chi}^0_1} = 427$ GeV.

In addition, at least four jets must be assigned to the sparticle hemisphere of the event (N_T^S), and at least two of those jets must be b-tagged. Requirements on p_T^{ISR}, the highest-p_T b-tagged jet in the sparticle hemisphere ($p_T^{1,b}$), and the fourth-highest-p_T jet in the sparticle hemisphere ($p_T^{3,4}$) are applied. To reject events with poorly measured E_T^{miss}, the difference in ϕ between the p_T^{miss}, track and p_T^{miss}, $\Delta(\phi (p_T^{\text{miss}}, p_T^{\text{track}}))$, is required to be less than $\pi/3$ and the leading two jets are required to be separated in azimuthal angle from the p_T^{miss}: $|\Delta(\phi (p_T^{1,2}, p_T^{\text{miss}}))| > 0.4$. The transverse mass of the sparticle system and p_T^{miss}, defined as m_S, is required to be greater than 400 GeV. The ISR system is also required to be separated in azimuthal angle from p_T^{miss}: $|\Delta(\phi (p_T^{1,2}, p_T^{\text{miss}}))| > 3.0$. The selection criteria for SRC are summarised in Table 3.

In addition to SRC1–5, a region optimised for discovery, SRC-Disc, is defined. In SRC-Disc, the same requirements as in the other SRCs are applied, with the exception of requiring $R_{\text{ISR}} > 0.5$ and $S > 11$. As with SRA-TT-Disc, when setting exclusion limits on specific signal models, this region is not considered.
5.3 Signal regions D

SRD aims to select four-body top squark decays, for which the kinematic properties depend mainly on $\Delta m(\tilde{t}, \tilde{\chi}^0_1)$. Four-body top squark decays result in final state particles with low p_T, which are particularly challenging to reconstruct. For instance, low-p_T b-hadrons originating from such decays are usually not contained in jets passing the minimum $p_T > 20$ GeV requirement when $\Delta m(\tilde{t}, \tilde{\chi}^0_1) < 50$ GeV, and therefore cannot be tagged the same way as in SRA–C. To circumvent this problem and identify the low-p_T b-hadrons produced in a larger part of the four-body decay phase space, b-tagging using track-jets with $p_T > 5$ GeV is employed. Three signal region categories, SRD0, SRD1, and SRD2, are defined according to the b-tagged jet multiplicity (zero, one, and two, respectively), and are optimised for $\Delta m(\tilde{t}, \tilde{\chi}^0_1) = 20, 50, 80$ GeV, respectively. In SRD0 and SRD1 the presence of at least one b-tagged track-jet is required to recover undetected jets that contain b-hadrons.

An event including a pair of four-body top squark decays with $E_T^{\text{miss}} > 250$ GeV is likely to be caused by the presence of significant ISR emission. To reject the non-b-tagged jet, identified as the ISR jet (j_{ISR}), is required to have large $p_T (p_T^{\text{ISR}})$, as well as a large azimuthal separation $|\Delta\phi(p_T^{\text{ISR}}, p_T^{\text{miss}})|$ from p_T^{miss}.

In order to reject events with mismeasured E_T^{miss} originating from multijet and hadronic $t\bar{t}$ decays, requirements are made on $E_T^{\text{miss, track}}$ and $|\Delta\phi(p_T^{\text{miss, track}}, p_T^{\text{ISR}})|$. Further background reduction is required in SRD0 and attained by selecting large $|\Delta\phi_{\text{min}}(p_T, p_T^{\text{miss}})|$.

Only low-p_T jets and track-jets (p_T^{track}, p_T^{track}, p_T^{track}, p_T^{track}) are considered in all three categories. Requirements are also made on b-tagged jet and track-jet pseudorapidities ($|\eta_1^{b, \text{track}}|$, $|\eta_1^{\text{track}}|$, $|\eta_2^{b, \text{track}}|$) to ensure they are in the central region of the detector, which make them more likely to originate from a top squark decay and maximise the b-tagging performance. Only events with high $E_T^{\text{miss}}/\sqrt{H_T}$ are kept, where H_T is the scalar sum of the transverse momenta of all jets. This kinematic variable was found to provide better signal versus background discrimination than the object-based E_T^{miss} significance when the final state is composed of low-p_T objects.

Given the absence of on-shell top quarks and W bosons, no top nor W reconstruction methods are used, such that additional discrimination of the signal from the background relies on differences in angular separation between jets and track-jets. In SRD1 (SRD2), requirements are made on the angular separation between the ISR jet and the b-tagged jet(s), $\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})$ and $|\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})|$, to ensure the b-tagged jet(s) is (are) well-separated from the ISR jet. In SRD1, the minimum

Table 4 Signal region selections for SRD

<table>
<thead>
<tr>
<th>Variable/SR</th>
<th>SRD0</th>
<th>SRD1</th>
<th>SRD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T^{miss}</td>
<td>> 250 GeV</td>
<td>> 250 GeV</td>
<td>> 250 GeV</td>
</tr>
<tr>
<td>N_t</td>
<td>Exactly 0</td>
<td>Exactly 1</td>
<td>≥ 2</td>
</tr>
<tr>
<td>p_T^{ISR}</td>
<td>> 25 GeV</td>
<td>> 30 GeV</td>
<td>> 20 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})</td>
<td>$</td>
<td>> 2.4</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})</td>
<td>$</td>
<td>> 4.0</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})</td>
<td>$</td>
<td>> 3.0</td>
</tr>
<tr>
<td>$E_T^{\text{miss, track}}$</td>
<td>> 250 GeV</td>
<td>> 250 GeV</td>
<td>> 250 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})</td>
<td>$</td>
<td>> 2.4</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})</td>
<td>$</td>
<td>> 4.0</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})</td>
<td>$</td>
<td>> 3.0</td>
</tr>
</tbody>
</table>

$\Delta\phi$ between the leading four track-jets and the ISR jet ($|\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})|$) is also required to be large, to separate the low-p_T top squark decay products from the ISR jet. Further background rejection is required in SRD0 and attained by requiring significant azimuthal separation between the leading b-tagged track-jet and the ISR jet (max $|\Delta\phi(p_T^{\text{ISR}} \cdot p_T^{\text{ISR}}, p_T^{\text{ISR}})|$), and between the leading b-tagged track-jet and the next track-jet most likely to contain a b-hadron (|Δφ(btrack, btrack)|). Table 4 summarises the full signal region selections for SRD0-2.

6 Background estimation

The main SM background process in SRA, SRB, and SRD is $Z \rightarrow \nu\bar{\nu}$ production in association with heavy-flavour jets. In SRC, $t\bar{t}$ production dominates, including mostly events where one W boson decays hadronically and the
other \(W \) boson decays via a \(\tau \)-lepton and its corresponding neutrino (\(W + \text{jets} \)). Other important background processes include leptonic \(W \) decays produced in association with heavy-flavour jets, a single top quark produced with a \(W \) boson, and the irreducible background from \(t\bar{t} + Z \), where the \(Z \) boson decays into two neutrinos.

Significant background contributions are estimated primarily from comparisons between data and simulation in specially designed ‘control regions’ (CRs), which have a selection orthogonal to all SRs and aim to enhance a particular background process, while probing a similar event topology. Sufficient data are needed to minimise the statistical uncertainties in the background estimates in the CRs, while the extrapolation from the CR to the SR, evaluated with simulated events, should be as small as possible to reduce the associated systematic uncertainties. Furthermore, CR selection criteria are chosen to minimise potential contamination by signal. The signal contamination is below 10% in all CRs for top squark and neutralino mass combinations that have not yet been excluded at 95% confidence level by previous ATLAS searches [22–25,27,28].

Separate CRs are defined for SRA–B, SRC and SRD, with the observed number of events in each region included in one of the three dedicated binned profile likelihood fits [120] of the analysis (SRA–B fit, SRC fit, SRD fit). The CRs are defined so that all CRs associated with a given signal region are orthogonal to the other CRs for that specified region. Partial overlaps remain possible between regions included in different fits. Each likelihood function is built as the product of Poisson probability density functions, describing the observed and expected numbers of events in the control regions. Additional terms, constrained by Gaussian probability density functions accounting for MC statistics and common systematic uncertainties (discussed in Sect. 7) between the control and signal regions and their correlations, are included and treated as nuisance parameters in the fitting procedure.

Control regions targeting the \(Z + \text{jets} \), \(t\bar{t} \), \(W + \text{jets} \), single-top and \(t\bar{t} + Z \) backgrounds are included in the SRA–B fit, while for the SRC fit only a \(t\bar{t} \) control region is defined. For the SRD fit, control regions are defined for \(Z + \text{jets} \), \(t\bar{t} \), and \(W + \text{jets} \) backgrounds. For each fit (SRA–B, SRC, and SRD), the normalisations of these backgrounds are determined simultaneously in order to best match the observed data in each control region, including contributions from all backgrounds (background-only fit). No observed or expected number of events in the signal regions is considered at this stage. In cases where there are multiple control regions for one background in one fit, the fit yields one normalisation which best fits all regions.

Contributions from all-hadronic \(t\bar{t} \) and multijet production are found to be negligible in all signal regions except for SRC, where they are subdominant. These backgrounds are estimated from data collected by single-jet triggers using a jet smearing procedure described in Ref. [121] and are fixed in the fit, with an uncertainty assigned to them (discussed in Sect. 7). The contributions from all other background processes (diboson, \(t\bar{t}H \), \(t\bar{t}W \), and \(t\bar{t}WZ \)) are less than 15% of the total SM background expectations and are fixed at the value expected from the simulation, using the most accurate theoretical cross sections available, while their uncertainties are included as additional nuisance parameters in the fit. In the following, the multijet, diboson, \(t\bar{t}Z \), and \(t\bar{t}W \) backgrounds are grouped together and referred to as ‘other’.

Validation regions (VRs) are defined for the major sources of background in each signal region such that they are orthogonal to the control regions and the signal regions. They usually suffer from a higher signal contamination (up to 20%) than the CRs, but probe a kinematic region which is closer to that of the SRs. The background normalisation factors from the simultaneous fit are applied to their respective backgrounds and compared with data in each VR to verify good agreement and that the simultaneous fit is well-behaved.

Detailed CR definitions for the estimation of \(Z + \text{jets} \) (CRZ), \(t\bar{t} + Z \) (CRTLZ), \(t\bar{t} \) (CRT), \(W + \text{jets} \) (CRW), and single-top (CRST) backgrounds are described in the following subsections, while a summary of the control region strategy in the SRA–B and SRD fits is shown in Fig. 3. The strategy for SRC only involves one control region (extrapolating from an electron or muon multiplicity of zero in the SR to an electron or muon multiplicity of one in the CR) and one validation region (extrapolating over \(|\Delta\phi(P_{T}^{\text{ISR}}, P_{T}^{\text{miss}})} \) for the dominant \(t\bar{t} \) background.

\subsection{6.1 Z + jets background estimation}

The normalisation of the simulation of \(Z \rightarrow \nu\bar{\nu} \) produced in association with heavy-flavour jets is estimated from \(Z \rightarrow e^+e^- \) and \(Z \rightarrow \mu^+\mu^- \) events produced in association with heavy-flavour jets, which is the strategy adopted for SRA–B (CRZAB) and SRD (CRZD). Data events passing a single-electron or single-muon trigger are considered, and events with two control electrons or two control muons with opposite charge are selected. In CRZAB (CRZD), \(p_T^{\ell} > 27, 20 \text{ GeV} (p_T^{\ell} > 30, 20 \text{ GeV}) \) is required for the leading and subleading leptons, respectively, which must also have an invariant mass within 10 GeV of the Z boson mass, \(m_Z = 91 \text{ GeV} \). Events with \(E_{T}^{\text{miss}} > 50 \text{ GeV} \) are discarded in order to reject \(t\bar{t} \) events. The transverse momenta of the selected electrons or muons are vectorially added to the \(p_T^{\text{miss}} \) to mimic the \(Z(\rightarrow \nu\bar{\nu}) + \text{jets} \) decays in the SRs, forming the quantity \(E_{T}^{\text{miss}} \). High-\(p_T \) Z bosons are then effectively selected by requiring large \(E_{T}^{\text{miss}} \).
Recalculated quantities that use E_T^{miss} instead of E_T^{miss} are identified by the addition of a prime (e.g. $m_T^{b,\text{min}}$). Where possible, the CR selection criteria are identical to the criteria used in the signal region; however, the criteria for key variables such as $m_T^{b,\text{min}}$ and S'_{T} for CRZAB, or $E_T^{\text{miss}}/\sqrt{H_T}$ for CRZD, are loosened to enhance the number of data events in the CR. The $Z + \text{jets}$ CR included in the SRA–B (SRD) fit is split into two (three) categories depending on $m_T^{R=1.2}$ (N_3), to minimise the extrapolation across the various SR categories. There are only two categories in CRZAB, CRZAB-TTW (representing the background in the TT and TW signal categories) and CRZAB-T0, due to the limited number of data events. The detailed set of selection criteria for the $Z + \text{jets}$ CRs are presented in Table 5; representative distributions for CRZ variables that have looser requirements than in the SRs are shown in Fig. 4.

6.2 $t\bar{t} + Z$ background estimation

The SM production of $t\bar{t} + Z$, where $Z \to \nu\bar{\nu}$, is a significant source of background in SRA and SRB and is largely irreducible. To estimate this background, a three-lepton (electrons and muons) region is defined, to maximise the purity of $t\bar{t} + Z$.

Events that pass a single-electron or single-muon trigger are selected. The trigger electron or muon must pass the requirements for a control electron or muon and have offline $p_T > 27$ GeV. Exactly two additional control leptons (electrons or muons) with $p_T > 20$ GeV are required. The sum of the charges of the three leptons is required to equal 1 or -1, while two of the leptons are required to have the same flavour and opposite charge. The pair of same-flavour, opposite-sign leptons that is most consistent with the Z boson mass forms the Z boson candidate and is required to have an invariant mass satisfying $81 \text{GeV} < m(\ell, \ell) < 101 \text{GeV}$. The Z boson candidate is required to have $p_T > 200$ GeV. The remaining lepton and the p_T^{miss} are treated as non-b-tagged jets in the computation of all jet-related variables (such as p_T), to mimic hadronic W decays.

Four jets are required to be in the event, in addition to the lepton not associated with the Z boson candidate and the p_T^{miss}, and two of the jets are required to be b-tagged jets. The selection criteria are summarised in Table 6. Representative distributions for CRTTZ variables that have looser requirements than in the SRs are shown in Fig. 5.

6.3 $t\bar{t}$, $W + \text{jets}$, and single-top background estimation

The $t\bar{t}$ background in SRB, SRC, and SRD originates from events where a W boson decays into a hadronically decaying τ-lepton, where the τ-lepton is either not reconstructed (due to falling below the jet p_T threshold of 20 GeV), or is reconstructed as a jet. In order to model this process in the CRs, events that pass the same E_T^{miss} trigger as the signal region, but also have a control electron or muon, are selected. The electron or muon is used as a proxy for the τ-lepton in the SRs.

In SRA and SRB, the hadronically decaying τ-leptons are most likely to have fallen below the jet $p_T > 20$ GeV requirement, such that for the $t\bar{t}$ and $W + \text{jets}$ control regions (CRTAB and CRWAB, respectively), exactly one control
Table 5 Selection criteria for the $Z + \text{jets}$ control regions. The defining extrapolation for these control regions is over the number of leptons; two electrons or muons (ℓ) from Z decays are required, compared with zero leptons in the signal regions. A dash indicates that no selection is applied. Variables for which the signal and control region requirements differ are highlighted by a thick border around the cell that contains the requirement. Requirements are made on the following variables in the signal regions but have no equivalent requirement in the control regions: τ-veto, $m_T^{R=0.8}$, $j_1^{R=1.2}(b)$, $j_2^{R=1.2}(b)$, $\Delta R(b_1, b_2)$, $m_T^{b,\text{max}}$, m_{T2,χ^2}, $E_{T\text{miss,track}}$ and $|\Delta \phi(p_T^{\text{miss}}, \mathbf{p}_T^{\text{track}})|$

<table>
<thead>
<tr>
<th>Variable/CR</th>
<th>CRZAB-TTTW</th>
<th>CRZAB-T0</th>
<th>CRZD0</th>
<th>CRZD1</th>
<th>CRZD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>Single electron or muon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control ℓ</td>
<td>Exactly 2, same flavour / opposite sign</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional baseline ℓ</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m(\ell, \ell)$</td>
<td>81–101 GeV</td>
<td>< 50 GeV</td>
<td>< 70 GeV</td>
<td>> 30, > 20 GeV</td>
<td>> 200 GeV</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>> 200 GeV</td>
<td>> 20 GeV</td>
<td>> 250 GeV</td>
<td>> 150 GeV</td>
<td>> 200 GeV</td>
</tr>
<tr>
<td>N_h</td>
<td>≥ 4</td>
<td>≥ 4</td>
<td>≥ 4</td>
<td>≥ 4</td>
<td>≥ 4</td>
</tr>
<tr>
<td>$p_{T,2}$</td>
<td>> 80 GeV</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
</tr>
<tr>
<td>$p_{T,4}$</td>
<td>> 40 GeV</td>
<td>≥ 0.4</td>
<td>≥ 0.4</td>
<td>≥ 0.4</td>
<td>≥ 0.4</td>
</tr>
<tr>
<td>$m_1^{R=1.2}$</td>
<td>> 80 GeV</td>
<td>> 2</td>
<td>> 2</td>
<td>> 2</td>
<td>> 2</td>
</tr>
<tr>
<td>$m_2^{R=1.2}$</td>
<td>> 60 GeV</td>
<td>< 4–6</td>
<td>< 4–6</td>
<td>< 4–6</td>
<td>< 4–6</td>
</tr>
<tr>
<td>S'</td>
<td>> 150 GeV</td>
<td>> 2.2</td>
<td>> 2.2</td>
<td>> 2.2</td>
<td>> 2.2</td>
</tr>
<tr>
<td>p_T^{ISR}</td>
<td>-</td>
<td>> 250 GeV</td>
<td>> 200 GeV</td>
<td>> 250 GeV</td>
<td>> 250 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi(p_T^{\text{ISR}}, \mathbf{p}_T^{\text{miss}})</td>
<td>$</td>
<td>-</td>
<td>> 2.4</td>
<td>> 2.4</td>
</tr>
<tr>
<td>N_{track}</td>
<td>-</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
<td>≥ 1</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi_{\text{min}}(p_T^{\text{ISR}}, \mathbf{p}_T^{\text{miss}})</td>
<td>$</td>
<td>-</td>
<td>> 1</td>
<td>> 1</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi(p_T^{\text{ISR}}, \mathbf{p}_T^{\text{track}})</td>
<td>$</td>
<td>-</td>
<td>> 2.2</td>
<td>> 2.2</td>
</tr>
<tr>
<td>$p_{T,1}^{b,\text{track}}$</td>
<td>-</td>
<td>< 50 GeV</td>
<td>> 10 GeV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$p_{T,1}^{\text{track}}$</td>
<td>-</td>
<td>< 40 GeV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi(p_T^{\text{ISR}}, \mathbf{p}_T^{\text{track}}, \mathbf{p}_T^{\text{ISR}})</td>
<td>$</td>
<td>-</td>
<td>> 1.2</td>
<td>> 1.2</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi_{\ell}</td>
<td>$</td>
<td>-</td>
<td>< 1.6</td>
<td>< 1.6</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi_{\ell}</td>
<td>$</td>
<td>-</td>
<td>> 1.8</td>
<td>> 1.8</td>
</tr>
<tr>
<td>$p_{T,1}^{b}$</td>
<td>-</td>
<td>< 175 GeV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi(p_T^{\text{ISR}}, p_T^{b})$</td>
<td>-</td>
<td>> 1.6</td>
<td>> 1.6</td>
<td>> 1.6</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}/\sqrt{H_T}$</td>
<td>-</td>
<td>> 12√GeV</td>
<td>> 8√GeV</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

electron in the range 4.5 < p_T^{ℓ} < 20 GeV or muon in the range 4.0 < p_T^{ℓ} < 20 GeV is required. In SRC and SRD, the hadronically decaying τ-leptons have higher p_T, such that one control electron or muon with $p_T > 20$ GeV is required, and is treated as a non-b-tagged jet in the computation of all jet-related variables.

In the $t\bar{t}$ control regions (CRTC, CRTD), the angular separation between the electron or muon and the b-tagged jet closest to the electron or muon, $\Delta R(b, \ell)$, is used to enhance the $t\bar{t}$ purity. In CRTD, $\Delta R(b, \ell)$ is also used to ensure orthogonality with the $W + \text{jets}$ control region (CRWD). All $t\bar{t}$ control regions (CRTC, CRTD, CRTC) have an upper bound on $m_T(\ell, \mathbf{p}_T^{\text{miss}})$ to preserve orthogonality between the CRs and the signal regions of other ATLAS ongoing studies in the one-lepton plus missing transverse momentum channel, as well as to reduce potential signal contamination. In addition

 Springer
Fig. 4 Distributions illustrating the level of agreement between data (points) and the SM expectation (stacked histograms, after simultaneously fitting to all backgrounds) in several $Z + \text{jets}$ control regions: (a) S' and (b) m_{T2,χ^2} for CRZAB-TTTW, (c) $\Delta R (b_1, b_2)$ for CRZAB-T0, and (d) $E_{T}^{\text{miss}}/\sqrt{H_T}$ for CRZD0. The hatched uncertainty band around the SM expectation includes the combination of MC statistical, theory-related and detector-related systematic uncertainties. The rightmost bin in each plot includes all overflows.

6.4 Validation of background estimates

The background normalisation factors derived from the SRA–B, SRC and SRD background-only fits are summarised in Fig. 8. Most normalisation factors are within 1σ of unity, where σ denotes the total uncertainty, including the data...
Table 6 Selection criteria for the $t\bar{t} + Z$ control region. The defining extrapolation for these control regions is over the number of leptons; three leptons (a combination of electrons and muons) from W and Z decays is required, compared with zero leptons in the signal region. Variables for which the signal and control region requirements differ are highlighted by a thick border around the cell that contains the requirement. Requirements are made on the following variables in SRA and SRB but have no equivalent requirement in the control region: $|\Delta \phi_{\text{min}}(p_{T,1-4}, p_{T}^{\text{miss}})|$, $m_{T,\text{b,min}}$, τ-veto, $m_{1}^{R=1.2}$, $m_{2}^{R=1.2}$, $m_{1}^{R=0.8}$, $j_{1}^{R=1.2}(b)$, $j_{2}^{R=1.2}(b)$, $\Delta R(b_{1}, b_{2})$, $m_{T,\text{max}}^{\ell}$, S, and $m_{1}^{T,2,\chi^{2}}$.

<table>
<thead>
<tr>
<th>Variable/CR</th>
<th>CRTTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>Single electron or muon</td>
</tr>
<tr>
<td>Control ℓ</td>
<td>Exactly 3</td>
</tr>
<tr>
<td>Additional baseline ℓ</td>
<td>0</td>
</tr>
<tr>
<td>Sum of muon and electron charges</td>
<td>+1 or −1</td>
</tr>
<tr>
<td>ℓ associated with Z</td>
<td>Exactly 2, same flavour / opposite sign</td>
</tr>
<tr>
<td>$m(\ell, \ell)$</td>
<td>81–101 GeV</td>
</tr>
<tr>
<td>p_{T}^{ℓ}</td>
<td>> 27, > 20, > 20 GeV</td>
</tr>
<tr>
<td>$p_{T}(\ell, \ell)$</td>
<td>> 200 GeV</td>
</tr>
<tr>
<td>N_{j}</td>
<td>≥ 4</td>
</tr>
<tr>
<td>N_{b}</td>
<td>≥ 2</td>
</tr>
<tr>
<td>$p_{T,2}$ (including E_{T}^{miss} and non-Z ℓ)</td>
<td>> 80 GeV</td>
</tr>
<tr>
<td>$p_{T,4}$ (including E_{T}^{miss} and non-Z ℓ)</td>
<td>> 40 GeV</td>
</tr>
</tbody>
</table>

Fig. 5 Distributions illustrating the level of agreement between data (points) and the SM expectation (stacked histograms, after simultaneously fitting to all backgrounds) in the $t\bar{t} + Z$ control region: a S and b $p_{T}(\ell, \ell)$ for CRTTZ. The hatched uncertainty band around the SM expectation includes the combination of MC statistical, theory-related and detector-related systematic uncertainties. The rightmost bin in each plot includes all overflows.
Table 7 Selection criteria for the $t\bar{t}$ control regions. The defining extrapolation for these control regions is over the number of leptons; one electron or muon (ℓ) from W decays is required, compared with zero leptons in the signal region. A dash indicates that no selection is applied. Variables for which the signal and control region requirements differ are highlighted by a thick border around the cell that contains the requirement. Requirements are made on the following variables in the signal regions but have no equivalent requirement in the control regions: R_{ISR}, τ-veto, $m_{R}^{R=0.8}$, $j_{1}^{R=1.2}(b)$, $j_{2}^{R=1.2}(b)$, $m_{T}^{R=0.8}$, $m_{T}^{R=1.2}$.

<table>
<thead>
<tr>
<th>Variable/CR</th>
<th>CRTAB</th>
<th>CRTC</th>
<th>CRTD1</th>
<th>CRTD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{T}^{miss}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control ℓ</td>
<td>Exactly 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional baseline ℓ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{T}^{ℓ}</td>
<td>4.5 (4.0) < $p_{T}^{\ell} < 20$ GeV</td>
<td>$p_{T} > 20$ GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{T}(\ell, p_{T}^{miss})$</td>
<td>< 120 GeV</td>
<td>< 100 GeV</td>
<td>< 120 GeV</td>
<td></td>
</tr>
<tr>
<td>N_{j}</td>
<td>≥ 4</td>
<td>≥ 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{T,2}$</td>
<td>> 80 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{T,4}$</td>
<td>> 40 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{b}</td>
<td>≥ 2</td>
<td>Exactly 1</td>
<td>≥ 2</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi_{\min}(p_{T,1-4}, p_{T}^{miss})</td>
<td>$</td>
<td>> 0.4</td>
<td></td>
</tr>
<tr>
<td>$m_{T}^{R=1.2}$</td>
<td>> 120 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{T}^{b,\text{min}}$</td>
<td>> 150 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta R(b_1, b_2)$</td>
<td>> 1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>> 14</td>
<td>> 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_{T,1-2}, p_{T}^{miss})</td>
<td>$</td>
<td></td>
<td>> 0.2</td>
</tr>
<tr>
<td>N_{S}^{j}</td>
<td></td>
<td>≥ 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{S}^{b}</td>
<td></td>
<td>≥ 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{ISR}^{S}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{T,1}^{S,b}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{T,4}^{S}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{S}</td>
<td></td>
<td>> 400 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_{ISR}, p_{T}^{miss})</td>
<td>$</td>
<td></td>
<td>> 3.0</td>
</tr>
<tr>
<td>m_{v}/m_{S}</td>
<td></td>
<td>< 0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta R(b, \ell)$</td>
<td></td>
<td>< 2.0</td>
<td>< 1.8</td>
<td></td>
</tr>
<tr>
<td>$E_{T}^{\text{miss, track}}$</td>
<td></td>
<td>> 30 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_{T}^{miss, track}, p_{T}^{miss})</td>
<td>$</td>
<td></td>
<td>< $\pi/3$</td>
</tr>
<tr>
<td>p_{T}^{ISR}</td>
<td></td>
<td></td>
<td></td>
<td>> 250 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_{ISR}, p_{T}^{miss})</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_{ISR}, b_{1})</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{b}^{track}</td>
<td></td>
<td></td>
<td>≥ 1</td>
<td></td>
</tr>
<tr>
<td>$p_{T,1}^{b,\text{track}}$</td>
<td></td>
<td></td>
<td>> 10 GeV</td>
<td></td>
</tr>
<tr>
<td>$p_{T,1}^{track}$</td>
<td></td>
<td></td>
<td>< 40 GeV</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_{T,1-4}^{ISR}, p_{T}^{ISR})</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta_{1}^{ISR}</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{T}^{\text{miss}}/\sqrt{H_{T}}$</td>
<td></td>
<td></td>
<td>> $8\sqrt{GeV}$</td>
<td>> $14\sqrt{GeV}$</td>
</tr>
<tr>
<td>$</td>
<td>\eta_{1}^{ISR}</td>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{T,1}^{ISR}$</td>
<td></td>
<td></td>
<td>< 175 GeV</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi(p_{ISR}, p_{T,2}^{ISR})</td>
<td>$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 6 Distributions illustrating the level of agreement between data (points) and the SM expectation (stacked histograms, after simultaneously fitting to all backgrounds) in the $t\bar{t}$ control regions: a $m_{T}^{b_{\text{max}}}$ for CRTAB, b R_{ISR} for CRTC, and c CRTD1 and d CRTD2. The hatched uncertainty band around the SM expectation includes the combination of MC statistical, theory-related and detector-related systematic uncertainties. The rightmost bin in each plot includes all overflows.

2, the orthogonality with SRD is ensured by inverting the max $|\Delta\phi(p_{T}^{\text{ISR}}, p_{T}^{\text{track}})|$ and $|\Delta\phi(p_{T}^{\text{ISR}}, p_{T}^{b,1})|$ requirements, respectively.

VRTAB is orthogonal to SRA–B due to the inversion of the $m_{T}^{b_{\text{min}}}$ requirement, while VRTC is orthogonal to SRC by inverting the $|\Delta\phi(p_{T}^{\text{ISR}}, p_{T}^{\text{miss}})|$ requirement. In VRTD1–2, the $|\Delta\phi(p_{T}^{\text{ISR}}, p_{T}^{b,1})|$ requirement is inverted, as is done in VRZD1–2. The purity of $t\bar{t}$ events in VRTD1 is enhanced by introducing a $\Delta R(b_{1},b_{2}) > 2.0$ requirement. Only one b-tagged jet is required in VRTD1 (as in SRD1) and therefore $\Delta R(b_{1},b_{2})$ is defined as the angular distance between the one b-tagged jet and the next jet most likely to contain a b-hadron, quantified by the b-tagging discriminator output value.

Representative distributions for the validation regions defined in the analysis are shown in Fig. 9. A summary of the expected and observed yields in the VRs after the SRA–B, SRC and SRD background-only fits is shown in Fig. 10. All the background predictions in the VRs agree with the data within 1σ except the predictions in VRZD2, which agree with the data within 2σ.

7 Systematic uncertainties

Uncertainties affecting the sensitivity of the analysis which originate from statistical sources are considered together with systematic uncertainties related to the detector calibration (detector-related uncertainties) and physics modelling of signal and background (theory-related uncertainties). The data statistical uncertainty in the number of events in the SRs dominates the total uncertainty in SRA and SRD, while uncertainties related to the physics modelling of the background play a significant role in SRB and SRC.

The impact of detector-related and theory-related systematic uncertainties in the background predictions are included in the profile likelihood fits (described in Sect. 6) as nuisance
parameters constrained by Gaussian probability density functions. Their impact is reduced by scaling the dominant background components in the SRs using the data observed in the CRs via the introduction of free-floating normalisation parameters. After the SRA–B and SRD (SRC) background constraints are observed in the SRD fit and are on the $t\bar{t}$ modelling uncertainties and reach 30%.

The dominant systematic uncertainties in the background estimates in SRA and SRB (SRC and SRD), expressed as percentages of the total background expectations, are shown

Table 8 Selection criteria for the $W + \text{jets}$ and single-top control regions. The defining extrapolation for these control regions is over the number of leptons; one electron or muon (ℓ) from W decays is required compared with zero leptons in the signal regions. A dash indicates that no selection is applied. Variables for which the signal and control region requirements differ are highlighted by a thick border around the cell that contains the requirement. Requirements are made on the following variables in the signal regions but have no equivalent requirement in the control regions: $m_{\ell}^{\text{miss}}, \Delta E_{\text{T}}^{\text{miss}}(b_1, b_2), j_{\text{T}}^{b}, m_{\text{max}}^{b}$.

<table>
<thead>
<tr>
<th>Variable/CR</th>
<th>CRSTAB</th>
<th>CRWAB</th>
<th>CRWD0</th>
<th>CRWD1</th>
<th>CRWD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>$E_{\text{T}}^{\text{miss}}$</td>
<td>$\Delta E_{\text{T}}^{\text{miss}}$</td>
<td>> 250 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control ℓ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional baseline ℓ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{T}^{ℓ}</td>
<td>$p_{\text{T}} > 20$ GeV</td>
<td>$4.5 < \Delta E_{\text{T}}^{\text{miss}} < 20$ GeV</td>
<td>$p_{\text{T}} > 20$ GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{\text{T}}(\ell, p_{\text{T}}^{\text{miss}})$</td>
<td>< 100 GeV</td>
<td>< 120 GeV</td>
<td>< 100 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{ℓ}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{\text{T},2}$</td>
<td>> 80 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_{\text{T},4}$</td>
<td>> 40 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi_{\text{min}}(p_{\text{T}}, 1-4, p_{\text{T}}^{\text{miss}})</td>
<td>$</td>
<td>> 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{1}^{R=1.2}$</td>
<td>> 120 GeV</td>
<td>< 60 GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m_{b,\text{min}}$</td>
<td>> 200 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta R(b_1, b_2)$</td>
<td>> 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{min}</td>
<td>> 100 GeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ-veto</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>> 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta R(b, \ell)$</td>
<td></td>
<td>> 2.0</td>
<td>> 1.6</td>
<td>> 1.8</td>
<td>> 2.2</td>
</tr>
<tr>
<td>$p_{\text{T}}^{\text{ISR}}$</td>
<td></td>
<td></td>
<td>> 250 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{\text{T}}^{\text{mass, track}}$</td>
<td></td>
<td></td>
<td>> 30 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi(p_{\text{T}}^{\text{miss}}, p_{\text{T}}^{\text{miss, track}})</td>
<td>$</td>
<td></td>
<td></td>
<td>< $\pi/3$</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi(p_{\text{T}}^{\text{ISR}}, p_{\text{T}}^{\text{miss}})</td>
<td>$</td>
<td></td>
<td></td>
<td>> 2.4</td>
</tr>
<tr>
<td>N_{track}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta_{1, \text{track}}</td>
<td>$</td>
<td></td>
<td></td>
<td>< 1.2</td>
</tr>
<tr>
<td>max $</td>
<td>\Delta \phi(p_{\text{T}}^{\text{ISR}}, p_{\text{T}}^{\text{track}})</td>
<td>$</td>
<td></td>
<td></td>
<td>> 2.2</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \phi(p_{\text{T},1}, p_{\text{T},2})</td>
<td>$</td>
<td></td>
<td></td>
<td>> 2.5</td>
</tr>
<tr>
<td>$p_{\text{T},1}$</td>
<td></td>
<td></td>
<td>< 50 GeV</td>
<td>> 10 GeV</td>
<td></td>
</tr>
<tr>
<td>$p_{\text{T},2}$</td>
<td></td>
<td></td>
<td>< 40 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta_{p_{\text{T}},1}</td>
<td>$</td>
<td></td>
<td></td>
<td>< 1.6</td>
</tr>
<tr>
<td>$p_{\text{T},0}$</td>
<td></td>
<td></td>
<td>< 175 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta_{p_{\text{T}},2}</td>
<td>$</td>
<td></td>
<td></td>
<td>< 1.2</td>
</tr>
<tr>
<td>$E_{\text{T}}^{\text{miss}}/\sqrt{H_T}$</td>
<td></td>
<td></td>
<td>> 14 GeV</td>
<td>> 8 GeV</td>
<td>> 12 GeV</td>
</tr>
</tbody>
</table>
Fig. 7 Distributions illustrating the level of agreement between data (points) and the SM expectation (stacked histograms, after simultaneously fitting to all backgrounds) in several $W +$ jets and single-top control regions: a m_{T2,χ^2} for CRWAB, $E_T^{\text{miss}}/\sqrt{H_T}$ for b CRWD0 and c CRWD1, and d $m_{T,\text{max}}$ for CRSTAB. The hatched uncertainty band around the SM expectation includes the combination of MC statistical, theory-related and detector-related systematic uncertainties. The rightmost bin in each plot includes all overflows

in Table 9 (Table 10). By convention, the data statistical uncertainty in the numbers of events in the CRs is accounted for as a systematic uncertainty and included in table rows indicated by the normalisation factors for each background source (μ_{bkg}).

The dominant detector-related systematic uncertainty in the background estimates originates from sources related to the jet energy scale (JES) and resolution (JER) [104], which encompass both the modelling of the detector response and the analysis techniques used to derive the calibration, the b-tagging performance, which includes the uncertainty in the b-tagging efficiency of true b-jets [39] and in the b-tagging rate of light-flavour jets [123] and c-jets [124], and the energy scale and resolution of the E_T^{miss} soft term [113,114]. The uncertainty in the modelling of pile-up events contributes significantly to the total uncertainty only in SRD2.

The JES uncertainty is derived as a function of the p_T and η of each jet, the pile-up conditions, and the jet flavour. It is determined using a combination of simulated samples and collision data, including measurements of dijet, multijet, $Z +$jet, and $\gamma +$jet events. The JER uncertainty is derived as a function of the p_T and η of each jet, and is determined from a random cone technique applied to data recorded without selection bias, and studies of asymmetries in dijet events. The uncertainty in the JER is significant in many signal regions (maximally 18% in SRD1), while the most significant impact of the JES uncertainty reaches 6% in SRC5.

The uncertainty originating from the b-tagging performance of jets is estimated by varying the p_T- and flavour-dependent per-jet scale factors, applied to each jet, within predefined ranges determined from efficiency and mis-tag rate measurements in data. The b-tagging uncertainty is highest in SRA and SRD and does not exceed 7% (reached in SRD2).

Uncertainties in the b-tagging performance of track-jets, which are only relevant in SRD, are estimated for track-jets with $p_T > 10 \text{ GeV}$ in the same way as for jets. The largest contribution from this systematic uncertainty is in SRD1.
Theoretical uncertainties in the physics modelling of the background processes are also evaluated for each background component. For the $t\bar{t}$ background, uncertainties are estimated from the comparison of different matrix-element calculations (POWHEG-BOX vs aMC@NLO), the choice of parton-showering model (PYTHIA vs HERWIG 7), and the emission of ISR and final-state radiation (FSR) within PYTHIA 8 while leaving all other parameters for each comparison unchanged. The effects of ISR and FSR are explored by reweighting the nominal $t\bar{t}$ events in a manner that reduces (increases) initial-state (final-state) parton-shower radiation [125] and by using an alternative POWHEG-BOX v2 + PYTHIA 8.2 sample with h_{damp} set to $3m_t$ and parameter variation group VAR3 (described in Ref. [125]) increased, leading to increased ISR. SRC is most sensitive to $t\bar{t}$ theory systematic uncertainties, ranging from 11% to 21%, followed by SRB, ranging from 4% to 11%.

For the single-top background events include a W boson in the final state (Wt). To account for the interference between Wt and $t\bar{t}$ production, yields in the signal and control regions are compared between a Wt simulated sample that uses the diagram-subtraction scheme, and the nominal sample that uses the diagram-removal scheme [126]. The final single-top uncertainty relative to the total background estimate is maximally 7% (in SRA-TT).

For the $t\bar{t} + W/Z$ background, largely dominated by $t\bar{t} + Z$, the modelling uncertainty is estimated through variations of the renormalisation and factorisation scales simultaneously by factors of 2.0 and 0.5, and a comparison of parton-showering models (PYTHIA vs HERWIG 7), resulting in a maximum uncertainty of 4% (in SRB-TT).

The modelling uncertainties for the $W/Z +$ jets background processes due to missing higher orders are evaluated [127] using both coherent and independent variations of the QCD factorisation and renormalisation scales in the matrix elements by factors of 0.5 and 2, avoiding variations in opposite directions. The matrix-element matching scale between jets from the matrix element and the parton shower, and the resummation scale for soft gluon emission within SHERPA, are also varied by factors of 0.5 and 2. The resulting impact on the total background yields from the $W/Z +$ jets modelling is at most 7% (in SRD0).

Uncertainties in each background from scale variations are fully correlated across regions and categories, and uncorrelated between processes. In some cases this may result in uncertainties cancelling out, while the higher-order corrections may not cancel out. The sensitivity of the results to the correlation assumptions was tested by redoing the fit with scale variations uncorrelated across all regions and categories, which resulted in negligible changes in the excluded cross sections near the edge of the exclusion region.

Detector and theory-related systematic uncertainties in signal yields are also evaluated when setting exclusion limits.
Fig. 9 Distributions illustrating the level of agreement between data (points) and the SM expectation (stacked histograms, after simultaneously fitting to all backgrounds) in several validation regions: a $m_2^{R,1.2}$ in VRZA, b $m_T^{b,min}$ in VRZB-TTTW, c p_T^{ISR} in VRTC, and d $E_{T}^{miss}/\sqrt{H_T}$ in VRZD1. The hatched uncertainty band around the SM expectation includes the combination of MC statistical, theory-related and detector-related systematic uncertainties. The rightmost bin in each plot includes all overflows.

on specific signals (see Sect. 8). Detector-related uncertainties consider the same sources as for the background and are usually smaller than the modelling uncertainties. Signal theory uncertainties include sources related to signal acceptance, which are included in the profile likelihood fits as a single nuisance parameter, and the uncertainty in the total cross section, which is accounted for by repeating the exclusion procedure for the central and ±1σ values of the cross section. The uncertainty in the total cross section is 7–16% for direct top squark production [75,128–134], depending on the top squark mass. The same uncertainty is used for leptoquark production, due to the similarities between the two types of signals.

The main detector-related uncertainties in the signal yields originate from the JER, ranging from 2% to 15%, the JES, ranging from 2% to 20%, and the b-tagging performance (including track-jet b-tagging in SRD), ranging from 2% to 11%. Uncertainties in the signal acceptance due to variations of the renormalisation and factorisation scales and the matching scale (each varied up and down by a factor of two), and the parton-shower tune variations, are also taken into consideration. In regions where a high-p_T ISR system is selected (SRC and SRD), the p_T scale of the ISR is large enough such that the leading ISR jet is included in the matrix elements. The uncertainty in the ISR is therefore accounted for when varying the renormalisation and factorisation scales.

The total uncertainty in the signal acceptance, considering the full range of m_T and $m_{\tilde{\chi}_0}^0$ used in this search, is at most 12–13% in SRA–C, and 25% for SRD.

8 Results and interpretation

The background originating from SM processes is determined separately for each set of signal regions (SRA–B, SRC, SRD) from three profile likelihood ‘background-only’ fits (SRA–B fit, SRC fit, SRD fit) that include the relevant control regions as described in Sect. 6. The observed
Fig. 10 The total number of data events (points) and the SM expectation (stacked histograms) in all validation regions after the SRA–B, SRC and SRD background-only fits. The stacked histograms show the SM prediction and the hatched uncertainty band around the SM prediction shows the total uncertainty, which includes the MC statistical uncertainties, theory-related and detector-related systematic uncertainties. The lower panel shows the significance of the difference between data and the background prediction calculated with the method described in Ref. [122]. The validation regions considered in the SRA–B, SRC and SRD fits are separated by vertical dashed lines.

Event yields in the various SRA–B, SRC and SRD categories are compared with the post-fit background estimates in Tables 11, 12, 13, and Fig. 11. In the SRs optimised for discovery, SRA-TT-Disc and SRC-Disc, 14 and 28 events are observed, respectively, compared with 15.2 \(\pm \) 1.8 and 28.0 \(\pm \) 4.9 expected events, respectively. Figure 12 shows the distribution of \(S \) in SRA-TW, \(m_{bb}^{\ell\ell} = 1.2 \) in SRB-TT, \(R_{ISR} \) in SRC, and \(E_{T}^{\text{miss}}/\sqrt{H_{T}} \) in SRD0, SRD1 and SRD2. The background predictions are scaled to the values determined from the background-only fits.

Observed event yields are in good agreement with the background estimates in all the signal regions. The significance of a data excess with respect to the background predictions can be quantified by the probability \((p) \) of a background-only hypothesis to be more signal-like than what is observed. To evaluate these probabilities in each signal region category, alternative fit configurations (discovery fits) are defined. Each discovery likelihood function is defined as the product of the Poisson probability density function describing the numbers of events of a single signal region category and the background-only likelihood function associated with that signal region. An additional parameter, the signal strength, defined for positive values and corresponding to the signal normalisation in the signal region, is included and free-floating in the fit. The smallest \(p \)-value, assuming the background-only hypothesis, is 0.03, corresponding to 1.87\(\sigma \), in SRB-TT. In this signal region, 67 events are observed compared with 46.7 \(\pm \) 6.7 expected events. The largest deficit in the data is found in SRA-T0 where 11 events are observed compared with 17.3 \(\pm \) 1.7 expected events.

Model-independent upper limits set at 95% CL on the number of beyond the SM (BSM) events in each signal region are derived using the CL\(_{s} \) prescription [135] and neglecting any possible signal contamination in the control regions. Normalising these by the integrated luminosity of the data sample, they are interpreted as upper limits on the visible BSM cross section, \(\sigma_{\text{vis}} \), where \(\sigma_{\text{vis}} \) is defined as the product of the acceptance, reconstruction efficiency and production cross section. The results from the discovery fits are shown in Table 14, with SRA-TT having the lowest upper bound on the visible cross section of new physics phenomena of 0.04 fb.

A profile-likelihood-ratio test is defined in order to set limits on direct pair production of top squarks. A new fit configuration is defined (referred to as an exclusion fit) for each signal region category (SRA–B, SRC or SRD), where the Poisson probability density functions describing the observed and expected numbers of events in all relevant signal region bins are included in the likelihood function, and the signal-strength parameter, defined for positive values, is free-floating in the fit. Signal contamination in the CRs is taken into account. Limits are derived using the CL\(_{s} \) prescription and calculated from asymptotic formulae [136]. The nominal event yield in each set of SRs is set using the background-level estimates obtained from a background-only fit to both the CRs and the SRs to determine the expected limits, while a coloured band that represents the \(\pm 1\sigma \) of the
total uncertainty (σ_{exp}) is also evaluated. The observed event yields and the same background estimates are used to determine the observed limits for each set of SRs (SRA–B, SRC and SRD); these are evaluated for the nominal signal cross sections as well as for ±1σ theory uncertainties in those cross sections, denoted by σ_{theory}.

Figure 13 shows the observed and expected exclusion contours at 95% CL as a function of (a) the \tilde{t}^{0} mass vs the t mass and (b) $\Delta m(\tilde{t}, \tilde{t}^{0})$ vs the t mass. The exclusion contour is obtained by choosing the exclusion fit configuration (SRA–B, SRC or SRD) with the best expected limit for each signal hypothesis. The data included in the SRA–B fit, together with previous limits from the overlay of zero-, one-, and two-lepton channels and other analyses [22–25, 27, 28], exclude top squark masses up to 1250 GeV for \tilde{t}^{0} masses below 200 GeV. Additional constraints are set by the SRC fit in the case where $\Delta m(\tilde{t}, \tilde{t}^{0}) \approx m_t$, for which top squark masses in the range 300–630 GeV are excluded. Some structures in

Table 9	Systematic uncertainties (in percent) greater than 1% for at least one category within SRA and SRB. Uncertainties are expressed relative to the total background estimates. The uncertainties due to the scaling of background events based on data in control regions are indicated for each background component by μ_{ℓ}, $\mu_{\ell Z}$, $\mu_{\ell W}$, and $\mu_{\text{single top}}$. The theory uncertainties quoted for each background include the different distribution shape uncertainties described in the text				
	SRA-TT	SRA-TW	SRA-T0	SRB-TT	SRB-TW
Total syst. unc.	15	12	10	14	9
$t\bar{t}$ theory	2	2	1	11	6
Single-top theory	7	5	4	1	<1
$t\bar{t}Z$ theory	3	<1	<1	<1	<1
Z theory	<1	<1	1	<1	<1
μ_{ℓ}	<1	<1	1	<1	<1
$\mu_{\ell Z}$	6	2	2	4	3
$\mu_{\ell W}$	3	5	5	3	3
μ_{W}	2	3	3	4	4
$\mu_{\text{single top}}$	6	4	5	3	4
JER	7	3	2	6	2
JES	4	4	2	2	<1
b-tagging	5	3	3	2	1
E^{miss} mass term	2	1	1	<1	<1
MC statistics	7	7	5	3	3

Table 10	Systematic uncertainties (in percent) greater than 1% for at least one category within SRC and SRD. Uncertainties are expressed relative to the total background estimates. The uncertainties due to the scaling of background events based on data in control regions are indicated for each background component by μ_{ℓ}, μ_{Z}, and μ_{W}. The theory uncertainties quoted for each background include the different distribution shape uncertainties described in the text				
	SRC1	SRC2	SRC3	SRC4	SRC5
Total syst. unc.	25	18	20	27	27
$t\bar{t}$ theory	20	11	12	16	21
Single-top theory	<1	<1	<1	<1	<1
Z theory	<1	<1	1	2	4
W theory	<1	<1	1	2	3
μ_{ℓ}	12	13	14	14	11
μ_{Z}	<1	<1	<1	<1	<1
μ_{W}	<1	<1	<1	<1	5
JER	5	<1	8	15	7
JES	<1	1	<1	4	6
b-tagging	2	2	2	2	3
Track-jet flavour	<1	<1	<1	<1	<1
Track-jet flavour (low p_T)	<1	<1	<1	<1	7
E^{miss} mass term	<1	<1	<1	3	<1
MC statistics	3	2	3	4	6
Table 11 Observed event yields in SRA and SRB compared with the expected SM background yields in each signal region after the SRA–B background-only fit. The uncertainties include MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties.

<table>
<thead>
<tr>
<th>Observed</th>
<th>SRA-TT</th>
<th>SRA-TW</th>
<th>SRA-T0</th>
<th>SRB-TT</th>
<th>SRB-TW</th>
<th>SRB-T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SM</td>
<td>3.2 ± 0.5</td>
<td>5.6 ± 0.7</td>
<td>17.3 ± 1.7</td>
<td>46 ± 7</td>
<td>81 ± 7</td>
<td>276 ± 24</td>
</tr>
<tr>
<td>Z + jets</td>
<td>1.35 ± 0.28</td>
<td>3.2 ± 0.4</td>
<td>10.5 ± 1.3</td>
<td>15.6 ± 3.3</td>
<td>28.7 ± 3.4</td>
<td>117 ± 14</td>
</tr>
<tr>
<td>Single top</td>
<td>0.50 ± 0.31</td>
<td>0.59 ± 0.29</td>
<td>1.9 ± 0.8</td>
<td>3.5 ± 1.2</td>
<td>7.0 ± 3.0</td>
<td>31 ± 15</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.08 ± 0.07</td>
<td>0.16 ± 0.10</td>
<td>0.4 ± 0.4</td>
<td>10 ± 5</td>
<td>20 ± 6</td>
<td>72 ± 19</td>
</tr>
<tr>
<td>$t\bar{t} + Z$</td>
<td>1.05 ± 0.29</td>
<td>0.74 ± 0.17</td>
<td>1.50 ± 0.34</td>
<td>9.9 ± 1.9</td>
<td>12.5 ± 2.5</td>
<td>22 ± 4</td>
</tr>
<tr>
<td>W + jets</td>
<td>0.16 ± 0.07</td>
<td>0.53 ± 0.20</td>
<td>1.7 ± 0.6</td>
<td>4.9 ± 1.9</td>
<td>8 ± 4</td>
<td>22 ± 9</td>
</tr>
<tr>
<td>Other</td>
<td>0.080 ± 0.020</td>
<td>0.34 ± 0.24</td>
<td>1.32 ± 0.22</td>
<td>2.4 ± 0.4</td>
<td>4.7 ± 2.3</td>
<td>10.4 ± 1.3</td>
</tr>
</tbody>
</table>

Table 12 Observed event yields in SRC compared with expected SM background yields in each signal region after the background-only fit. The uncertainties include MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties.

<table>
<thead>
<tr>
<th>Observed</th>
<th>SRC1</th>
<th>SRC2</th>
<th>SRC3</th>
<th>SRC4</th>
<th>SRC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SM</td>
<td>46 ± 12</td>
<td>52 ± 9</td>
<td>32 ± 7</td>
<td>11.8 ± 3.1</td>
<td>2.5 ± 0.7</td>
</tr>
<tr>
<td>Z + jets</td>
<td>1.2 ± 0.5</td>
<td>1.4 ± 0.8</td>
<td>1.2 ± 0.5</td>
<td>0.67 ± 0.32</td>
<td>0.24 ± 0.12</td>
</tr>
<tr>
<td>Single top</td>
<td>0.90 ± 0.34</td>
<td>2.7 ± 0.6</td>
<td>1.1 ± 0.7</td>
<td>0.61 ± 0.33</td>
<td>0.25 ± 0.05</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>32 ± 11</td>
<td>40 ± 9</td>
<td>26 ± 6</td>
<td>9.5 ± 2.7</td>
<td>1.7 ± 0.6</td>
</tr>
<tr>
<td>$t\bar{t} + Z$</td>
<td>0.74 ± 0.32</td>
<td>0.50 ± 0.31</td>
<td>0.24 ± 0.12</td>
<td>0.09 ± 0.09</td>
<td>0.010 ± 0.010</td>
</tr>
<tr>
<td>W + jets</td>
<td>1.3 ± 0.6</td>
<td>1.7 ± 0.6</td>
<td>1.5 ± 0.7</td>
<td>0.4 ± 0.4</td>
<td>0.23 ± 0.09</td>
</tr>
<tr>
<td>Other</td>
<td>9.7 ± 2.9</td>
<td>5.6 ± 1.5</td>
<td>1.8 ± 0.5</td>
<td>0.51 ± 0.10</td>
<td>0.086 ± 0.019 ± 0.08</td>
</tr>
</tbody>
</table>

Table 13 Observed and expected yields after the background-only fit, for SRD. The uncertainties include MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties.

<table>
<thead>
<tr>
<th>Observed</th>
<th>SRD0</th>
<th>SRD1</th>
<th>SRD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SM</td>
<td>6.9 ± 1.3</td>
<td>3.1 ± 1.0</td>
<td>12.2 ± 1.5</td>
</tr>
<tr>
<td>Z + jets</td>
<td>4.2 ± 0.8</td>
<td>1.07 ± 0.25</td>
<td>3.5 ± 0.6</td>
</tr>
<tr>
<td>Single top</td>
<td>0.020 ± 0.030 +0.020 -0.010</td>
<td>0.10 ± 0.16 +0.09 -0.10</td>
<td>0.84 ± 0.31</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.36 ± 0.29</td>
<td>0.56 ± 0.31</td>
<td>5.1 ± 1.0</td>
</tr>
<tr>
<td>$t\bar{t} + Z$</td>
<td>0.02 ± 0.04 +0.020 -0.010</td>
<td>0.100 ± 0.010</td>
<td>< 0.01</td>
</tr>
<tr>
<td>W + jets</td>
<td>1.9 ± 0.6</td>
<td>0.9 ± 0.6</td>
<td>2.0 ± 0.7</td>
</tr>
<tr>
<td>Other</td>
<td>0.44 ± 0.13</td>
<td>0.45 ± 0.21</td>
<td>0.76 ± 0.20</td>
</tr>
</tbody>
</table>

The expected exclusion contour are observed in this region and were traced back to the fixed R_{SR}-binning adopted in SRC. Since the binning of R_{SR} is fixed and does not depend on the signal considered, for some signals the peak is located at the boundary between two bins and therefore leads to a global lower signal over background ratio across all SRC bins. Finally, limits are set by the SRD fit in the case where $m_{\tilde{t}} - m_{\tilde{\chi}_1^0} < m_W + m_b$ (with $\Delta m(\tilde{t}, \tilde{\chi}_1^0) \geq 5$ GeV), for which top squark masses in the range 300–660 GeV are excluded. The sharp structure in the middle of Fig.13b is an artifact of stitching together the exclusion contours of SRC and SRD. Signals with $\Delta m(\tilde{t}, \tilde{\chi}_1^0) = 5$ GeV, which is the smallest $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$ value considered, are excluded for $m_{\tilde{t}} < 490$ GeV. This is the first time that an ATLAS all-hadronic search reaches exclusion sensitivity in the four-body region. This is due to the newly introduced and dedicated SRD, which takes advantage of track-jet b-tagging to discriminate between signal and background. The exclusion limits shown in Fig.13 are derived for unpolarpised top squarks. The exclusion limit stays within ±25 GeV of top squark mass when varying the top squark polarisation, which is within the σ_{SUSY} uncertainty band; hadronic final states are less sensitive to polarisation effects than final states with one or more leptons.

6 The polarisation of the top squarks refers to the fraction of right-handed vs left-handed components in the $t\bar{t}$ mass eigenstate.
Fig. 12 Distributions of a S in SRA-TW, b $m_{\tilde{t}}^{R=1.2}$ in SRB-TT, c R_{ISR} in SRC, and d-f E_{T}^{miss}/\sqrt{HT} in SRD0–2 after the SRA–B, SRC and SRD background-only likelihood fits. The stacked histograms show the SM prediction and the hatched uncertainty band around the SM prediction shows the total uncertainty, which includes the MC statistical uncertainties, detector-related systematic uncertainties, and theoretical uncertainties. The data (points) are overlaid. For each variable, the distribution for a representative signal hypothesis is overlaid as a dashed line. The rightmost bin includes overflow events.

The SRA–B exclusion fit was repeated considering the analysis sensitivity to the production of up-type, third-generation scalar leptoquarks. The results are shown in Fig. 14a as a function of the leptoquark branching ratio to charged leptons, $\mathcal{B}(LQu_{3}\rightarrow b\tau)$ in this scenario, vs the leptoquark mass. For $\mathcal{B}(LQu_{3}\rightarrow b\tau) = 0$, where the lepto-
yields are less than the total cases where the observed data and the significance \(Z \). In the difference in exclusion reach at excluded up to a mass of 1240 GeV as shown in Fig. 14b. quarks decay into \(t\nu \) 100% of the time, leptoquarks are excluded up to a mass of 1240 GeV as shown in Fig. 14b. The difference in exclusion reach at \(B(\text{LQ}^0 \rightarrow b\tau) = 0 \) between the leptoquark and top squark interpretations comes from the fact that top squark samples were produced at LO in QCD while the leptoquark samples were produced at NLO, which changes the kinematics slightly. This difference, however, is covered by the signal acceptance uncertainty (12% in SRA–B).

Table 14

<table>
<thead>
<tr>
<th>Signal Region</th>
<th>(\langle \sigma \rho \rangle^\text{95%}) [fb]</th>
<th>(\sigma^\text{95%})</th>
<th>(S^\text{95%})</th>
<th>CL-B</th>
<th>(p(\tau = 0)) (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRA-TT</td>
<td>0.04</td>
<td>6.0</td>
<td>5.2^{+2.7}_{-1.7}</td>
<td>0.63</td>
<td>0.34 (0.40)</td>
</tr>
<tr>
<td>SRA-TW</td>
<td>0.06</td>
<td>8.6</td>
<td>6.5^{+3.2}_{-1.6}</td>
<td>0.78</td>
<td>0.18 (0.92)</td>
</tr>
<tr>
<td>SRA-T0</td>
<td>0.05</td>
<td>6.4</td>
<td>10^{+5}_{-3}</td>
<td>0.11</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRA-TT-Disc</td>
<td>0.06</td>
<td>8.4</td>
<td>9^{+4}_{-2}</td>
<td>0.39</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRB-TT</td>
<td>0.28</td>
<td>38.5</td>
<td>22^{+9}_{-4}</td>
<td>0.95</td>
<td>0.03 (1.87)</td>
</tr>
<tr>
<td>SRB-TW</td>
<td>0.21</td>
<td>28.6</td>
<td>27^{+10}_{-7}</td>
<td>0.57</td>
<td>0.42 (0.19)</td>
</tr>
<tr>
<td>SRB-T0</td>
<td>0.51</td>
<td>71.1</td>
<td>60^{+15}_{-16}</td>
<td>0.69</td>
<td>0.30 (0.53)</td>
</tr>
<tr>
<td>SRC1</td>
<td>0.19</td>
<td>26.0</td>
<td>22^{+4}_{-9}</td>
<td>0.75</td>
<td>0.49 (0.01)</td>
</tr>
<tr>
<td>SRC2</td>
<td>0.24</td>
<td>32.8</td>
<td>27^{+10}_{-7}</td>
<td>0.76</td>
<td>0.22 (0.77)</td>
</tr>
<tr>
<td>SRC3</td>
<td>0.17</td>
<td>24.0</td>
<td>20^{+7}_{-5}</td>
<td>0.76</td>
<td>0.23 (0.75)</td>
</tr>
<tr>
<td>SRC4</td>
<td>0.06</td>
<td>8.0</td>
<td>9^{+4}_{-2}</td>
<td>0.29</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRC5</td>
<td>0.05</td>
<td>6.6</td>
<td>5.0^{+2.8}_{-1.2}</td>
<td>0.73</td>
<td>0.22 (0.78)</td>
</tr>
<tr>
<td>SRC-Disc</td>
<td>0.11</td>
<td>15.4</td>
<td>15^{+6}_{-4}</td>
<td>0.53</td>
<td>0.49 (0.02)</td>
</tr>
<tr>
<td>SRD0</td>
<td>0.04</td>
<td>5.4</td>
<td>6.8^{+3.3}_{-2.1}</td>
<td>0.28</td>
<td>0.50 (0.00)</td>
</tr>
<tr>
<td>SRD1</td>
<td>0.04</td>
<td>6.2</td>
<td>5.5^{+2.7}_{-1.8}</td>
<td>0.63</td>
<td>0.34 (0.40)</td>
</tr>
<tr>
<td>SRD2</td>
<td>0.05</td>
<td>6.9</td>
<td>8^{+4}_{-2}</td>
<td>0.28</td>
<td>0.50 (0.00)</td>
</tr>
</tbody>
</table>

Fig. 13 Observed (red solid line) and expected (black dashed line) exclusion contours at 95% CL as a function of the a \(\tilde{t} \tilde{b} \) vs \(\tilde{t} \) masses and b \(\Delta m(\tilde{t}, \tilde{b}) \) vs \(\tilde{t} \) mass. Masses that are within the contours are excluded. Uncertainty bands corresponding to the \(\pm 1\sigma \) variation of the expected limit (yellow band) and the sensitivity of the observed limit to \(\pm 1\sigma \) variations of the signal total cross section (red dotted lines) are also indicated. Observed limits from previous ATLAS searches [22–25,27,28] based on 36.1 fb\(^{-1} \) of \(pp \) collision data are provided for comparison in grey.

9 Conclusions

Results from a search for a scalar partner of the top quark based on an integrated luminosity of 139 fb\(^{-1} \) of \(\sqrt{s} = 13 \) TeV proton–proton collision data recorded by the ATLAS experiment at the LHC from 2015 to 2018 are presented. Final states with high-p\(_T\) jets, large missing transverse momentum, and no electrons or muons are selected. The sensitivity of the search is enhanced by the analysis of the full LHC Run 2 dataset, improvements achieved in the detector...
performance by the end of the LHC Run 2, and new analysis techniques such as the use of b-tagged track-jets, which extend sensitivity to all-hadronic four-body decays.

Direct top squark pair production is considered, assuming both top squarks decay via $\tilde{t} \rightarrow t^{(*)} \tilde{\chi}_1^0$, and considering a large range of mass differences between the top squark and the neutralino. In particular, fully hadronic final states are used for the first time in an ATLAS analysis to set limits on the scenario where both the top squarks and W bosons originating from their decays are off-shell, $\Delta m(\tilde{t}, \tilde{\chi}_1^0) < m_W + m_b$, due to improvements in the identification efficiency of low-transverse-momentum b-hadrons. The results are also reinterpreted in the context of third-generation, up-type scalar leptoquark pair production, restricted to the scenario where the leptoquarks decay into $t\nu$ or bt final states.

No significant excess above the expected SM background is observed. Exclusion limits at 95% confidence level are derived as a function of $m_\tilde{t}$ and $m_{\tilde{\chi}_1^0}$, resulting in the exclusion of top squark masses that extend up to 1.25 TeV for $\tilde{\chi}_1^0$ masses below 200 GeV. In the case where $m_\tilde{t} \sim m_t + m_{\tilde{\chi}_1^0}$, top squark masses in the range 300–630 GeV are excluded, while in the scenario where $m_\tilde{t} < m_W + m_b + m_{\tilde{\chi}_1^0}$ (with $\Delta m(\tilde{t}, \tilde{\chi}_1^0) \geq 5$ GeV), top squark masses in the range 300–660 GeV are excluded. Exclusion limits for up-type, third-generation scalar leptoquarks are extended to masses below 1240 GeV, assuming the leptoquarks can decay only via $t\nu$. Model-independent limits and p-values for each signal region are also reported, with 0.04 fb as the lowest upper bound on the visible cross section of new physics phenomena.

Fig. 14 Observed (red solid line) and expected (black dashed line) limits on up-type, third-generation leptoquarks. a Limits as a function of the branching ratio of leptoquarks decaying into bt (with the only other decay allowed being into $t\nu$) vs leptoquark mass. b Limits on the production cross section at 95% CL as a function of leptoquark mass assuming that all leptoquarks decay into $t\nu$. Uncertainty bands corresponding to the $\pm 1\sigma$ variation of the expected limit (yellow band) and the sensitivity of the observed limit are also indicated. Observed limits from previous searches with the ATLAS detector at $\sqrt{s} = 13$ TeV [44] are overlaid in grey and as a blue dashed line.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STScI, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; CNRS/IN2P3 and CEA/DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; MNCR, Morocco; NWO, Netherlands; RCN, Norway; NMIW and NCN, Poland; FCT, Portugal; MINEFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SFI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sklodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), AGS (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [137].

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: “All ATLAS scientific output is published in journals, and preliminary results are made
available in Conference Notes. All are openly available, without restriction on use by external parties beyond copyright law and the standard conditions agreed by CERN. Data associated with journal publications are also made available: tables and data from plots (e.g. cross section values, likelihood profiles, selection efficiencies, cross section limits, ...) are stored in appropriate repositories such as HEPDATA (http://hepdata.cedar.ac.uk/). ATLAS also strives to make additional material related to the paper available that allows a reinterpretation of the data in the context of new theoretical models. For example, an extended encapsulation of the analysis is often provided for measurements in the framework of RIVET (http://rivet.hepforge.org/).” This information is taken from the ATLAS Data Access Policy, which is a public document that can be downloaded from http://opendata.cern.ch/pid/413 [opendata.cern.ch].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP³.

References

ATLAS Collaboration

G. Aad102, B. Abbott128, D. C. Abbott103, A. Abdel Adum36, K. Abeling53, D. K. Abhayasinghe94, S. H. Abidi166, O. S. AbouZeid40, N. L. Abraham155, H. Abramowicz160, H. Abreu159, Y. Abulaiti40, B. S. Acharya67a,67b, B. Achkar53, L. Adam100, C. Adam Bourdarios5, L. Adamczyk84a, L. Adamek166, T. Addeen11, H. Bachacou144, N. Aranzabal Barrio36, L. Asquith155, T. P. A. Åkesson97, T. Asawatavonvanich164, N. Asbah59, V. Andrei61a, C. R. Anelli175, S. Angelidakis9, M. Alhroob128, M. Bandieramonte138, S. Adorni54, T. Adye143, M. Aoki82, S. Balaji156, D. C. Abbott103, A. Abed Abud36, A. Aloisio70a,70b, C. Allaire36, O. Arnaez166, E. Antipov129, E. M. Baldin122a,122b, A. Angerami39, F. Ardhu89, J.-F. Arguin110, V. A. Austrup181, G. Avolio36, S. Ali157, L. Adamek166, M. Adersberger114, A. Adiguzel12c, B. W. Allen131, C. S. Amrouche54, G. L. Alberghi23a,23b, F. Alonso89, W. S. Ahmed104, X. Ai159, T. Alexopoulos10, A. Alfonsi120, M. N. Agarwa38, A. Aggarwal119, C. Agheorghiesei27c, J. A. Aguilar-Saavedra139a,139f,ac, A. Ahmad36, F. Ahmadov80, W. S. Ahmed104, X. Ai159, G. Aielli74a,74b, S. Akatsuka86, Y. Afi k54, E. Akilli54, A. V. Akimov111, K. Al Khoury65, G. L. Alberghi23a,23b, J. Albert175, M. J. Alconada Verzini160, S. Alderweireldt36, M. Aleksands36, I. N. Aleksandrov80, C. Alexea27b, T. Alexopoulos10, A. Alfonso123a,23b, M. Alhroob128, B. Ali141, S. Ali157, M. Aliev165, G. Alimonti69a, C. Allaria36, B. M. M. Allbrooke155, B. W. Allen31, P. P. Allport21, A. Aloisio70a,70b, F. Alonso89, C. Alpigiani147, E. Alunno Camelia74a,74b, M. Alvarez Estevez89, M. G. Alviggi70a,70b, Y. Amalric166, A. Amblier104, L. Ambroz134, C. Amelung20, D. Amidei106, S. P. Amor Dos Santos39, S. Amoroso46, C. S. Amrouche53, F. An79, C. Anastopoulos148, N. Andari144, T. Andeen11, J. C. Andre20, S. Y. Andreazza69a,69b, V. Andrei61a, C. R. Anelli175, S. Angelidakis9, A. Angerami39, A. V. Anisenkov122a,122h, A. Annovi72a, C. Ander54, M. T. Anthony148, E. Antipov129, M. Antonelli51, D. J. A. Antrim170, F. Anulli73a, M. Aoki85, J. A. Aparisi Pozo173, M. A. Aparco155, L. Apero27b, N. Aranzabal Barrio36, V. Araujo Ferraz81a, F. Arasaki81, R. Araujo Pereira81b, M. A. Arce40, F. A. Ardhu89, J.-F. Arguin110, S. Argyropoulos52, J.-H. Arling46, J. A. Armbruster36, A. Armstrong170, O. Arnaez160, H. Arnold120, Z. P. Arrubla114, G. Artoni134, K. Asai126, S. Asai162, T. Asawatavonvanich164, N. Asbach59, E. M. Asimakopoulou171, L. Asquith155, J. Assadsah59d, K. Assamagan29, R. Astalos28a, R. J. Atkin33a, M. Atkinson172, N. B. Atlay19, J. H. Atkinson172, A. T. Arce40, V. A. Austrup181, G. Avolio36, M. K. Ayoub15a, G. Azuelos110, H. Bachacou146, K. Bachas160, M. Backes134, F. Backman45a,45b, P. Bagnaia73a,73b, M. Bahmani85, H. Bahrami151, A. J. Bailey173, V. R. Bailey172, J. T. Barnes143, C. Bakalis10, O. K. Baker182, P. J. Bakker12c, E. Bakos16a, D. Bakshi Gupta16a, S. Balaji156, E. M. Baldwin122a,122h, P. Balek179, F. Balli144, W. K. Balunas134, J. Balz100, E. Banas85, M. Bandieramonte138, A. Bandyopadhyay24, Sw. Banerjee180a.

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, USA
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a)Department of Physics, Ankara University, Ankara, Turkey; (b)Istanbul Aydin University, Istanbul, Turkey; (c)Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
7 Department of Physics, University of Arizona, Tucson, AZ, USA
8 Department of Physics, University of Texas at Arlington, Arlington, TX, USA
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, University of Texas at Austin, Austin, TX, USA
12 (a)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (b)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (c)Department of Physics, Bogazici University, Istanbul, Turkey; (d)Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Physics Department, Tsinghua University, Beijing, China; (c)Department of Physics, Nanjing University, Nanjing, China; (d)University of Chinese Academy of Science (UCAS), Beijing, China
16 Institute of Physics, University of Belgrade, Belgrade, Serbia
17 Department for Physics and Technology, University of Bergen, Bergen, Norway
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
19 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
21 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
22 (a)Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, Colombia; (b)Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
23 (a)Dipartimento di Fisica, INFN Bologna and Universita’ di Bologna, Bologna, Italy; (b)INFN Sezione di Bologna, Bologna, Italy
24 Physikalisches Institut, Universität Bonn, Bonn, Germany
25 Department of Physics, Boston University, Boston, MA, USA
26 Department of Physics, Brandeis University, Waltham, MA, USA
27 (a)Transilvania University of Brasov, Brasov, Romania; (b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania; (d)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania; (e)University Politehnica Bucharest, Bucharest, Romania; (f)West University in Timisoara, Timisoara, Romania
28 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31 California State University, Long Beach, CA, USA
32 Cavendish Laboratory, University of Cambridge, Cambridge, UK
INFN Sezione di Pavia, Pavia, Italy; Dipartimento di Fisica, Università di Pavia, Pavia, Italy

INFN Sezione di Pisa, Pisa, Italy; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

INFN Sezione di Roma, Roma, Italy; Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata, Roma, Italy; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Roma, Italy; Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

INFN-TIFPA, Trento, Italy; Università degli Studi di Trento, Trento, Italy

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, IA, USA

Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Joint Institute for Nuclear Research, Dubna, Russia

Departmento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil; Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, UK

Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, UK

Department of Physics, Royal Holloway University of London, Egham, UK

Department of Physics and Astronomy, University College London, London, UK

Louisiana Tech University, Ruston, LA, USA

Fysiska institutionen, Lunds universitet, Lund, Sweden

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, UK

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, MA, USA

Department of Physics, McGill University, Montreal, QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, University of Michigan, Ann Arbor, MI, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus

Group of Particle Physics, University of Montreal, Montreal, QC, Canada

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb, IL, USA
(a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia; (b) Novosibirsk State University
Novosibirsk, Novosibirsk, Russia
Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia
Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”, Moscow, Russia
Department of Physics, New York University, New York, NY, USA
Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
Ohio State University, Columbus, OH, USA
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
Department of Physics, Oklahoma State University, Stillwater, OK, USA
Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
Institute for Fundamental Science, University of Oregon, Eugene, OR, USA
Graduate School of Science, Osaka University, Osaka, Japan
Ohio State University, Columbus, OH, USA
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
(a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; (c) Departamento de Física, Universidade de Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal; (e) Departamento de Física, Universidade do Minho, Braga, Portugal; (f) Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain; (g) Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; (h) Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Universidad Andres Bello, Departamento de Física, Santiago, Chile; (c) Instituto de Alta Investigación, Universidad de Tarapacá, Santiago, Chile; (d) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
Department of Physics, University of Washington, Seattle, WA, USA
Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
Department of Physics, Shinshu University, Nagano, Japan
Department Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby, BC, Canada
SLAC National Accelerator Laboratory, Stanford, CA, USA
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
Department of Physics and Astronomy, University of Sussex, Brighton, UK
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Tomsk State University, Tomsk, Russia

Department of Physics, University of Toronto, Toronto, ON, Canada

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, MA, USA

Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Department of Physics, University of Illinois, Urbana, IL, USA

Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver, BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

Department of Physics, University of Warwick, Coventry, UK

Waseda University, Tokyo, Japan

Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, WI, USA

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, CT, USA

a Also at Borough of Manhattan Community College, City University of New York, New York NY, USA

b Also at Centro Studi e Ricerche Enrico Fermi, Italy

c Also at CERN, Geneva, Switzerland

d Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

e Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland

f Also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain

g Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece

h Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, USA

i Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA

j Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel

k Also at Department of Physics, California State University, East Bay, USA

l Also at Department of Physics, California State University, Fresno, USA

m Also at Department of Physics, California State University, Sacramento, USA

n Also at Department of Physics, King’s College London, London, UK

o Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia

p Also at Department of Physics, University of Fribourg, Fribourg, Switzerland

q Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy

r Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

s Also at Graduate School of Science, Osaka University, Osaka, Japan

i Also at Hellenic Open University, Patras, Greece

u Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France

v Also at Institucio Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain

w Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

x Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

y Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at Institute of Particle Physics (IPP), Vancouver, Canada

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Also at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain

Also at Joint Institute for Nuclear Research, Dubna, Russia

Also at Louisiana Tech University, Ruston LA, USA

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia

Also at National Research Nuclear University MEPhI, Moscow, Russia

Also at Physics Department, An-Najah National University, Nablus, Palestine

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

Also at The City College of New York, New York NY, USA

Also at TRIUMF, Vancouver BC, Canada

Also at Università di Napoli Parthenope, Napoli, Italy

Also at University of Chinese Academy of Sciences (UCAS), Beijing, China

* Deceased