
https://dare.uva.nl/personal/pure/en/publications/dynamical-systems-via-domains(3ed85773-991f-43c5-8b83-96c13e56b275).html




Dynamical Systems via Domains

Toward a Uni�ed Foundation of
Symbolic and Non-symbolic

Computation



ILLC Dissertation Series DS-2021-10

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage:http://www.illc.uva.nl/

Copyright © 2021 by Levin Hornischer

Cover woodcut and photo by Monika Schaber
Printed and bound by GVO drukkers & vormgevers B.V.

ISBN: 978-94-6332-789-3



Dynamical Systems via Domains

Toward a Uni�ed Foundation of
Symbolic and Non-symbolic

Computation

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magni�cus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel
op woensdag 13 oktober 2021, te 10.00 uur

door

Levin Adrian Hornischer

geboren te Filderstadt



Promotiecommissie

Promotores: prof. dr. M. van Lambalgen Universiteit van Amsterdam
prof. dr. F. Berto Universiteit van Amsterdam

Overige leden: prof. dr. J.F.A.K. van Benthem Universiteit van Amsterdam
prof. dr. S.J.L. Smets Universiteit van Amsterdam
prof. dr. A. Betti Universiteit van Amsterdam
prof. dr. S. Abramsky University of Oxford
prof. dr. H. Leitgeb Ludwig-Maximilians-Universit•at

M•unchen
dr. L. Incurvati Universiteit van Amsterdam

Faculteit der Geesteswetenschappen



The research for this doctoral thesis received �nancial assistance from the
Netherlands Organisation for Scienti�c Research(NWO) as part of the research

programmePhDs in the Humanities, project number 322-20-017.





F•ur Moni, Winni und Jele





Contents

Acknowledgments xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Part One: Symbolic computation

2 Trajectory domains 1: Construction 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Labeled transition systems . . . . . . . . . . . . . . . . . . 18
2.2.2 Domain and order theory . . . . . . . . . . . . . . . . . . . 19

2.3 Two guiding examples . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Observing a black box system . . . . . . . . . . . . . . . . 20
2.3.2 Concurrent computation . . . . . . . . . . . . . . . . . . . 28
2.3.3 Summary and outlook . . . . . . . . . . . . . . . . . . . . 32

2.4 Pre-behavioral transition systems . . . . . . . . . . . . . . . . . . 33
2.4.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 Example constructions . . . . . . . . . . . . . . . . . . . . 36

2.5 Information containment of behaviors . . . . . . . . . . . . . . . . 38
2.5.1 Three de�nitions of information containment . . . . . . . . . 38
2.5.2 . . . and how they are united . . . . . . . . . . . . . . . . . 40

2.6 The characterization theorem . . . . . . . . . . . . . . . . . . . . 42
2.6.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Behavioral transition systems . . . . . . . . . . . . . . . . . . . . 49

ix



2.7.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7.2 Simplifying assumptions . . . . . . . . . . . . . . . . . . . 50
2.7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8 Trajectory domains . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.9 Generalizations of information systems . . . . . . . . . . . . . . . 57

2.9.1 Scott information systems . . . . . . . . . . . . . . . . . . . 57
2.9.2 . . . and their generalizations as BTSs . . . . . . . . . . . . 59

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Trajectory domains 2: Category 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Category of labeled transition systems . . . . . . . . . . . 71
3.2.2 Domain theory . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.3 Category theory . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.4 Recap from the previous chapter . . . . . . . . . . . . . . 76

3.3 Category of behavioral transition systems . . . . . . . . . . . . . . 78
3.3.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.3 Embedding labeled transition systems . . . . . . . . . . . . 82
3.3.4 Removing non-approximable behavior . . . . . . . . . . . . 83

3.4 Trajectory domain functor . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Adjunction between systems and domains . . . . . . . . . . . . . 87

3.5.1 Extensionalizing . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5.2 Unlabeling and re
exing . . . . . . . . . . . . . . . . . . . 91
3.5.3 Adjunction to domains . . . . . . . . . . . . . . . . . . . . 93

3.6 Toward incorporating labels on domains . . . . . . . . . . . . . . 97
3.6.1 Marked domains . . . . . . . . . . . . . . . . . . . . . . . 98
3.6.2 An interpretation of relevance logic . . . . . . . . . . . . . 100

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Part Two: Non-symbolic computation

4 Systems and domains 1: Model 109
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2.1 Domain theory . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.2 Dynamical and topological systems . . . . . . . . . . . . . 123

4.3 Observing dynamical systems . . . . . . . . . . . . . . . . . . . . 127
4.3.1 Basis or `set of possible observations' . . . . . . . . . . . . 127
4.3.2 The index set or `set of observation parameters' . . . . . . 128
4.3.3 Observed system . . . . . . . . . . . . . . . . . . . . . . . 129

x



4.3.4 Re�ning observations . . . . . . . . . . . . . . . . . . . . . 131
4.3.5 Observation probabilities . . . . . . . . . . . . . . . . . . . 132
4.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4 Dynamical domains . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.4.1 Dynamical dcpo's . . . . . . . . . . . . . . . . . . . . . . . 140
4.4.2 Dynamical expanding systems . . . . . . . . . . . . . . . . 144
4.4.3 The limit theorem . . . . . . . . . . . . . . . . . . . . . . 147
4.4.4 De�nition of dynamical domains . . . . . . . . . . . . . . . 160

4.5 The system modeled by a dynamical domain . . . . . . . . . . . . 160
4.6 Dynamical domain models for systems . . . . . . . . . . . . . . . 162

4.6.1 For dynamical systems . . . . . . . . . . . . . . . . . . . . 162
4.6.2 For topological systems . . . . . . . . . . . . . . . . . . . . 167

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5 Systems and domains 2: Category 173
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.2 The categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.2.2 Categories of dynamical systems . . . . . . . . . . . . . . . 182
5.2.3 Categories of measured topological systems . . . . . . . . . 186
5.2.4 Categories of dynamical domains . . . . . . . . . . . . . . 188
5.2.5 Recap from chapter 4 . . . . . . . . . . . . . . . . . . . . . 193
5.2.6 Categories of based measured topological systems . . . . . 196
5.2.7 Categories of max-re
ective dynamical domains . . . . . . 198

5.3 The bottom layer of the main diagram . . . . . . . . . . . . . . . 201
5.3.1 Dynamical systems as category of fractions . . . . . . . . . 201
5.3.2 Compacti�cation of a system: informally . . . . . . . . . . 202
5.3.3 Compacti�cation of a system: formally . . . . . . . . . . . 205

5.4 The system and domain functors . . . . . . . . . . . . . . . . . . 214
5.4.1 The system functor . . . . . . . . . . . . . . . . . . . . . . 215
5.4.2 The domain functor . . . . . . . . . . . . . . . . . . . . . . 216
5.4.3 Computational and logical compacti�cation coincide . . . . 223

5.5 The systems-domains adjunction . . . . . . . . . . . . . . . . . . 227
5.5.1 The counit and unit . . . . . . . . . . . . . . . . . . . . . 228
5.5.2 Triangle identities . . . . . . . . . . . . . . . . . . . . . . . 232

5.6 Analyzing the systems-domains adjunction . . . . . . . . . . . . . 234
5.6.1 Restricting to equivalence . . . . . . . . . . . . . . . . . . 234
5.6.2 Max-re
ecting a dynamical domain . . . . . . . . . . . . . 237

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

xi



6 Systems and domains 3: Application 243
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.2.1 Recap dynamical systems and dynamical domains . . . . . 244
6.2.2 Metric entropy . . . . . . . . . . . . . . . . . . . . . . . . 245
6.2.3 Topological entropy . . . . . . . . . . . . . . . . . . . . . . 246

6.3 Domain-entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.3.1 De�nition of domain-entropy . . . . . . . . . . . . . . . . . 247
6.3.2 Main theorem on domain-entropy . . . . . . . . . . . . . . 249
6.3.3 Normal form for domain-entropy . . . . . . . . . . . . . . 252

6.4 Max-entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.4.1 De�nition of max-entropy . . . . . . . . . . . . . . . . . . 258
6.4.2 Main theorem on max-entropy . . . . . . . . . . . . . . . . 259

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Part Three: Stability

7 Interlude: symbolic vs. non-symbolic 267
7.1 Non-symbolic computation as limit of symbolic computation . . . 267
7.2 Non-symbolic realization of symbolic computation . . . . . . . . . 269

7.2.1 Symbolic approximation . . . . . . . . . . . . . . . . . . . 270
7.2.2 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.2.3 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.2.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8 Stability: Fitch's paradox and AI-safety 283
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.2 Examples of stability . . . . . . . . . . . . . . . . . . . . . . . . . 287

8.2.1 Veri�ability and falsi�ability (observation) . . . . . . . . . 287
8.2.2 Safety (epistemology) . . . . . . . . . . . . . . . . . . . . . 289
8.2.3 Safety (arti�cial intelligence) . . . . . . . . . . . . . . . . . 290
8.2.4 Stability of belief (probabilistic reasoning) . . . . . . . . . 292
8.2.5 Signi�cance (mathematical modeling) . . . . . . . . . . . . 293
8.2.6 Further examples . . . . . . . . . . . . . . . . . . . . . . . 295

8.3 Four principles of stability . . . . . . . . . . . . . . . . . . . . . . 296
8.3.1 A logic to reason about stability . . . . . . . . . . . . . . . 296
8.3.2 Formalization and motivation of the principles . . . . . . . 301
8.3.3 The duality between falsi�cation and veri�cation . . . . . 305
8.3.4 Constructing sets of questions . . . . . . . . . . . . . . . . 306

8.4 Impossibility via a novel interpretation of Fitch's paradox . . . . . 307
8.4.1 Reinterpretation of Fitch's paradox . . . . . . . . . . . . . 307
8.4.2 Impossibility . . . . . . . . . . . . . . . . . . . . . . . . . 308

xii



8.5 Impossibility via semantics . . . . . . . . . . . . . . . . . . . . . . 310
8.5.1 Kripke semantics . . . . . . . . . . . . . . . . . . . . . . . 310
8.5.2 Topological semantics . . . . . . . . . . . . . . . . . . . . . 312

8.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
8.6.1 An extension of Fitch's paradox . . . . . . . . . . . . . . . 315
8.6.2 A limitation for AI-safety . . . . . . . . . . . . . . . . . . 319

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

9 Conclusion 327

A Systems as a category of fractions 331
A.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . 331
A.2 Topological realizations of systems . . . . . . . . . . . . . . . . . 335
A.3 The key lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
A.4 Calculus of fractions . . . . . . . . . . . . . . . . . . . . . . . . . 343
A.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

B Dynamical domain example 349
B.1 A dynamical domain of binary sequences . . . . . . . . . . . . . . 349
B.2 More facts about the dynamical domain . . . . . . . . . . . . . . 355
B.3 Words on the components . . . . . . . . . . . . . . . . . . . . . . 356
B.4 Computing max-entropy . . . . . . . . . . . . . . . . . . . . . . . 360

Bibliography 363

Index 385

List of symbols 389

Samenvatting 393

Summary 395

xiii





List of Figures

1.1 An operational semantics for the bubble sort algorithm . . . . . . 3
1.2 Computation as dynamical systems . . . . . . . . . . . . . . . . . 6

2.1 The North-South map . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 The trajectory domain of the North-South map . . . . . . . . . . 28
2.3 The independence diamond . . . . . . . . . . . . . . . . . . . . . 29

3.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 The main diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.2 (Non-) examples of max-re
ective �nite Scott domains . . . . . . 199
5.3 The compacti�cation functor . . . . . . . . . . . . . . . . . . . . . 210
5.4 Notational conventions of this subsection . . . . . . . . . . . . . . 216
5.5 Proof of naturality . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.6 Overview of the results . . . . . . . . . . . . . . . . . . . . . . . . 239

7.1 Non-symbolic computation as limit of symbolic computation . . . 268
7.2 The predator-prey dynamics . . . . . . . . . . . . . . . . . . . . . 271
7.3 A converging system . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.1 The four principles and their duals . . . . . . . . . . . . . . . . . 302

A.1 Calculus of fractions . . . . . . . . . . . . . . . . . . . . . . . . . 332
A.2 Equivalence of spans . . . . . . . . . . . . . . . . . . . . . . . . . 333
A.3 Composition of spans . . . . . . . . . . . . . . . . . . . . . . . . . 333
A.4 Inverses of morphisms in the localization . . . . . . . . . . . . . . 334
A.5 Visualization of lemma A.3.1 . . . . . . . . . . . . . . . . . . . . . 339

B.1 Example of word realization . . . . . . . . . . . . . . . . . . . . . 357

xv





Publications

All chapters of the thesis are single-authored and have not been published previ-
ously (at the time of submission). Papers that aren't part of this thesis but have
been published within this PhD project are the following:

ˆ L. Hornischer (2019). \Toward a Logic for Neural Networks". In: The
Logica Yearbook 2018. Ed. by I. Sedl�ar and M. Blicha. London: College
Publications, pp. 133{148

This is an early exploration of the guiding idea of the thesis: using domain
theory to develop a semantics also for non-symbolic computation including
neural networks. Some of the ideas eventually lead to chapter 2 (though the
chapter itself is quite di�erent) and to the last paper below.

ˆ L. Hornischer (2020). \Logics of Synonymy". In:Journal of Philosophical
Logic 49, pp. 767{805

This investigates the notion of synonymy (or content identity or strong
equivalence). It axiomatizes various notions of synonymy and characterizes
them as good benchmarks. This paper is cited in chapter 2 when asking
whether the generalization of Scott information systems presented there can
be seen as moving to a stronger underlying notion of equivalence.

ˆ L. Hornischer (2021). \The Logic of Information in State Spaces". In:The
Review of Symbolic Logic14.1, pp. 155{186

This uses domain theory to describe the information contained in state
spaces (dynamical systems, possible worlds, etc.). This provides a semantics
to the logic hype and is applied to study information fusion. This paper is
cited in chapter 8 as a potential tool to further study the notion of `state
space stability' discussed in that chapter.

xvii





Acknowledgments

First of all, I would like to thank my supervisors Michiel van Lambalgen and
Franz Berto: Michiel, thank you for sharing some of your seemingly unbounded
amount of knowledge (even if it can be intimidating when you start quoting page
numbers from books you read 30 years ago); for teaching me how to look at a
problem from many perspectives and to check with the (cognitive) data; for never
going easy on me with critical questions while still being encouraging; for treating
me like a peer in the many courses that we taught together; for trusting me with
a lot of freedom in my research and making plenty of time for me; and for sharing
a passion for music and mountains. Franz, thank you for your refreshing approach
to philosophy (your motto of not taking oneself too seriously stuck with me); for
your enthusiasm and the encouragement that comes with it; for magically being
available 24/7; for being|and I cannot stress this enough|incredibly supportive;
and for your humor that cannot fail to entertain even in impossible worlds. I am
indebted to you two for your support, guidance, and encouragement making this
PhD project possible!

Next, I would like to thank my committee: Samson Abramsky, Johan van
Benthem, Arianna Betti, Luca Incurvati, Hannes Leitgeb, and Sonja Smets. I feel
very lucky and honored that you have agreed to this task. Your work is a great
inspiration to me, and I am deeply grateful for all the time that you have devoted
to this thesis|especially given its long and often abstract nature. Thank you!

I have been very fortunate to have spent my PhD at ILLC with its inspiring,
collegial, and interdisciplinary atmosphere. This is made by its people: First, I
would like to thank Arnold, Dean, Ivar, Kaibo, Nadine, and Thomas, for making|
at various time periods over the past four years|the austere sounding `Science
Park Room F1.11' a wonderful and welcoming o�ce. Special thanks to Dean for
the many enlightening philosophy comments. Over the years, I had the pleasure
to meet many inspiring, intimidatingly smart, but unbelievably kind people at
ILLC. Thank you for the lunches, co�ees, chats, discussions, and much more: in
particular, Ana Lucia, Anna, Anthi, Arnold, Arthur, Ayb•uke, Bas, Bastiaan, Dean,

xix



Dieuwke, Ece, Frederik, Gianluca, Giorgio, Giovanni, Ilaria, Iris, Ivar, Julian,
Kaibo, Karolina, Le•�la, Malvin, Mario G., Milica, Nadine, Peter H., Riccardo,
Robert P., Ronald, Sam, Samira, Simon, Sirin, Thom, Thomas, Tom, Yvette, and
Zoi, as well as you fellow MoLers. A big part of the special atmosphere at ILLC is
also due to its extraordinary sta� members: Thank you for keeping a|proverbial
and literal|open door. In particular, for the inspiring encounters over the years,
thank you, Arianna, Bahareh, Benedikt, Benno, Dick, Floris, Jakub, Jelle, Johan,
Luca, Maria, Nick, Robert v.R., and Sonja. And for making everything work and
for always being there, a big thank you to Caitlin, Debbie, Jenny, Karine, Patty,
Peter, and Tanja.

During my PhD, I also had the privilege to do two research visits: At the end
of 2018, I was at the Department of Computer Science at the University of Oxford
visiting Samson Abramsky and his group. Thank you for your great hospitality,
the opportunity to present my work, and the introduction to contextuality. In
this thesis, I've tried to live up to Samson's wise words about using category
theory to systematize. Special thanks to Sivert and Rui for welcoming me in their
o�ce, and to Karen Barnes for a perfect organization. In winter 2019{20, I was at
the Munich Center of Mathematical Philosophy at LMU Munich visiting Hannes
Leitgeb. Thank you, Hannes, for making this possible, for the insightful meetings,
for making me feel at home, and for encouraging me to present my papers. A
heartfelt thank you to all the MCMPers that made this such a wonderful stay: in
particular, Alessandra, Conrad, Ivano, Lorenzo, Martin, Matteo, Norbert, Sander,
Sena, Timo, and Ursula. On the topic of visits, I would also like to thank Richard
Evans for the truly inspiring conversations during his visit in Amsterdam. In the
same vein, thank you, Laurenz Hudetz, for the stimulating chats during your time
at ILLC. Finally, Franz, you have set up a perfect visit for me to St Andrews,
which we then unfortunately had to cancel last minute due to the pandemic. But
I sincerely hope we can make up for this soon!

Further, I am thankful to the audiences of the events where I could present
some (earlier versions) of the material in this thesis. This includes, among others,
the LoC Seminar in Amsterdam, TULIPS in Utrecht, the AlgebrajCoalgebra
Seminar in Amsterdam, OASIS in Oxford, the Logic Colloquium in Munich, and
Logica 2018 in Hejnice. Many thanks to Ayb•uke•Ozg•un for comments on what
is now chapter 8, to Bastiaan van der Weij for comments on chapter 1, and to
Benno van den Berg for comments on chapter 5. Thank you, James Grayot, for
the philosophy discussions and answering my language questions. Thank you,
Bastiaan and Michiel, for the excellent Dutch translation of the summary. And
also thank you, Bastiaan, for all the other invaluable thesis advice. That said, of
course no one but me is responsible for any mistakes. Finally, a big thank you to
my mum, Monika Schaber, for the beautiful cover!

A shout-out to my Amsterdam-related friends: in particular, Ana, Bastiaan,
Dean, Felix, Iris, Jakob, James, Janine, Joannes, Jur, Karin, Moriz, Petra, Ronald,
and Zoi. (And, Zoi, this also extends to your family: you have shown me Greek

xx



hospitality that no words can describe.) Thank you for �lling my life with joy,
warmth, and home, with brunches, cakes, and dinners, and with biking, Frisbees,
and bouldering. For being fantastic 
atmates during these PhD years, thank you
Bastian (even pandemic-proven!), Ana and Zoi, and Esteban and Max.

I also would like to thank my friends far away from Amsterdam|especially
Conner, Dennis, Leo, Magge, Max, Samu, and Tobi. Thank you for staying close,
for the memorable bike rides and hiking trips, for the now-way-too-long-ago jam
sessions, for keeping digital company during the pandemic, and for all the fun we
had and will have.

Moreover, I am deeply thankful for my loving family: the Hornischers and the
Schabers, including the Abbrechts and the W•urzs. I would like to mention you
all here, but to keep it short: thank you, Irme, for your constant interest in my
life and work; thank you, grandma and grandpa Hornischer, for your continuous
support and for being proud of me; and thank you, grandma Schaber, for your
wise and calming words!

In particular, I would like to thank my parents, Moni and Winni, and my
sister, Jele. There are so many things that I could say why I'm fortunate, grateful,
proud|and simply happy|to call you family. Knowing that you are always there
for me|from far and close|is invaluable. Even though it has been `far' much
too long during the pandemic, our family calls were a great source of energy for
me. This thesis is dedicated to you. You mean the world to me!

Amsterdam Levin Hornischer
August, 2021.

xxi





Chapter 1

Introduction

Computation can be distinguished into symbolic and non-symbolic. Symbolic
computation is what computers do: A computer program is a more or less human-
readable description of how to manipulate, step by step, a `symbolic' input (like
the list of numbers 5; 2; 7) to obtain a certain output (say, the ordered list 2; 5; 7
or the sum 14). This is what we typically think of as `computation'. But there
also is a broader sense: non-symbolic computation cannot (only) be viewed as a
rule-based manipulation of symbols.1

The paradigm examples are neural networks: Given the signals from sensory
neurons, your nervous system computes whether that 
ying something is a danger-
ous wasp or just a harmless 
y. But nowhere in that process do `symbols' occur:
There are only neurons, synapses, electrical signals, etc. Symbols like `black and
yellow' or `poisonous' at best emerge as high-level descriptions of the process.
This is not only true for biological neural networks like our nervous system, but
also for arti�cial neural networks. They are behind the recent boom of arti�cial
intelligence (AI). For instance, if you use your phone to translate a sentence,
chances are there is a neural network involved. But it doesn't compute this
translation `symbolically' using grammatical rules and dictionaries. Rather it uses
non-symbolic representations of words as vectors (i.e., long lists of real numbers).
Similar things can be said for other applications of arti�cial neural networks like
speech recognition or image classi�cation. But there also are more mundane
examples: An old-school mechanical thermostat computes how much hot water
should 
ow into the radiator to maintain a desired room temperature|without

1Cf., e.g., Bauer (2000), Blum et al. (1998), Bournez and Campagnolo (2008), Edalat (1997),
Hoyrup and Rojas (2009), Pour-El and Richards (1989), Siegelmann and Fishman (1998), and
Weihrauch (2000). This includes analog computation (overviewed by MacLennan 2009). Some
might rather speak of `dynamical systems' than of `(non-symbolic) computation' (Van Gelder
1998). The thesis can also be read as simply being about dynamical systems without the
computational motivation described in this introduction (we come back to this in the `reading
guide' below).

1



2 Chapter 1. Introduction

any digital (i.e., `symbolic') representation of the temperature.2

Traditionally, symbolic computation and non-symbolic computation are taken
to be diametrically opposed:3 While symbolic computation is human-readable but
cannot generalize beyond clearly de�ned boundaries, non-symbolic computation is
not interpretable but can learn well from noisy real-world data. While symbolic
computation allows safety veri�cation but needs domain knowledge, non-symbolic
computation doesn't come with complete certainty but only needs big data. (In
actuality, things are, of course, more nuanced.) Only fairly recently, the focus
shifted to combining the two approaches to obtain `the best of both worlds'.
Especially due to the recent proliferation of neural networks, it is becoming
increasingly important to understand their behavior|ideally by relating it to well-
understood symbolic computation. This is what explainable arti�cial intelligence
(XAI) is all about. 4

In this thesis, we work toward a uni�ed foundation of symbolic and non-
symbolic computation. This introduction �rst explains what that means and
sketches an idea to achieve it (section 1.1). Then we outline how the thesis
develops this idea, including a reading guide (section 1.2). In addition to the
informal main text, there are many footnotes and endnotes with further references
and more technical topics.5

1.1 Motivation

A good starting point is to ask why we have a good understanding of symbolic
computation.

The starting idea Symbolic computation is usually described by computer
programs in some programming language (or more abstractly as, e.g., Turing
machines). Such a program could, for example, implement a sorting algorithm
like bubble sort which, given as input a list of numbers, transforms this input into

2A classical, but more involved example is the Watt governor which computes the appropriate
setting of a steam engine to generate the desired speed of a 
ywheel (Van Gelder 1995).
Carmantini (2017, p. 2) discusses a digital thermostat as an example of (symbolic, open-ended,
reactive) computation.

3A testament to this is the at times �erce debate in cognitive science and AI between
the symbolic camp (`classicists' or `Good Old-Fashioned AI') and the non-symbolic camp
(`connectionists' or `subsymbolic AI'). Appeasing voices are, e.g., Marr (1982/2010) or Smolensky
(1988) taking the symbolic to be at a higher level of description than the non-symbolic.

4In as little as the duration of this PhD project, XAI has risen from a rather niche topic
to a main �eld of AI. To mention but some recent surveys: Adadi and Berrada (2018), Besold
et al. (2017), Doran, Schulz, and Besold (2017), Goebel et al. (2018), Murdoch et al. (2019), and
Samek et al. (2019). Earlier work is done, e.g., by D'Avila Garcez, Lamb, and Gabbay (2009).

5Endnotes are indicated by Roman numerals and are collected at the end of this chapter.
Compared to the footnotes, they contain some longer, less immediate comments. In the electronic
version, they are clickable (both to get there and to get back).



1.1. Motivation 3

Receive input
Go through the pairs of

adjacent numbers and swap
if the �rst is > the second

Sorted

State 1 State 2 State 3

No swaps

Swaps occurred

Figure 1.1: An operational semantics for the bubble sort algorithm.

an ordered list of numbers. However, given such a piece of program code, we don't
yet understandwhat exactly it does: this is all too common when looking at some
code in an unfamiliar language. We need asemanticswhich assigns meaning to
code: i.e., a description of the behavior of the program. There are two standard
ways of doing this: operational semantics and denotational semantics.

Operational semantics describes the program by the changes in the states of a
machine running the program (Plotkin 1981/2004). For bubble sort, this could
look like in �gure 1.1: For the list h5; 2; 7i , the machine would start in state 1 with
reading this input. Then it moves to state 2 and goes through the two adjacent
pairs (5; 2) and (2; 7). Since 5> 2, it only swaps the �rst, ending up with h2; 5; 7i .
Since a swap occurred, it goes again to state 2. Now both adjacent pairs are
ordered correctly, so no swap occurs. Thus, it goes to state 3 where it terminates
with the correct list h2; 5; 7i . Such an operational description can be done at
various levels of detail. We could have split up state 2 into several states further
describing the subprocess of comparing adjacent pairs. We could even go all the
way down to the `machine level' where a state describes the memory-entries and
the processor-state of the computer.

Denotational semantics, on the other hand, describes the program by the
function that it computes (Scott 1970). In the sorting example, this is a function
f : D ! D whereD is the set (or data type) of �nite lists of integers: f maps a
�nite list to the ordered version of that list. To still provide someinformation on
how this function can be computed, denotational semantics also describes how
the function can be approximated by�nite partial functions.

Operational semantics is dynamic and closer to the implementation (or execu-
tion) of the program in terms of machine states. The advantage of the denotational
semantics is that it is static and fairly independent of the implementation (e.g.,
which sorting algorithm exactly is used). Thus, denotational semantics is particu-
larly suited for a structural mathematical theory and analysis (Ong 1995). After
all, there the `meaning' of the program is `directly given' (and doesn't need to be
`dynamically constructed') and it is not restrained by implementational details.I

Domain theory was developed as a `mathematical theory of computation'
providing a denotational semantics for programming languages (Scott 1970).



4 Chapter 1. Introduction

Thus, the starting idea of this thesis is: can this method be generalized also to
non-symbolic computation like neural networks? In other words, can we extend
domain-theoretic semantics beyond computational processes described by a precise
programming language to also include more general computational processes?

On understanding Before embarking on this question, let's discuss how this
helps in the aim of understanding neural networks and non-symbolic computation
more generally. There are two senses of `understanding':speci�c or structural.

In the speci�c sense, we (aim to) understand some speci�c neural network very
well: Why exactly did it classify this image as a stop sign|was it its shape, color,
or location? How did it learn this concept|was it easy or hard? Can we say
which of its weights store this information|making them meaningful to us? This
is analogous to understanding a speci�c program: not just its computed function
and operational description at various levels of detail, but also its e�ciency, its
safety, its required resources, etc.

In the structural sense, we (aim to) understand a whole class of neural networks:
When should two neural networks be considered equivalent|to transfer knowledge
about one to the other? Among equivalent ones, is there a most simple one|
o�ering a `best explanation' of the data? What are principled ways of combining
networks|to avoid retraining? What are the limits of these networks|to assess
their capabilities? The analogous questions for programs are answered by a
semantics: Two programs are equivalent if they get assigned the same `meaning',
i.e., compute the same function; assessing the capabilities amounts to determining
the class of computed functions, etc.

To be sure, this is not a sharp distinction and there is no better or worse
between these two kinds of understanding: they are complementary parts of a
holistic theory. In symbolic computation, these two understandings are largely
achieved: For a speci�c understanding of a computer program the tools of, e.g.,
software veri�cation can be used, while a structural understanding is provided
by, e.g., computability theory and domain theory. In non-symbolic computation,
XAI arguably is more focused on the speci�c understanding, while this thesis
is concerned with the structural understanding of symbolic and non-symbolic
computation.6

6For other work in this direction (mostly on neural networks), see, e.g., the computational com-
plexity theory for neural networks (overviewed by �S��ma and Orponen 2003), category-theoretic
approaches (Fong, Spivak, and Tuyeras 2019; Jacobs and Sprunger 2019), the `(programming) lan-
guage of machine learning' (Cheung et al. 2018; Porter 1994), program induction/synthesis (Evans
and Grefenstette 2018; Penkov and Ramamoorthy 2017), algebraic topology and topological
data analysis (Naitzat, Zhitnikov, and Lim 2020; Reimann et al. 2017), dynamical systems
approaches (Carmantini 2017; Milne 2019; Saxe, McClelland, and Ganguli 2014), statistical
mechanics (Bahri et al. 2020), or statistical learning theory (Vapnik 2000). The latter (on p. xii)
motivates this endeavor by the principle `nothing is more practical than a good theory' (going
back to Kurt Lewin).



1.1. Motivation 5

Uni�ed foundation So we work toward a `uni�ed foundation' of symbolic and
non-symbolic computation via a domain-theoretic semantics. More precisely, we'd
at least expect the following:

1. Framework: To talk about symbolic and non-symbolic computation in a
uni�ed manner, we need to capture them in a single framework. So, any
computational process|be it symbolic or non-symbolic|can be described
in this framework.

We'll argue below that dynamical systems provide this framework.

2. Behavior: To systematically understand symbolic and non-symbolic compu-
tation in a uniform manner, we need to assign to any computational process
(of the framework) a description of its behavior (semantics). This description
should abstract away as much as possible from the implementational details
of the computation and rather focus on the observable behavior or output.

We'll use domain theory: in part 1, for symbolic computation and, in part 2,
for non-symbolic computation.

3. Relationship: To understand non-symbolic computation in terms of symbolic
computation and vice versa, we need to specify what the relationship is
between the (behavior of the) two types of computation.

We'll discuss this in part 3: non-symbolic computation is, in a sense, the
limit of symbolic computation, and it can realize it if it has enough stability.

In the remainder of the present `motivation' section, we describe computation
as dynamical systems (the �rst expectation). In the next `outline' section, we
describe how the thesis establishes the other two expectations. Before we start,
though, we review dynamical systems. (Those in the know may skip the next
paragraph.)

Crash-course dynamical systems There are many formal notions of dynam-
ical systems, but they share the following intuition. A dynamical system consists
of two ingredients: astate spaceand a dynamics. The state space describes the
possible states that the system could be in, and the dynamics describes how the
system changes its states over time. A sequence of states following the dynamics
is called atrajectory (or orbit ).

Here are some examples: In the case of the thermostat, a state is described
by the current room temperature and the amount of hot water that 
ows into
the radiator. The dynamics is such that if the system is, for example, in a state
with low room temperature and much in
owing hot water, then, at a later time,
the system is in a state with high room temperature (the hot water heated up
the room) and little in
owing water (the thermostat lowered the in
ow since the
room temperature is high). Another example is given by the sorting system of



6 Chapter 1. Introduction

Computation ! Dynamical systems
|symbolic ! |time- and space-discrete, possibly non-deterministic
|non-symbolic ! |time-discrete, space-continuous, deterministic

Figure 1.2: Computation as dynamical systems.

�gure 1.1: it has three states and the dynamics between them (which states are
possible after the current state) is described by the arrows. For the inputh5; 2; 7i ,
we've seen the trajectory of states 1! 2 ! 2 ! 3.

There are some useful conceptual distinctions. A dynamical system isstate-
discrete if its state space is discrete (or `countable') and otherwisestate-continuous.
(In the continuous case, there is usually more structure on the state space like
a topology or a probability measure.) For example, the sorting system is state-
discrete (there are only �nitely many states) and the thermostat is state-continuous
(the states are given by pairs of real numbers which form a continuum).

A dynamical system istime-discrete if its dynamics takes place in time steps:
for any state we can specify the set of its possible immediate successors under the
dynamics. The sorting system, for instance, is time-discrete. Thus, a trajectory
is a (�nite or in�nite) sequence x0; x1; x2; : : : of states such that eachxn+1 is a
successor ofxn . So the whole numbersN = f 0; 1; 2; : : :g play the role of time.
The system istime-continuous if, in contrast, the dynamics describes continuous
change: a state doesn't have a next state but rather closer and closer states
reached after smaller and smaller time intervals. The thermostat system, for
instance, is time-continuous. Thus, a (maximal) trajectory is a sequence (x t )t2 R

of states where, fort < t 0, state x t0 can be reached fromx t in time t0 � t. So the
real numbersR play the role of time. A common trick to study a time-continuous
system is to �x an `updating time interval' and study the resulting time-discrete
system. In the thermostat example, we could take this interval to be 1 second
and declare the successor of a state to be the state reached after 1 second. For
this reason, we'll restrict our attention to time-discrete systems.

Finally, we say a time-discrete system isdeterministic if each state has a
unique successor state. Otherwise, we call the systemnon-deterministic.

Computation as dynamical systems Now we get to expectation (1): how
computation can be described by dynamical systems as in �gure 1.2.7

Let's start with symbolic computation. We've already seen that bubble sort
can be described as the time- and space-discrete dynamical system of �gure 1.1.
This holds for other examples as well: the general argument is the following.
Turing machines are regarded asthe model of symbolic computation. And they
can be described as time- and space-discrete dynamical systems: A state of a

7Although this idea has been around for a while (see, e.g., Giunti 1997; Siegelmann and
Fishman 1998), it arguably deserves more appreciation.



1.1. Motivation 7

Turing machine is described by: (i) what is written on its tape (i.e., its memory),
(ii) which part of the tape is currently observed (and to be altered), and (iii) the
internal state of the machine.8 So there are countably many statesx = ( a; b; c)
wherea describes the tape,b the observed part, andc the internal state. The
program of the machine describes the possible transitions. There is a transition
from x = ( a; b; c) to x0 = ( a0; b0; c0) i�, roughly, the program says: when in internal
state c reading symbola(b) at location b of the tapea, change it to a0(b) and leave
everything else unchanged (soa0 = a outside ofb) and go to positionb0 and into
internal state c0. If the Turing machine is non-deterministic, these dynamics are
non-deterministic, too. Thus, any symbolic computation can be seen as a time-
and space-discrete dynamical system that possibly is non-deterministic. We'll also
allow some labeling of the system: we can label a state as the initial state and add
labels to transitions between states. So we can describe this class of dynamical
systems as the well-known (countable) labeled transition systems.

Now, let's consider non-symbolic computation and how it can be described
as time-discrete, space-continuous, and deterministic dynamical systems. Our
paradigm examples are such systems: We've already seen the thermostat. And,
importantly, also arti�cial neural networks are such systems. A state of the
network describes the activation that each neuron has at that moment. And the
dynamics is given by how this activation propagates through the network: The
activation of any neuron at the next time step is determined by how much input it
receives from its neighboring neurons weighted by the weight on their connection.
So this system is deterministic, time-discrete, and space-continuous (activation
is usually given by real numbers). This describes the `run time' dynamics of the
network. But also its learning dynamics|i.e., computing the best approximation
to some observed data|can be seen as such a system. Then a state describes the
weights on the connections between neurons. And the dynamics is given by the
learning algorithm (e.g., backpropagation): Given some observed data, the current
weight-state is updated according to the algorithm to a new weight-state in which
the network better approximates the observed data. Finally, the general answer
is that `real-world systems'|be it physical, chemical, biological, or engineering|
usually are described via di�erential equations as dynamical systems.9 This makes
them deterministic, space-continuous and, after �xing an update time interval,
also time-discrete.II

Thus, dynamical systems do indeed provide a framework to describe (presum-

8Turing (1936-7, p. 250) writes: \We know the state of the system if we know the sequence of
symbols on the tape, which of these are observed by the computer . . . , and the state of mind of
the computer". The internal state or `state of mind' or `m-con�guration' is not to be confused
with the system's state.

9Obtaining such a description for the nervous system is a central topic of the �eld of
computational neuroscience. The dynamics of the nervous system can be observed, e.g., through
EEG and fMRI. Anderson (2015, pp. 22{25) describes what thus can be observed when the
nervous system implements symbolic computation: namely, equation solving.



8 Chapter 1. Introduction

ably) anything that can reasonably be said to be computation|both symbolic and
non-symbolic.10 They capture the essence of a program: what states the system
implementing it can be in (state space) and how they are transformed according
to the program (dynamics). The `symbolicity' of the computation is re
ected
in the discreteness of the state space. We deliberately leave open the converse
question: whether any such dynamical system also constitutes computation. In
other words, whether dynamical systems provide anexplication of symbolic and
non-symbolic computation. This is a deeply philosophical question.11

Nonetheless, we do want to provide some evidence that dynamical systems are,
if not an explication, at least a good (qualitative)approximation to non-symbolic
computation.12 The argument sketch is this: If anything counts as non-symbolic
combination, this should include neural networks. By the universal approximation
theorems (Cybenko 1989; Hornik, Stinchcombe, and White 1989), neural networks
can approximate any dynamical system arbitrarily well.III And, plausibly, the
class of non-symbolic computational processes is closed under such approximation
(if e�ective). 13

1.2 Outline

With this framework in place, we outline the thesis: how it develops a domain-
theoretic semantics for the dynamical systems describing symbolic computation
(part 1) and non-symbolic computation (part 2). This can then be used to relate
symbolic and non-symbolic computation (part 3).

Part 1 (symbolic computation) In chapter 2, we develop the trajectory
domain construction. It assigns to each time- and space-discrete dynamical
system (representing some symbolic computation) its trajectory domain. This is
a structure in the sense of domain theory describing the behavior of the system.

10The reason for saying `presumably' is that this is a thesis, not something that can be proven.
A counterexample would need to provide a clearly computational processes that can in no way be
seen as a dynamical system. This is hard to imagine. In any case, this determines an extremely
general class of systems.

11For some discussion, see the literature on `physical computation' cited in footnote 18 below.
For more general literature on this nexus of dynamical systems, computation, cognition, and
logic, see, e.g., Van Gelder (1995), Giunti (1997), Van Gelder (1998), beim Graben (2004),
Leitgeb (2005), Tabor (2009), and Dewhurst (2016).

12One may distinguish between a `qualitative' and `quantitative' study of computability (cf. e.g.
Abramsky and Jung 1994, sec. 1.1). In the former, one studies, e.g., the topological, algebraic, or
order-theoretic structure of computation|just as any other structure of classical mathematics.
In the latter, one adds a `computability' or `e�ectiveness' structure to determine the `computable'
elements of these classical structures. (Cf. Bauer (2000) and Pour-El and Richards (1989).)
Here we're mostly concerned with a qualitative study of computation. Though, adding e�ective
structure in domain theory is well-understood (Edalat 1997).

13Cf. computable real numbers are closed under e�ective convergence (Turing 1936-7, p. 256).



1.2. Outline 9

The idea behind the construction is as follows. In the case of programming
languages, we usually still have information, for example, about what type of
input-output function the program aims to compute. This is not available anymore
for general time- and space-discrete systems, but we still have the trajectories.
Each trajectory is an instance of the behavior of the system. So the rough idea is
that the trajectory domain is the set of the �nite and in�nite trajectories ordered
by extension: the in�nite trajectories are the in�nite (`ideal') limit-behaviors which
are approximated by the �nite (`real') behaviors. (This idea is re�ned by taking
into account that we often want to exclude some trajectories and consider others
to be instances of the same type of behavior; so, really, the trajectory domain
consists of equivalence classes of some set of trajectories.) Thus, the trajectory
domain can be said to describe the (types of) behavior of the system. Chapter 2
describes and axiomatizes this construction.

A main reason why a semantics provides structural understanding is that it not
only assigns meaning to programs (`syntax') but also preserves relations between
them (this is known ascompositionality). In our case, the crucial relation between
systems is that ofsimulation: one systemS can be simulated by anotherS0 if
there is a functionf : S ! S0 assigning states ofS to states ofS0 preserving the
dynamics.14 So we would expect that the trajectory domain semantics respects
this. Indeed, in chapter 3, we show that the simulationf can be assigned to an
appropriate function from the trajectory domain ofS to the trajectory domain
of S0.15 Category-theory provides the language to describe this more precisely:
the trajectory domain construction is a functor from systems to domains that, in
many cases, even forms a so-called adjunction. This is in line with the general
idea that syntax (formal) and semantics (conceptual) should be adjoint.16

Part 2 (non-symbolic computation) When we move to state-continuous
systems, we cannot `access' the states anymore: they are in�nitely precise points
in a continuous state space. All we can do is measurements. For example, if the
thermostat system is in state (20:071: : : ; 0:183: : :), we cannot precisely determine
this but only measure that, say, the room temperature is 20� C plus or minus 1� C
error in measurement and the incoming hot water 
ow is 0:2kg

s plus or minus 0:1
error. So we can only determine thearea of the state space in which the system is
in: namely, [19; 21]� [0:1; 0:3].

These areas (that correspond to measurements) act much like the states in
symbolic computation. While, in the symbolic case, repeated observation yielded a
sequence of states (i.e., a trajectory), it now yields a sequence of areas of the state
space. Thus, we'll use these sequences to build a domain describing the behavior
of the system with respect to the available observations. We may also increase

14I.e., if x ! y is a transition in S, then f (x) ! f (y) is a transition in S0.
15The `appropriate functions' of domain theory are known as Scott-continuous functions.
16This is expressed by Lawvere (1969) and explained by Smith (Unpublished).



10 Chapter 1. Introduction

the precision of our measurements and the observation time|thus re�ning the
available observations. This then also re�nes the corresponding domain. The
main result of chapter 4 is that, as we keep re�ning the observations, we obtain
in the limit again a domain. We call this theobservation domainof the system.
It is a model of the system since, based on the observations, we can also de�ne
a dynamics on it and, when restricted to its `ideal' elements, this dynamics is
isomorphic to the original system. This model is `computational' since these ideal
elements are approximated by the `real' elements given by �nite observations.

Thus, the observation domains provide a semantics (or behavior description)
to the dynamical systems describing non-symbolic computation. Chapter 5 again
veri�es that this semantics preserves simulations between dynamical systems. In
fact, it establishes a translation (i.e., categorical equivalence) between dynamical
systems and certain purely domain-theoretic structures that we call dynamical
domains (of which observation domains are examples). This may well be regarded
as the main formal result of the thesis.

To sketch applications of this translation, chapter 6 provides a domain-theoretic
perspective on a central concept of dynamical systems theory: entropy.

Part 3 (stability) Given these semantics for symbolic and non-symbolic com-
putation, we can turn to expectation (3): What is the relationship between the
two types of computation? Chapter 7 is an interlude where we �rst discuss this
informally.

On the one hand, our semantics suggests the thesis that (the behavior of) non-
symbolic computation is the limit of (the behavior of) symbolic computation:17

roughly, the observation domain can be expressed as a limit of trajectory domains
describing observation sequences.IV

On the other hand, this raises the question of when non-symbolic computation
can be regarded as realizing symbolic computation. As a guiding intuition, we
suggest that the system's behavior should be fairly stable. For example, from the
behavior of our nervous system recognizing a wasp we can extract the symbolic
rule \if it 
ies and is black and yellow, it is dangerous". The reason seems to
be that in most of the `continuously many' inputs where the system recognizes
something 
ying that is black and yellow, it will compute that it is a dangerous
wasp. So this assessment is stable under a wide range of input states. Other
examples are physical realizations of symbolic computation (like my laptop): as
physical systems these are (described as) continuous dynamical systems and a
terminating computation usually corresponds to a stable state of the system.18

The interlude chapter sketches what our results together with deep results

17In analogy with pro�nite groups, one might say that non-symbolic computation is pro-
symbolic computation.

18 For literature on physical computation, see Chalmers (2011), Fredkin and To�oli (1982),
Gandy (1980), Lloyd (2000), Piccinini (2015), Piccinini (2017), Pitowsky (1990), and Sieg (2002).



1.2. Outline 11

from ergodic theory can already say about this kind of stable behavior. And it
explores how (algorithmic) randomness may help to ensure this kind of stability.

Chapter 8 then begins investigating these ideas in detail. It starts at the
foundations with a philosophical analysis of the involved concept of stability. This
is done with an eye toward AI-safety: demanding that, like the nervous system,
also arti�cial neural networks should be stable under small perturbations of the
input.

Reading guide This thesis has grown rather long|apologies! In an attempt to
make up for it, it allows for modular reading. Despite its monographic structure,
each chapter can be read independently. If material from previous chapters is
needed, it is summarized. Every chapter starts with a non-technical introduction
that motivates and summarizes the results. This should allow, for example,
skipping more technical parts of a chapter while still getting the gist of it. The
suggested order of reading is, non-surprisingly, in order of appearance. For a less
formal track, one might skip the category-theoretic chapters 3 and 5 and/or the
entropy-theoretic chapter 6. (The usage of category theory is largely restricted to
formulating the results concisely rather than actually using the theory.) For a less
philosophical track, one might skip chapter 8 on stability.

For clearer (and more common) terminology, we use `labeled transition system'
in the case of symbolic computation and simply say `dynamical system' for
(typically time-discrete and space-continuous) deterministic dynamical systems.

Skeptics of the sketched view on computation can also read the thesis without
this computational interpretation. This may include classical computationalists
who like computation but think that, by de�nition, it cannot be non-symbolic; or
embodied cognitive scientists who like to view cognition as a dynamical system
but wouldn't call it `computation'. Labeled transition systems and dynamical
systems are important mathematical structures in their own right, so our seman-
tics/representation should be useful regardless.



12 Chapter 1. Introduction

I. Semantics for programming languages is somewhat analogous to semantics for formal languages
or su�ciently regimented fragments of natural languages|as they are considered, e.g., in
the philosophy of language (Speaks 2021). Both assign meaning (or `semantic content') to
expressions of the language. The classical semantic theories �a la Frege, Russell, or Tarski
resemble denotational semantics: assigning to an expression a static (mathematical) object
describing its meaning. Inferentialist (or proof-theoretic) semantics loosely resemble operational
semantics: describing the meaning of an expression by its inferential interaction with other
expressions.

II. As mentioned, we'll focus on time-discrete systems: Partly since they approximate the time-
continuous systems and partly since arti�cial neural networks are commonly time-discrete
only. Nonetheless, future work should investigate whether our results extend to time-continuous
systems. One might try adapting our approximation process described in part 2 below by not only
approximating space (through measurements) but also time (increasingly �ner discretizations).
(Also cf. the generator theorems for 
ows (Eberlein 1974).) For an overview of models of
continuous time computation see Bournez and Campagnolo (2008) and Orponen (1997).

III. More precisely: Given a dynamical system (X; T ) with X an uncountable standard Borel space
and T : X ! X Borel-measurable (which are very minimal assumptions), we can assume, by
the Borel isomorphism theorem (see e.g. Kechris 1995, thm. 15.6), thatX = R. Let � > 0 be
the precision to which we want to approximate (X; T ) with a neural network. By the universal
approximation theorem, there is a feedforward neural networkN with one input neuron, one
hidden layer, and one output neuron such thatN , regarded as a functionN : X ! X , is � -close
to T (for an appropriate choice of metric). Let M be the recurrent neural network obtained from
N by feeding the output into the input. Now, consider the activation dynamics of M : Since the
activation-state of M is determined just by the input neuron, we identify an activation-state of
M with the activation s 2 R = X of the input neuron. So, the state space isX . Regarding the
dynamics, if, M is in state s, then the activation N (s) of the output layer will be fed into the
input layer, so the new state iss0 = N (s). Hence the activation dynamics ofM is the dynamical
system (X; N ). And ( X; N ) approximates the original (X; T ) up to precision < � . (For more on
universal approximation, see Kratsios (2020).)

IV. In this light, one may view the result of Pour-El and Richards (1981) that computable initial
conditions of physical systems can lead to non-computable solutions. This is taken to show that
these (non-symbolic) systems cannot be simulated by (symbolic) Turing machines (Pitowsky
2002, S169).



Part One

Symbolic computation





Chapter 2

Trajectory domains 1: Construction

Abstract With the aim of providing a denotational semantics (or behavior
description) to the widely used labeled transition systems (LTS), we introduce the
notion of a behavioral transition system (BTS). These are structuresM = ( A; T; � )
whereA is an LTS, T a set of trajectories (or paths) inA, and � an equivalence
relation on T satisfying �ve axioms. While any trajectory is `locally possible',
T describes which are `globally possible'; and� describes when two trajectories
are instances of the same type of behavior|so the equivalence classes represent
possible behaviors. The main result is that, for countable systems, there is,
roughly, a unique way of de�ning an information containment order between
behaviors and this yields an! -algebraic domain. We call this the trajectory
domain and think of it as the denotation ofM . We also show that BTSs (and
their trajectory domains) generalize both Scott information systems and various
models of concurrent computation (and their respective domain constructions).

2.1 Introduction

We're concerned with providing denotational semantics (or behavior description)
to labeled transition systems. Let's explain:

A labeled transition system(LTS) is a structure (S; i; L; ! ) where S is a set of
states,i 2 S is the initial state, L is a set of labels (or actions), and!� S � L � S
is relation, written s ��! s0. LTSs are a general model ofcomputing systems. They
include `sequential' computing like Turing machines: intuitively, a state consists of
the values stored in the memory of the machine at a given time step, and a label is
a command that can be executed to processes some stored values leading to a new
state. But they also include `non-sequential' computing as in reactive systems:
the system (a standard example is a vending machine) interacts with|i.e., reacts
to|a non-deterministic environment (users can insert coins and select items) in an
open-ended way (the system doesn't aim to compute a speci�c outcome).1 Due to

1LTSs can also be regarded as time-discrete dynamical systems: they consist of a state space

15



16 Chapter 2. Trajectory domains 1: Construction

this generality, LTSs are prominently used inmodel checkingwhich is a standard
technique to formally verify that a computing system behaves as intended (Baier
and Katoen 2008). This ranges from the standard examples of ensuring safety in
money transfers or space 
ight to examples that recently gained prominence: the
veri�cation of neural networks as a way to address the safety concerns raised by
their intransparency.2

As computational models, LTSs describehow the computation proceeds: an
operational description that is dynamic and close to `machine implementation' (i.e.,
the states of the execution of the computation). But, we may ask,what is it that
they compute: is there adenotationaldescription of their behavior that is static and
more `machine-independent' (i.e., abstracting away implementational details and
facilitating mathematical analysis)? In the case of programming languages, these
two complementary advantages are associated with operational and denotational
semantics, respectively (Ong 1995). Roughly speaking, LTSs operationally describe
programming code by how it transforms states of the computer (Plotkin 1981/2004),
and domain theory denotationally describes programming code by the function
that it computes and how it is obtained from other functions (Scott 1970). (If the
semantics coincide, one speaks of full abstraction (Cardone 2021; Ong 1995).3)

Given these advantages, we'd like to develop a denotational semantics (or
behavior description) forany LTS. However, in general|as, e.g., with reactive
systems|we neither have available a programming language (or typed meta-
language) nor an input-output description.4 What we still have, though, are the
trajectories: the (�nite or in�nite) sequences of the form

s0
� 1�! s1

� 2�! s2
� 3�! s3

� 4�! : : : :

This is an instance of a possible behavior of the system. However, depending
on the level of abstraction at which we analyze the behavior of the system, we
may want to identify some trajectories as instantiating the same type of behavior
(e.g., two concurrent computations). Moreover, some trajectories may only be
locally possible (from eachsi � 1 one can move tosi via label � i ) but not globally
possible (e.g., some action can only be applied a certain number of times due to,
say, memory constraints).

Thus, to describe the behavior of an LTSA, we're lead to also specify a setT
of `globally possible' trajectories inA and an equivalence relation� on T. So the
quotient T := T= � is the set of possible behaviors and can be regarded as the
denotation of A|or, rather, of ( A; T; � ).

S together with a dynamics ! describing how the system can transform from one state into
another.

2For the former, see the textbook of Baier and Katoen (2008). For the latter, to mention but
two references, see Kuper et al. (2018) and Vengertsev and Sherman (2020).

3In a somewhat more abstract setting, also see Abramsky (1991).
4Cf., e.g., Winskel and Nielsen (1995, p. 2) or Carmantini (2017, p. 2).



2.1. Introduction 17

For a satisfying treatment, however, we should expect some more structure
on these denotations (as it also is the case in domain-theoretic semantics for
programming languages). Indeed, we intuitively also would expectT to be ordered
by information containment: behavior [t] is informationally contained in behavior
[t0] if each instancet0 of [t] can be extended to an instancet1 of [t0]. This poses the
question that we investigate: When can such a notion of information containment
be appropriately de�ned onT and when does this then form a domain|soT can
satisfyingly be said to be the denotation of the LTS. The answer will be: We
provide some axioms for the structures (A; T; � ) to de�ne an appropriate notion of
information containment. For countable systems, it turns out that this notion is,
in a sense, unique and turnsT into a domain|indicating that we've found a stable
axiomatization. We call structures (A; T; � ) satisfying these axiomsbehavioral
transition system (BTS) and, in the countable case, we callT their trajectory
domain.

The chapter is structured as follows: In section 2.2, we provide the relevant
background on labeled transition systems and domain theory.

In section 2.3, we discuss two guiding examples: First, LTSs arising from
observing a `black box' system like those in statistical mechanics or neural networks.
Second, LTSs arising as models of concurrent computation. These provide more
concrete motivation for studying the structures (A; T; � ) and their set of behaviors
T|in addition to the abstract motivation above.

In section 2.4, we introduce pre-behavioral transition system (pre-BTS) as
structures (A; T; � ) satisfying a minimal set of axiom capturing that� describes
`trajectory equivalence'. In section 2.5, we consider various natural ways of de�ning
information containment on T and �nd that they coincide once (A; T; � ) is what
we'll call limit-respecting.

In section 2.6, we then show the main result: Roughly, for a countable pre-BTS
(A; T; � ) and a preorder� on T, the following are equivalent: (a)� satis�es
some rather weak properties that we'd expect from an information containment,
(b) the partial order induced by (T; � ) is a domain (the trajectory domain), and
(c) the system is limit-respecting and� is one of the coinciding natural notions of
information containment.

This then suggests de�ning BTSs as pre-BTSs that are limit-respecting. In
section 2.7, we investigate this notion and discuss several examples. In section 2.8,
we describe, for countable systems, their trajectory domain and show that every
! -algebraic domain arises as the trajectory domain of a system.

In section 2.9, we show that countable BTSs and their trajectory domains can
be regarded as a generalization of the well-known Scott information systems and
their induced Scott domains. Finally, in section 2.10, we conclude with some open
questions.

Further related work is discussed in the subsection on concurrent computation
(section 2.3.2): In short, for various models of concurrent computation, it has been
shown that the computation traces or sequences form the domain of concurrent



18 Chapter 2. Trajectory domains 1: Construction

computations under a certain partial order (see that section for references). Our
BTSs provide a general framework containing these models and generalize this
idea considerably (in fact, the main result determines just how much it can be
generalized).

2.2 Background

2.2.1 Labeled transition systems

There is a huge amount of literature on (labeled) transition systems. Here we follow
the handbook article of Winskel and Nielsen (1995) since it o�ers a particularly
systematic treatment: it not only describes labeled transition systems but also their
connections to other computational models in a structural way (using category
theory).

A transition system is a structure (S;! ) where S is a set and! a binary
relation on S. In other words, (S;! ) is a directed graph. The elements ofS are
called statesand s ! s0 a state transition. Often, one also singles out aninitial
state i 2 S and writes (S; i; ! ). Labeled transition systems are obtained|as the
name suggests|by adding labels:

2.2.1. Definition . A labeled transition system(LTS) A is a structure (S; i; L; ! )
whereS is a set ofstateswith initial state i , L is a set oflabels, and !� S � L � S
is the transition relation. We write s ��! s0 for (s; �; s 0) 2! . Given an LTS A, we
useSA , iA , LA , and ! A to refer to its set of states, initial state, set of labels,
and transition relation, respectively. We callA countable if both S and L are
countable sets.

Sometimes, LTSs arede�ned to be countable. This is indeed the typical
case|especially when regarding LTSs as models ofsymboliccomputation. But,
generally speaking, it is advisable to distinguish considerations of structure from
those of cardinality.5 So rather than generally making the countability assumption,
we develop much of our theory without it and explicitly mention the assumption
if we need it.

We use the usual notation for sequences: Formally, a �nite or in�nite sequence
� over a setA is a partial function � : ! ! A whose domain is of the form
f n 2 ! : 0 � n < l g where 0� l � ! is the length of the sequence, denotedj� j.6

If l = 0, then � is the empty sequence� . If l = ! , then � is in�nite ; otherwise
� is �nite . (So by an `in�nite sequence' we always mean a sequence of length! ,
i.e., we won't consider sequences whose length is an ordinal number> ! .) We

5The countability assumption would, for example, preclude taking limits of LTSs|just based
on issues of cardinality, not due to structural constraints.

6Here ! denotes the �rst in�nite ordinal (so ! can be thought of as the set of natural numbers
f 0; 1; 2; : : :g).



2.2. Background 19

often just write � as � (0)� (1) : : :. For n 2 ! , we de�ne the restriction � � n as
the restriction of the partial function � to the set f m 2 ! : m < n g. So if j� j � n,
then j� � nj = n, and if j� j � n, then � � n = � . A sequence� 0 is an extensionof
another sequence� (written � � � 0) if, for all n 2 ! , if � (n) is de�ned, then � 0(n)
is de�ned and � (n) = � 0(n). We write � � � 0 if � � � 0 and � 6= � 0.

2.2.2. Definition . Let A = ( S; i; L; ! ) be an LTS. An A-trajectory is a sequence

t = ( s0; � 0; s0
0); (s1; � 1; s0

1); : : : ; (sn ; � n ; s0
n ); : : :

of elements of! such that s0
i = si +1 . We then write s0

� 0�! s1
� 1�! : : :. If t is

nonempty, we calls0 the starting state of t and, if t also is �nite, we call the s0

of the last entry the ending or last state of t, which we refer to by l̀ast(t)'. We
refer to s(t) := s0; s0

0; s0
1; s0

2 : : : and l(t) := � 0; � 1; : : : as the state sequenceand
label sequenceof t, respectively.

One can also consider morphisms between LTSs: that one system can simulate
the other. Thus, one can form the category of LTSs, but for our present purposes
we don't need to do this.

2.2.2 Domain and order theory

We recall the basic concepts from order and domain theory that we'll use. A
standard reference is Abramsky and Jung (1994).

A preorder is a structure (P; � ) where P is a set and�� P � P a re
exive
(8x : x � x) and transitive (8x; y; z : x � y; y � z ) x � z) relation. A subset
A � P is directed if it is nonempty and, for all x; y 2 A, there is z 2 A with
x; y � z. A partial order is a preorder (P; � ) that is antisymmetric (8x; y : x �
y; y � x ) x = y).

If ( P; � ) is a preorder, theinduced partial order (P ; � ) is the quotient under
the equivalence relationx � y i� x � y and y � x: To be precise,P is the set
of � -equivalence classes, which we denote [x]� , and [x]� � [y]� i� x � y (this is
independent of the representativesx and y).

Let (P; � ) be a partial order. It has a least elementif there is x 2 P such
that, for any y 2 P, x � y. If existent, suchx is unique and usually denoted? .
A subset A � P has aleast upper bound(or supremum) if there is x 2 P that
is an upper bound (8a 2 A : a � x) and that is the least one (if y also is an
upper bound ofA, then x � y). If existent, such x is unique and denoted

W
A. A

directed complete partial order(dcpo) is a partial order in which every directed
subset has a least upper bound.

Let (D; � ) be a dcpo. An elementx 2 D is compact if, for all directed subsets
A of D, if x �

W
A, then there isa 2 A such that x � a. We write K (D) for the

set of compact elements ofD. Finally, ( D; � ) is algebraicif, for all x 2 D, the set
f y 2 K (D) : y � xg is directed and its least upper bound isx. If K (D) also is



20 Chapter 2. Trajectory domains 1: Construction

countable, we call (D; � ) an ! -algebraicdomain. (The more general concept is
that of a continuous domain, but we don't need that here.)

A function f : D ! E between dcpos is(Scott-) continuous if it is monotone
(8x; y : x � y ) f (x) � f (y)) and preserves directed suprema (for all directed
A � D, f (

W
A) =

W
f (A)). (Note that f (A) := f f (a) : a 2 Ag is directed by

monotonicity.) Two dcposD and E are isomorphic i� they are order isomorphic,
i.e., there is a surjectivef : D ! E such that, for all x; y 2 D, x � y i�
f (x) � f (y) (the latter implies injectivity, so f is bijective).7

Let (P; � ) be a preorder. A subsetI � P is an ideal if it is a downset
(8x; y : x � y; y 2 I ) x 2 I ) and directed. An ideal isprincipal if it is of the
form #x := f y 2 P : y � xg. The ideal completion Idl(P; � ) of (P; � ) is the
set of ideals ordered by inclusion. If (D; � ) is an algebraic dcpo, then (D; � ) is
isomorphic to Idl(K (D); � ) (Abramsky and Jung 1994, prop. 2.2.25).

We'll use the following simple but fundamental fact about countable directed
preorders (often without explicitly mentioning it).

2.2.3. Lemma. Let (P; � ) be a countable and directed preorder. ThenP has a
co�nal chain C = f c0; c1; : : :g � P, i.e., c0 � c1 � : : : and, for all x 2 P, there is
n with x � cn .

Proof. SinceP is countable, writeP = f x0; x1; : : :g. Construct c0 � c1 � : : : by:
c0 := x0 (note P is nonempty), and givencn , let k be the least index such that
xk � cn ; xn (such upper bounds exists by directedness, whence there also is one
with least index), and de�ne cn+1 := xk . Then, by construction, C is indeed a
chain and co�nal in P.8 2

2.3 Two guiding examples

We describe two examples to motivate the abstract structures that we subsequently
investigate. To keep to the point, the discussion will be more intuitive and not
strictly formal.

2.3.1 Observing a black box system

In this subsection, we describe our initial motivation for the present work: observing
a `black box' system like a neural network.

7Equivalently, D and E are isomorphic in the category consisting of dcpos and Scott-
continuous functions (i.e., there are Scott-continuous functionsf : D � E : g that compose to
the respective identity functions).

8This proof is given by Schweber (2016). Also see Abramsky and Jung (1994, prop. 2.2.13).



2.3. Two guiding examples 21

Black box system As a guiding example, we consider the following situation:
We're given a `black box' and `low-level' deterministic system (X; f ) and we'd
like to make sense of it at a higher level through observations. SoX is a set
of (low-level) states andf : X ! X is a function. We can also write this as
a (unlabeled) transition system with state spaceX and transitions s ! s0 i�
f (s) = s0. The intuitive terms `black box' and `high/low level' are best illustrated
by examples.

First, statistical mechanics: A state s is, say, a list of the position and
momentum of each gas particle in a box of gas, ands ! s0 i�, whenever the
system is in states, the laws of classical mechanics determines0 as the state in
the next time step. This is a deterministic dynamical system whose laws we fully
understand, but it is a `black box' system in the sense that it is not feasible to
determine the exact state of the system at a given time. Statistical mechanics
is about relating the microscopic or `low-level' description of system states to
macroscopic or `high-level' states like temperature or pressure that are more
meaningful to a human observer.

Second, neural networks: A states is a list of the value of each weight of a
neural network during a training process, ands ! s0 i�, whenever the system is in
state s, the learning algorithm (e.g., backpropagation) determiness0 as the next
state given a data pointd. (Here we could taked as the label for the transition
s ! s0.) This, too, is a dynamical system whose laws we fully understand (we
can even program it) and which is deterministic once the order of data points is
�xed. But it is a `black box' system in the sense that it is very di�cult to relate
the macroscopic or high-level properties of the system (e.g., whether the network
classi�es this image as depicting a cat) to the microscopic or low-level properties
of the states (e.g., which value a certain weight has).9

Given the generality of the structure of (X; f ), many more examples are
possible. For illustrative purposes, we consider the well-known North-South
map (Walters 1982, sec. 5.1, ex. 8). It is much simpler than, say, the neural
network example, but it still displays important qualitative similarities: e.g.,
stable �xed points (convergence) and non-stable �xed points (divergence).

The North-South map is the system (X; f ) depicted on the left of �gure 2.1:
The state spaceX consists of the points on the circle and the dynamicsf : X ! X
is de�ned as follows: Ifx = p is the `North Pole', then f (x) = x. Otherwise, draw
a line from p through x and go to where it intersects the real line (the horizontal
line), then go to the midpoint from the origin q (the South Pole), and draw a line
back to the North Pole: the intersection of this line with the circle is the new state
f (x). Thus, any state x 62 fp; qg will move under the dynamics closer and closer
to the South Poleq. Moreover, both the North Polep and the South Poleq are
�xed points. However, the North Pole is unstable in the sense that every close-by

9For an overview of the connections between statistical mechanics and deep neural networks,
see (Bahri et al. 2020). Also see our chapter 7.



22 Chapter 2. Trajectory domains 1: Construction

p

q

x

f (x)

1
2

N

E

S

W

N

W E

S

Figure 2.1: The North-South map (left) and the observed system under the
partitioning into the four sets N; E; S; W (right).

state x 6= p (to which the system might be perturbed to fromp) will move away
from p, while the South Pole is stable in the sense that all close-by statesx 6= q
will converge back toq.

Observed system Next, what does it mean to observe the system? For simplic-
ity, we'll identify possible observations (i.e., observable properties) with subsets of
the state space: To make observationP if the system is in states corresponds to
coming to know that s has propertyP, i.e., that s is in the setP of states that
have property P.

For example, the observable property that the network classi�es a given picture
correctly as depicting a cat corresponds to the setP of weight-states where the
network shows this classi�cation behavior. In the North-South map, assume we
have a way to observe whether the system is in theN orth, East, South or West
arc as indicated in the �gure.

When we regard the system through these possible observations, we see the
observed system: Its states are the possible observations that we can make, and
P ! Q i� there is x 2 P with f (x) 2 Q, i.e., if we make observationP now,
then we can make observationQ next. For the North-South map, it is depicted
on the right of �gure 2.1. In particular, we neither can haveN ! S (any orbit
starting in N has to go throughW or E to get to S), nor W ! W (starting in
W will take one outsideW), nor W ! E (once orbiting down the left side of the
circle, one cannot go to the right side anymore). Also note that unlike the original
deterministic system, the observed system need not be deterministic.

Observation topology A more general perspective on the observed system
is as follows. (This more technical paragraph can be skipped.) We've said that
observable properties are subsets ofX , but which subsets are observable properties?
We take it to be those subsetsP for which we have �nite decision procedure



2.3. Two guiding examples 23

to tell whether the system, in a given state, has the propertyP or not. In the
`cat picture' example, we have such a procedure: given weight states, input the
picture to the neural network, let it run and see whether it provides a positive
answer (i.e., it hasP) or a negative answer (i.e., it doesn't haveP).

Let's write B for the set of these `decisively observable properties'. We treat it
as a variable, but given this intended interpretation it makes sense to demand:

ˆ B is a Boolean algebra: if we can decisively observeP and alsoQ, then we
also can decisively observeP c, P \ Q, and P [ Q,

ˆ B is closed underf -preimage: if we can decisively observeP, we can decisively
observef � 1(P), because to see whethers is in f � 1(P), we see whetherf (s)
hasP, i.e., we wait one time step and see whether the system has property
P,

ˆ B is countable: the decision procedures need to be accessible to us, so we at
least need to be able to enumerate them.10

Note that we're consideringdecidableobservable properties and notsemi-decidable
observable properties which, famously, form a topology rather than a Boolean
algebra (Smyth 1983; Vickers 1989). In the North-South map,B could be the
closure under Boolean operations andf -preimages off N; E; S; W g.

Given our collectionB of decisively observable properties, we wonder what are
the possible ways things can be according to these observations. In other words,
what are the possible complete and consistent collections of properties that the
system could have at a given point in time? These are known as the ultra�lters
of B. Every state s induces such an ultra�lter (the set of propertiesP 2 B that
s has). If things go well, also every ultra�lter F determines a unique state (the
state s which has all the propertiesP 2 F ), and if not, we may think of F as an
`imaginary' state that `logically completes' the state space of the system. The set
of ultra�lters of B is denotedSpec(B) and we may call it the set oflogical states
of our system (X; f ).

This set Spec(B) of logical states has a natural topology induced by the basic
open sets of the formf F : P 2 F g for P 2 B. This is a Stone space: zero-
dimensional, compact, and Hausdor�. (That is the classic Stone duality: the
correspondence between Boolean algebras and Stone spaces.) SinceB is countable,
Spec(B) also is second-countable and hence a compact metrizable space.

Moreover, the dynamicsf : X ! X naturally extends to a dynamicsf :
Spec(B) ! Spec(B) on the logical states: SinceB is closed under preimage, the
function h : B ! B given by P 7! f � 1(P) is well-de�ned. It is a Boolean algebra
homomorphism and hence determines, by Stone duality, the continuous function
f : Spec(B) ! Spec(B) given by F 7! h� 1(F ) = f P 2 B : f � 1(P) 2 F g.11

10Cf. there are only countably many Turing machines.
11We'll see this construction again in section 5.3.2 of chapter 5.



24 Chapter 2. Trajectory domains 1: Construction

For all we ever can observe, the `logical' system (Spec(B); f ) simply is the
system (X; f ) that we're observing: any di�erence between them can, in a sense,
never be observed by us. Thus, we may assume without loss of generality that
(X; f ) is a zero-dimensional topological system:X is a zero-dimensional compact
metrizable space andf : X ! X is continuous. And B essentially consists of
clopen subsets ofX . (We also could have taken these systems as our starting
point, since the study of zero-dimensional topological systems is an important
sub�eld of dynamical systems theory (Downarowicz and Karpel 2016).)

Trajectories The possible sequences of observations are those trajectories in
the observed systemA that result from observing the orbit of some statex of the
underlying system (X; f ):

T :=
n

t : t is an A-trajectory followed by somex 2 X
o

;

where we sayx follows t i�, for k = 0; : : : ; jt j, f k(x) 2 s(t)(k), i.e., if the system
starts in x, then, after k time steps, we can make the observations(t)(k) (the
k-th state of t).

We can expectT to have two crucial properties:

(a) If t � t0 2 T and t is nonempty, thent 2 T.

In words: T is closed under nonempty pre�xes.

(b) For all in�nite A-trajectories t, if, for all n, t � n 2 T, then t 2 T.

In words: T is `�nitary' or `compact': if t is not in A, we can realize this
after some �nite amount of time.

Indeed, concerning (a), ifx follows t0, then it also follows the initial segmentt.
Concerning (b), in the observed system of the North-South map, we're in the
fortunate case that all trajectories are followed by somex, so this property holds
vacuously. In the general case of the preceding paragraph,X is compact and
decisively observable properties are clopen. De�neAn :=

T n
k=0 f � ks(t)(k), i.e.,

the set of thosex 2 X that follow t � n. Then (An)n is a decreasing sequence of
non-empty closed subsets ofX , so, by compactness, there isx 2

T
n An , whence

t 2 T.

Trajectory equivalence Each trajectory represents a possible behavior of the
system, but often we want to move to a higherlevel of abstraction(or explanation)
where we consider some distinct trajectories to be instances of the same behavior.
For instance, in the neural network example we might want to investigate whether
a certain initial value range for some weights is predictive of a certain classi�cation
behavior at the end of learning (a microscopic explanation of a macroscopic
property). So we consider two observation trajectoriest and t0 equivalent if,



2.3. Two guiding examples 25

intuitively, initially their values of the weights in question lie in the same range
and the network ends up with the same classi�cation behavior on the test data
set. Thus, trajectory equivalence represents a level of abstraction where we ignore
information that we don't deem relevant for the intended explanation of the
macroscopic properties.

There are many trajectory equivalence relations that can be de�ned, and this
chapter is about axiomatizing those that provide a `good' level of abstraction. To
provide some concrete examples, for the North-South map, we can consider two
trajectories equivalent if they have the same length and visit the same sets of
states (which here implies having the same start and end). Intuitively, equivalence
then represents predicability of observations within a certain number of time steps.

In the general case, we may de�ne, fort; t 0 2 T, that t � t0 i� jt j = jt0j and if
jt j > 0, there is 1� i � j t j such that

(i) Same start: s(t)(0) = s(t0)(0).

(ii) Consistent observations:
T i

k=0 f � k(s(t)(k)) =
T i

k=0 f � k(s(t0)(k)). (So we
might make di�erent observations alongt � i and t0 � i , but we cannot
deduce a di�erence in microscopic states.)

(iii) Same end:last(t � i ) = last(t0 � i ) and, for all n � 0, t(i + n) = t0(i + n)
whenever de�ned.12

Both in the North-South map and in the general case, we can expect� to
have two crucial properties:

(c) For all t; t 0 2 T, if t � t0, then jtj = jt0j and there isi � 1 such that, for all
n � 0, t � i + n � t0 � i + n.13

In words: Equivalent trajectories have the same length and, after some �nite
time, become (and stay) equivalent.

(d) For all nonempty �nite t; t 0 2 T with t � t0, if tt 002 T is �nite, then t0t002 T
and tt 00� t0t00.14 (If t, t0, or t00are empty, this holds trivially.)

12This is indeed an equivalence relation: Re
exivity and symmetry are clear. For transitivity,
assumet � t0 and t0 � t00. So jt j = jt0j = jt00j, and if > 0, then there are 1� i; j � j t j such that
the conditions (i){(iii) are satis�ed for ( t; t 0) and (t0; t00), respectively. Let l := max(i; j ) and
show that it satis�es (i){(iii) for ( t; t 00).

13Proof: North-South: If t � t0, then, by de�nition, jt j = jt0j. If they are �nite, choose
i := jt j + 1. If they are in�nite, they either both have a tail of N -states or of S-states, and we
choosei large enough such thatt(i ) = t0(i ). General: If t � t0, then, by de�nition, jt j = jt0j. If t
is empty, choosei = 1, and if t is nonempty, choosei as in the de�nition of t � t0.

14Proof: North-South: The crucial part is to show t0t00 2 T. Since t � t0, they have the
same last stateM . Let M 0 be the �rst state of t00(if t00 is empty the claim is trivial). Since
tt 002 T, M ! M 0 is an A-transition. So the paths t0 and t00can be concatenated, i.e.,t0t00 is
an A-trajectory. So t0t002 T, since anyA-trajectory is followed by some state. General: Since
jt j = jt0j > 0, let 1 � i � j t j be as in the de�nition of t � t0. Write t0 := tt 00and t1 := t0t00.



26 Chapter 2. Trajectory domains 1: Construction

In words: Extending equivalent trajectories in the same way yields equivalent
trajectories as soon as one extension is inT.

Possible behavior So we're looking at a structure (A; T; � ) where A is a
countable transition system,T is a set ofA-trajectories, and� is an equivalence
relation on T such that (a){(d) are satis�ed. An equivalence class [t] describes a
possible behavior ofA at the level of abstractionrepresented by� .

To understand these behaviors, we're lead to study the structure of the
set of possible behaviorsT := T= � . It is useful to start with the subset
T �n := f t 2 T : t �nite g= � . On there we have a natural order ofinformation
containment between behaviors: For [t]; [t0] 2 T �n , de�ne

[t] � [t0] :, 8 t0 2 [t]9t1 2 [t0] : t0 � t1:

A natural way to extend this to in�nite behaviors [t]; [t0] 2 T is: [t]v [t0] i�, for all
n there ism such that [t � n] � [t0 � m]. (The main result of this chapter will show
that this essentially also is the only natural way.) This de�nition makes sense:

2.3.1. Lemma. 1. (T �n ; � ) is a preorder.

2. For �nite t; t 0 2 T, if t � t0, then [t] � [t0].

3. The de�nition of v is independent of the representative.

4. v and � coincide onT �n .

Proof. Concerning (1), this is immediate. Concerning (2), lett0 2 [t] and write
tt 00= t0 2 T. So (d) impliest0 � t0t00=: t1 2 T and t1 � t0.

Concerning (3), we show: Ift0 2 [t] and t1 2 [t0] and [t]v [t0], then [t0]v [t1]. So
given n, �nd m such that [t0 � n] � [t1 � m]. Sincet0 � t, use (c) and leti � 1 be
such that, for all k � 0, t0 � i + k � t � i + k. Choose somek � i; n . So, by (2),
[t0 � n] � [t0 � k] = [ t � k]. Since [t]v [t0], there is j such that [t � k] � [t0 � j ].
Sincet0 � t1, use (c) as above and getm � j such that t0 � m � t1 � m. So, by (2),
[t0 � j ] � [t0 � m] = [ t1 � m], as needed.

Concerning (4), let t; t 0 2 T be �nite. If [ t]v [t0], let n := jtj, so there ism
with [ t] = [ t � n] � [t0 � m] � [t0], where the last step follows by (2). Con-
versely, if [t] � [t0], then, for any n, let m := jt0j and we have, by (2), that
[t � n] � [t] � [t0] = [ t0 � m]. 2

We have t1 2 T because
T j t 1 j

k=0 f � k t1(k) =
T j t 0 j

k=0 f � k t0(k) (since until i , the intersections are
identical by assumption, and after i the trajectories are identical), and the latter is nonempty.
And i also witnessestt 00� t0t00.



2.3. Two guiding examples 27

Trajectory domain Now, the key insight into the structure of the set of possible
behaviorsT is stated in the following theorem. Its terminology was reviewed in
section 2.2.2.

2.3.2. Theorem . The partial order (T; v ) induced by(T; v ) is isomorphic to the
ideal completion of(T �n ; � ), and hence an! -algebraic dcpo.

In section 2.3.2, we discuss in detail the origins of the proof and the surrounding
ideas in the di�erent setting of concurrent computation. The short answer will be:
although di�erent in setting and detail, the essential idea of the proof is provided
by Droste (1990, thm. 2.3) and Stark (1990, thm. 3). Since the theorem is a
consequence of our main result (theorem 2.6.3 below), we only provide a proof
sketch.
Proof sketch. We show that the mapping [[t]� ]v 7! I (t) :=

�
[t0] 2 T �n :

9m : [t0] � [t � m]
	

is an order-isomorphism. It is readily seen to be well-
de�ned (i.e., independent of the representative andI (t) is an ideal in T �n ) and an
order-embedding (i.e., [t]v [t0] i� I (t) � I (t0)).

So the key is surjectivity. Since the system is assumed to be countable,T �n

is countable, too. So ifD is an ideal ofT �n , it is a countable directed set and
hence has a co�nal chainC = [ t0] � [t1] � : : :. By de�nition of � , we can pick
the t i such that eacht i is an extension of the previoust j 's. Let t be the trajectory
having all t i as initial segments. By (b), it is in T. Then I (t) = D: If [t0] 2 I (t),
then [t0] � [t � m] for somem, so, sinceD is a downset, [t0] 2 D. If [t0] 2 D, then,
since the chain is co�nal, there ism such that [t � m] � [t0], whence [t0] 2 I (t). 2

As an example, let's consider the trajectory domain of the North-South map
as shown in �gure 2.2. We focus on trajectories starting withN (plus the empty
trajectory) and abbreviate trajectories thus:N ! N ! E ! S becomesN 2E 1S1.
The ellipses `hide' a more complicated order involving equivalence classes of the
form written inside the ellipse.

What does the trajectory domain tell us about the system's behavior? Here
are three examples: First, the fact that it has very few noncompact elements
relates to the system being very `convergent' or `non-chaotic'. Second, it highlights
consistent and inconsistent behavior: On the one hand, [[N 1W 1]] and [[N 1E 1]],
for instance, are inconsistent (i.e., aren't both informationally contained in some
behavior) which re
ects that there are no transitions betweenW and E. On the
other hand, [[N 5]] and [[N 4W 1]], for instance, are informationally incomparable,
but they both are contained in [[N 5W 1S1]] = [[ N 4W 1S2]]. Third, the fact that
the North Pole is an unstable �xed point is re
ected in the fact that its in�nite
�xed point behavior [[N ! ]] is dominated by the in�nite non-�xed point behaviors
[[N nW 1S! ]] and [[N nE 1S! ]]: because any initial segmentN n can also be realized
by a su�ciently close state x 6= p which, however, will eventually evolve into an
initial segment N nW 1S1 or N nE 1S1 of the in�nite non-�xed point behavior.



28 Chapter 2. Trajectory domains 1: Construction

[[� ]]

[[N n ]]

[[N nW 1]] [[N nE 1]]

[[N nW 1Sk ]] [[N nE 1Sk ]]...

...
...[[N ! ]]

[[N nW 1S! ]] [[N nE 1S! ]]

Figure 2.2: A sketch of the trajectory domain of the North-South map.

2.3.2 Concurrent computation

Curiously, in the study of concurrent computation, we can also �nd the structure
(A; T; � ) of an LTS A together with a set ofA-trajectories T and an equivalence
relation � on T satisfying properties (a){(d).

Concurrency Concurrency is a vast �eld of computer science, and it is usually
sketched along the following lines (Lamport 2015; Winskel and Nielsen 1995). In
sequential computation|as performed, e.g., by Turing machines|, the computing
system performs one task after the other as dictated by its program. In concurrent
computation|e.g., electrical circuits, the internet, or (arti�cial) neural networks|,
many computing units form a network mutually in
uencing each other and usually
performing a joint task.

As a result, several execution paths of this system of computing units may be
seen as performing the same task (or computation). To illustrate this, consider
the well-known situation of �gure 2.3 (Winskel and Nielsen 1995). Assume the
system is in the `global' states which describes the state of each computing unit.
Then it could perform either the action� of, say, updating unit 1 or the action
� of updating unit 2. This respectively yields the two new statess0 and s1. In
each of these states the respective other unit can be updated, and this happens to
be such that either order of updating yields the same global states0. Thus, we'd

consider the twodistinct execution pathst = s ��! s0
�
�! s0 and t0 = s

�
�! s1

��! s0 to be
behaviorally equivalent.



2.3. Two guiding examples 29

s0

s0 s1

s

� �

� �

Figure 2.3: The independence diamond.

Models of concurrency There is a plethora of formal models to describe and
reason about the behavior of concurrent systems (Baier and Katoen 2008; Sassone,
Nielsen, and Winskel 1996; Winskel and Nielsen 1995). We'll mention some
(roughly in increasing generality) that are particularly suited to describe the above
intuition of equivalence of execution paths.

First, Mazurkiewicz trace languages.15 These are structures of the form
(M; L; I ) where L is a set ofactions, I � L � L is a symmetric and irre
exive
relation, called the independencerelation, and M � L<! is a nonempty set of
strings overL that is pre�x closed (for all t 2 L<! and � 2 L, if t� 2 M , then
t 2 M ) and I -closed (for allt; t 0 2 L<! and �; � 2 L, if t��t 0 2 M and �I� , then
t��t 0 2 M ). Thus, we think of M as the set of possible �nite sequences of actions
(from the set L) that the system can perform, and the independence relationI
describes which actions can occur concurrently. In the independence diamond, we'd
have �I� , so the sequences of actions�� and �� would be considered equivalent.
More generally, one de�nes an equivalence relation' on M as the smallest
equivalence relation such thatt��t 0 ' t��t 0 whenever�I� . Its equivalence classes
are calledtraces. A natural preorder onM is t � t0 i� 9t00: tt 00' t0 which becomes
a preorder on traces when quotienting under' . (For extensions, see, e.g., Katz
and Peled 1992 loosening the constraint on the independence relation to be �xed
for all actions.)

Second, asynchronous transition systems.16 Their idea is to specify the tran-
sition system that gives rise to the possible strings of labels (of a Mazurkiewicz
trace language). So they are structures (A; I ) where A is an LTS andI � L � L
is an irre
exive and symmetric relation, called the independence relation, such
that the following axioms are satis�ed: (i) Every label occurs in a transition, (ii)
preforming the action described by a label yields a unique state, and (iii) the
independence diamond is respected, i.e., the lower half of the diamond can be
completed to the upper half, and the left half of the diamond can be completed
to the right half. (See the references for a formal statement.)

15They were introduced by Mazurkiewicz (in 1977); for references and an overview, see Winskel
and Nielsen (1995, sec. 7).

16They were introduced independently by Bednarczyk (in 1988) and Shields (in 1985); for
references and an overview see Winskel and Nielsen (1995, sec. 10).



30 Chapter 2. Trajectory domains 1: Construction

Third, automata with concurrency.17 Their main idea is to generalize the
independence relation to be relative to the state of the transition system and
not �xed for all labels (cf. the extension of trace languages above). Concretely,
an automaton with concurrency relations is a structure (A; (I s)s2 SA ) where A
is a countable LTS and eachI s � L � L is a irre
exive and symmetric relation
such that the axioms (i) and (ii) are satis�ed and if �I s� , then the independence
diamond of �gure 2.3 can be formed (for details see the references).

Fourth, labeled transition systems with independence.18 They have the same
structure (A; I ) as asynchronous transition systems, but they are governed by
di�erent axioms (see the references for details). The main di�erence is that they
allow de�ning two transitions to be occurrences of the same event if, roughly,
they participate in an appropriate independence diamond. (Other than being an
equivalence relation, the exact de�nition will not be important for us.)

(We haven't mentioned two other important models of concurrency: Petri nets
and event structures. Winskel and Nielsen (1995) discuss their close connections
to the models mentioned above.)

Generalization We show that these models essentially have the structure
(A; T; � ) of an LTS A together with a set ofA-trajectories T and an equivalence
relation � on T:

First, given a Mazurkiewicz trace language (M; L; I ) we can think of it as
consisting of the one-state LTSA = ( f ig; i; L; ! ), where ! := f ig � L � f ig is
the trivial relation, together with the set of A-trajectories T with label sequences
that are in M :

T :=
�

t A -trajectory : 8n : l (t � n) 2 M
	

:

The equivalence relation� on T is the natural extension of' : t � t0 i� 9i8n :
l(t � i + n) ' l (t0 � i + n).19

Moreover, this satis�es properties (a){(d): Properties (a) and (b) are satis�ed
by construction. Concerning (c), ift � t0, then 9i8n : l(t � i + n) ' l (t0 � i + n),
so jtj = jt0j since' implies having the same length and, for alln � 0, t � i + n �
t0 � i + n. Concerning (d), this is a basic feature of' in trace languages (see e.g.
Winskel and Nielsen 1995, prop. 7.1.3).20

17See Bracho and Droste (1994) and Droste (1990).
18See Sassone, Nielsen, and Winskel (1996) and Winskel and Nielsen (1995). Related models

are: the concurrent transition systems of Stark (1990), the geometric approaches of Fajstrup,
Rau�en, and Goubault (2006), Goubault and Jensen (1992), and Pratt (1991), or the transition
systems with independence and multi-arcs of Hildebrandt and Sassone (1997).

19This is an equivalence relation: It clearly is re
exive and symmetric since ' is. For
transitivity, if i and j witness the equivalence of (t; t 0) and (t0; t00), then k := max(i; j ) witnesses
the equivalence of (t; t 00): for n � 0 we have l(t � k + n) = l(t � i + ( k � i + n)) ' l (t0 �
i + ( k � i + n)) = l(t0 � j + ( k � j + n)) ' l (t00� j + ( k � j + n)) = l(t00� k + n).

20Let t; t 0 2 T be nonempty �nite with t � t0 and tt 00 2 T �nite. Hence, l(t) ' l (t0) and



2.3. Two guiding examples 31

Second, let's consider asynchronous transition systems and automata with
concurrency. Because of their similarity, we'll only discuss the latter. With slightly
di�erent terminology, we follow Bracho and Droste (1994) and Droste (1990); for
similar constructions see Stark (1989), Stark (1990), and Katz and Peled (1992).
Let (A; I s) be an automaton with concurrency relations. LetT be the set of
all A-trajectories starting in the initial state. Trajectory of equivalence of �nite
t; t 0 2 T is given by: the re
exive and transitive closure� of t � 0 t0 i� t and t0

only di�er by an independence diamond, i.e., they are of the form

t = t(0) : : : t(i � 1) (s; �; s 1) (s1; �; s 0) t(i + 2) : : : t(n)
t0 = t0(0) : : : t0(i � 1) (s; �; s 2) (s2; �; s 0) t0(i + 2) : : : t0(n)

for some�I s� . We preorderT by t � t0 i� 8n9m : 9t1 2 T : t � n � t1 � t0 � m.
Bracho and Droste (1994) now take two trajectoriest and t0 to be equivalent ift � t0

and t0 � t. However, we de�ne the �ner relationt � t0 i� 9i8n : t � i + n � t � i + n.
Notice that � for �nite trajectories essentially is ' for trace languages and

that � is the natural extension of the preorder of traces languages to in�nite
trajectories. A di�erence to trace languages is that, apart from the restriction to
start with the initial state, the set of possible trajectories is not constrained any
further.

This, too, satis�es (a){(d): Properties (a){(b) are satis�ed by construction.
Concerning (c), if t � t0, then 9i8n : t � i + n � t � i + n so jtj = jt0j (since �
implies having the same length) and, for alln, t � i + n � t � i + n. Concerning (d),
if t; t 0 2 T are nonempty �nite with t � t0 and tt 002 T �nite, then t0t00 is an
A-trajectory (since t � t0 which implies last(t) = last(t0)) that starts in i (sincet0

does), sot0t002 T, and tt 00� t0t00whencett 00� t0t00.
Third, for transition systems with independence we may also consider another

notion of trajectory equivalence:t � t0 i� jt j = jt0j and, for n < jtj, t(n) and t0(n)
are occurrences of the same event. We'll show that this implies a weaker version
of property (d) that we'll introduce as part of our more general axiomatization
(see example 2.7.6).

Connections to domain theory There are various connections between mod-
els of concurrency and domain theory.

Based on the partial order of traces, one can construct an event struc-
ture (Winskel and Nielsen 1995, sec. 8.3), and event structures, in turn, can
represent various classes of domains: Winskel and Nielsen (1995, p. 125) provide
a brief summary.

More directly, assume (A; I s) is an automaton with concurrency relations.
Then, for the set of trajectoriesT with the preorder � de�ned as above, the
induced partial order (T ; � ) is a domain whose compact elements are given by

l (tt 00) = l(t)l (t00) 2 M . By said proposition, l (t0t00) = l(t0)l (t00) 2 M and l(tt 00) ' l (t0t00). Hence,
t0t002 T (since M is pre�xed closed) and tt 00� t0t00(choosei := jtt 00j).



32 Chapter 2. Trajectory domains 1: Construction

equivalence classes of �nite trajectories inT|see Droste (1990), Bracho and
Droste (1994), and Stark (1990).

Let's compare this to the connection to domain theory from the black box
system example. There we've motivated the move from trajectories to their
equivalence classes as moving from concrete instances of the system's behavior to
the behavior at the level of abstraction of interest. Here, in the case of concurrent
computation, the motivation is well put by Stark:

\concurrency is re
ected in the [domain] through the existence of
nontrivial upper bounds. Since our goal is to make concurrency explicit,
one might argue that concurrent computations [i.e., equivalence classes],
rather than computation sequences [i.e., trajectories], ought to be the
main focus of attention" (Stark 1990, p. 54).

Moreover, we'll distinguish the concepts oftrajectory equivalence� and infor-
mation containment v , i.e., we don't de�ne equivalence as mutual information
containment. We'll �nd this separation conceptually useful in searching for the
right axiomatization.

2.3.3 Summary and outlook

To summarize, we've discussed two examples: observing black box systems and
concurrent computation. Both have the structure (A; T; � ) of an LTS A together
with a set of A-trajectories T and an equivalence relation� on T such that
properties (a){(d) were satis�ed. This allowed two things: (i) there is a natural
information containment order on the set of possible behaviorsT= � , and (ii) this
in fact forms an ! -algebraic domain.21

Given these examples, it is natural to ask how general they are: In the black
box system example, we ask which abstractions are good ones. Which equivalence
relations on the set of possible trajectories provide a `well-structured' representation
of the types of behaviors of interest? In the concurrency example, we ask which
other notions of concurrency are plausible. Which equivalence relations on the set
of possible trajectories provide the `hallmark' structure identi�ed in the literature:
that the equivalence classes|i.e., concurrent computations|form a domain? For
example, can we circumvent the restriction that concurrent computationscannot
di�er in their computation time?

Thus, we ask: What are the minimal demands on the structure (A; T; � ) such
that (i) we can de�ne a natural information containment, and what is additionally

21In hindsight, it may not be too surprising that, despite their distinct appearance, both
examples had this structure: we could think of equivalent trajectories in the observed system as
being `concurrent' computations done by the black box system (under our interpretation). In
the other direction, it is an interesting question|somewhat similar to hidden-variable theory
discussions in physics|in which cases it is possible to think of concurrent execution paths as
equivalent observation trajectories of an underlying low-level deterministic black box system.



2.4. Pre-behavioral transition systems 33

needed that (ii) this forms a domain? In other words, we don't ask theanalytic
question of building further equivalence relations, but rather thesynthetic question
of what the right axioms are for these structures.

As already sketched in the introduction, the answer will be this: First, we
de�ne a `pre-BTS' as the structure (A; T; � ) with some very minimal axioms.
Then we investigate what it takes to satisfy the (i)-demand and �nd one more
axiom which, when added, yields a `BTS'. The characterization theorem then
says that satisfying the (i)-demand is essentially equivalent to the much stronger
(ii)-demand.

2.4 Pre-behavioral transition systems

We introduce pre-behavioral transition systems (pre-BTS) as structures (A; T; � )
whereA is an LTS, T a set ofA-trajectories, and� an equivalence relation on
T satisfying some minimal axioms. They are `pre' in the sense that we'll later
explain why we should add one more axiom, which then yields BTSs. After the
formal de�nition, we discuss the axioms; in particular, how they relate to the
guiding examples. And we construct basic examples of pre-BTSs.

2.4.1 De�nition

Before we de�ne pre-behavioral transition systems, we need the de�nition of
information containment between �nite behaviors whose importance we've already
encountered in the examples.

2.4.1. Definition . Let (A; T; � ) be a structure whereA is an LTS, T a set of
A-trajectories, and� an equivalence relation onT. Write [ t] for the � -equivalence
classes. For �nitet; t 0 2 T, de�ne

[t] � [t0] :, 8 t0 2 [t]9t1 2 [t0] : t0 � t1:

In words, every realization of behavior [t] can be extended to a realization of
behavior [t0].

Now we can state the de�nition of a pre-behavioral transition system.

2.4.2. Definition . A pre-behavioral transition system(pre-BTS) is a triple M =
(A; T; � ) where A is an LTS, T is a set ofA-trajectories, and� is an equivalence
relation on T such that:

1. For all t 2 T, if t0 is a nonempty �nite initial segment of t, then t0 2 T.

2. For all in�nite A-trajectories t, if 0 < n 0 < n 1 < : : : with t � ni 2 T and
[t � ni ] � [t � ni +1 ] (for all i � 0), then t 2 T.



34 Chapter 2. Trajectory domains 1: Construction

3. For all t; t 0 2 T with t � t0, if t is empty, then t0 is empty, and if t is �nite,
then t0 is �nite.

4. For all in�nite t; t 0 2 T, if t � t0, then there is i; j � 1 such that, for all
n � 0, t � i + n � t0 � j + n.

If M is a pre-BTS, we writeM = ( AM ; TM ; � M ) and AM = ( SM ; iM ; LM ; ! M )
and call � M the trajectory equivalence ofM . We call M countable if AM is
countable. It will be useful to have a name for the following stronger version of
axiom (2):

(2)� For all in�nite A-trajectories t, if t 62T, then there is n � 1 such that
t � n 62T.

To be more precise, we should probably call suchM a pre-behaviorallabeled
transition systems, but the current name already is enough of a mouthful, so we
omit the term `labeled'.

2.4.2 Comments

Finite information containment First, technically, de�nition 2.4.1 of infor-
mation containment � between �nite behaviors would also work for in�nite
trajectories. However, then any in�nite [t] is maximal: If [t] � [t0], then t 2 [t]
can be extended tot1 2 [t0], but, since t is in�nite, t = t1, whence [t] = [ t0]. This
discards too much structure ofT= � . (In example 2.7.7 below, we discuss this in
more detail.) In section 2.5, we discuss how to extend this de�nition appropriately
to in�nite behaviors.

Second, the formal idea behind the de�nition of� is to `lift' the extension
preorder � on T to the preorder � on equivalence classes (i.e., certain subsets of)
T. Such constructions are well-known: For example, to characterize the Hoare
powerdomain of a continuous domainD with basis (B; � ), one `lifts' the relation
� from B to �nite subsets of B by de�ning X � H Y i� 8x 2 X 9y 2 Y : x � y.
(The Hoare powerdomain ofD then is isomorphic to the ideal completion of the
set of �nite subsets ofB ordered by� H .) For the Plotkin powerdomain, one also
demands the `dual':8y 2 Y9x 2 X : x � y.22 This is then an instance of the
Egli{Milner relation lifting. 23 However, in our setting, adding this additional `dual'
demand seems to be too strong in general: for [t] to be informationally contained
in [t0] it need not be the case that every realization of [t0] is an extension of a
realization of [t].

22See e.g. Abramsky and Jung (1994) for these results about powerdomains.
23This is yet a special case of the notion of `relation lifting' in coalgebra (Kurz and Velebil

2016, example 2.8).



2.4. Pre-behavioral transition systems 35

Comparison to the guiding examples In the guiding examples, we've iden-
ti�ed the properties (a){(d) as restricting the structures (A; T; � ), so let's discuss
how the axioms (1){(4) of a pre-BTS are generalizations thereof.

First, axiom (1) is just verbatim property (a). Note that we can equivalently
demand that any nonempty initial segment t0 of t 2 T is in T (because ift0 is
in�nite, then t0 = t 2 T).

Second, property (b) is the stronger version (2)� of axiom (2). The reason
for opting for the weaker version as axiom is that (i) it is enough for the desired
results, (ii) we want the axioms to be as weak as possible, and (iii) it allows system-
atically disregarding `non-approximable' behavior as we'll see in the next chapter.
However, if the pre-BTS has the property of being bisimulative (de�nition 2.7.2),
the two versions are equivalent.

Third, axioms (3){(4) are a weakening of property (c). While property (c)
required equivalent trajectories to have the same length, axiom (3) only demands
them to have the same `cardinality type': one is empty (resp., �nite, in�nite) i�
the other is empty (resp., �nite, in�nite). Axiom (4) then is similar to property (c)
but now restricted to in�nite trajectories and taking into account the lack of a
`global time' by allowing distinct o�sets i and j (rather than a single i ).

Fourth, property (d) has no analogue axiom, and section 2.5 will be about
�nding a much weaker version of property (d) that can then serve as an axiom to
turn a pre-BTS into a BTS.

General motivation for pre-BTSs Independent of the guiding examples, the
axioms of a pre-BTS can be motivated generally as follows.

First, the notion of an LTS speci�es locally which trajectories are possible.
However, not every trajectory that is locally possible isglobally possible.24 Con-
sider, for example, an action� that requires a certain amount of some bounded
resource like storage space. Then there is a bound on how often� can be per-
formed which becomes relevant only at a global scale but not at a local one. Yet,
it is the globally possible trajectories that we're interested in when we want to
know what the `possible behavior' of the system is.25 So, we need to specify
the globally possible trajectories explicitly as a subsetT of the set of all locally
possible trajectories.

This motivates axioms (1) and (2): Regarding (1), nonempty initial segments
of globally possible trajectories should be globally possible as well. (We discuss
the empty trajectory below.)

Regarding (2), its stronger version (2)� demands that if an in�nite locally
possible trajectory t is not globally possible, then already some �nite initial

24This general situation of local possibility/consistency and global impossibility/inconsistency
is known as contextuality (Abramsky and Brandenburger 2011; Abramsky et al. 2015).

25For example, such additional global constraints on the possible trajectories play a role when
considering liveness property of the system (Van Glabbeek and H•ofner 2018; Manna and Pnueli
1991).



36 Chapter 2. Trajectory domains 1: Construction

segment oft fails to be globally possible. Thus, the property of `globally possible'
is refutative: if it is false, we can eventually discover that it is false|this is
necessary for it to be a constructive or \�nitary" concept. In the example, if an
in�nite trajectory t exceeds the storage space with its� -applications, then this
happens already after some �nite amount of time. Again, as an axiom, we only
demand the weaker version (2).

Second, as already discussed, globally possible trajectories exhibit possible
behavior of the system. However, they may be instances of the same type
of behavior|as described by an equivalence relation. Two constraints seem
fundamental for this notion of trajectory equivalence: First, axiom (3) requires
that an in�nite trajectory is essentially di�erent from a �nite one, and a nonempty
trajectory is essentially di�erent from the empty one. Second, axiom (4) requires
that if two in�nite trajectories are equivalent, then there is a point from which
on they are (and remain) equivalent. This again is necessary for the notion of
trajectory equivalence to be �nitary: we exclude the possibility of two in�nite
trajectories that are equivalent without us ever being able to observe that (i.e., we
can never �nd two of their �nite initial segments that are and remain equivalent).26

On the empty trajectory As already seen in the guiding examples, axiom (1)
doesn't play a major role in the proofs, but it is very plausible and it makes
things neater (if we consider an initial segment of a trajectory we don't need
to additionally check that it is in T). However, one might wonder: Why the
restriction to nonempty initial segment? Why not count the empty trajectory as
`vacuously' globally possible (at least as soon asT is nonempty)? The answer is:
This is very muchallowed, but for greater generality we don'trequire it per axiom.
The reason is that if it is in T, then it will always be the least element in the
`behavior order', while, in the current phrasing, we could also consider behavior
preorders without (or `removed') least element.

2.4.3 Example constructions

We've already seen that the structures (A; T; � ) of the guiding examples (sec-
tion 2.3) are pre-BTSs. So let's consider some general constructions of a pre-BTS
starting from an LTS A.

First, here are some natural examples forT.

2.4.3. Example . Let A be an LTS. The setT of all (nonempty) A-trajectories
(starting in iA ) satis�es axioms (1) and (2)� , whence also (2).

Second, let's consider possible choices for� . We can always choose� to be the
identity relation on T. More interesting examples are obtained by starting with

26This is reminiscent of the idea of learning in the limit (Gold 1967).



2.4. Pre-behavioral transition systems 37

an equivalence on �nite trajectories and extending them to in�nite trajectories
guided by axiom (4) as a de�nition.

2.4.4. Proposition . Let A be an LTS andT a set ofA-trajectories. Let � 0 be
an equivalence relation onf t 2 T : t nonempty �niteg. For t; t 0 2 T, de�ne t � t0

i�

(a) both t and t0 are empty, or

(b) both t and t0 are nonempty �nite and t � 0 t0, or

(c) both t and t0 are in�nite and there are i; j � 1 such that, for all n � 0,
t � i + n � 0 t0 � j + n.

Then, if T satis�es axioms (1) and (2)� (which are stated without reference to� ),
then (A; T; � ) is a pre-BTS.

Proof. We �rst show that � is an equivalence relation onT. Re
exivity and
symmetry are immediate in each of the cases (a){(c). For transitivity, assume
t � t0 � t00, and showt � t00. If one of the trajectories is �nite, the others must
be �nite, too, and t � t00follows since both `being empty' and� 0 are transitive.
So assume that all trajectories are in�nite. There arei; j � 1 such that, for all
n � 0, t � i + n � 0 t0 � j + n, and there arek; l � 1 such that, for all m � 0,
t0 � k + m � 0 t00� l + m. Without loss of generality, j � k (the casej � k is
analogous). De�nen0 := k � j . Set i 0 := i + n0 and j 0 := l. Then we have for
n0 � 0 that

t � i 0+ n0 = t � i + ( n0 + n0) � 0 t0 � j + ( n0 + n0) = t0 � j + (( k � j ) + n0)

= t0 � k + n0 � 0 t00� l + n0 = t00� j 0+ n0;

whencet � t00, as needed. Now, axioms (1) and (2) hold by assumption, and
axioms (3) and (4) hold by construction. 2

The following are some concrete trajectory equivalences built in this manner.

2.4.5. Definition . Let A be an LTS andT a set ofA-trajectories. Consider the
following equivalence relations onf t 2 T : t nonempty �nite g:

(a) t � 1 t0 i� last( t) = last( t0)

(b) t � 2 t0 i� jt j = jt0j and last(t) = last( t0)

(c) t � 3 t0 i� l (t) = l(t0) and last(t) = last( t0).

The equivalence relation induced onT (as de�ned in proposition 2.4.4) by (a),
(b), and (c) is called theextensional, temporal, and intensional equivalence onT,
respectively.



38 Chapter 2. Trajectory domains 1: Construction

2.5 Information containment of behaviors

As mentioned, to understand the behavior of a pre-BTSM = ( A; T; � ), we want
to understand the structure of the set of possible behaviorsT= � . To give it some
notation:

2.5.1. Definition . Let M = ( A; T; � ) be a pre-BTS. De�ne T := T= � = f [t] :
t 2 Tg and T �n := f [t] : t 2 T �nite g. We call the elements ofT �n �nite behaviors
and those ofT n T �n in�nite behaviors.

We've already seen thatT �n has the natural information containment preorder
[t] � [t0]. The crucial question is how to sensibly extend this toT. This is the
topic of this section: We �rst provide three natural de�nition of such extensions
(section 2.5.1) and then we identify a condition which makes them all equivalent
(section 2.5.2).

2.5.1 Three de�nitions of information containment . . .

We'll discuss three natural candidates for a de�nition of information containment
also on in�nite behaviors. For all of them, the following notion of approximation
is crucial.

2.5.2. Definition . Let M = ( A; T; � ) be a pre-BTS. For [t] 2 T, an approxima-
tion to [t] is a pair � = ( ty; (ni ) i � 0) with ty 2 [t] and 0< n 0 < n 1 < : : : an in�nite
sequence such that [ty � n0] � [ty � n1] � : : :. We call [t] approximablei� there is
an approximation to [t].

Comments: First, this is an example where axiom (1) is handy: We have
ty 2 [t] � T, and if ty is empty, then ty � ni = ty 2 T, and if ty is nonempty,
eachty � ni is a nonempty initial segment ofty and hence inT, so we can indeed
consider the equivalence classes [ty � ni ].

Second, also note that whether [t] is approximable doesn't depend on the
representativet, so it makes sense to say that [t] (as opposed tot) is approximable.

Third, in general, not every [t] 2 T is approximable, but any [t] 2 T �n has
an approximation � = ( t; (jt j + 1 + i ) i � 0) for which [t] = [ t � n0] = [ t � n1] = : : :.
Non-approximable behaviors are|in a sense|completely `out of reach', and we'll
re
ect this in our de�nitions of information containment below by demanding
that a non-approximable behavior cannot be informationally contained in an
approximable behavior.

The �rst two de�nitions for information containment are the following.

2.5.3. Definition . Let M = ( A; T; � ) be a pre-BTS. For [t] 2 T �n and [t0] 2 T,
we de�ne:



2.5. Information containment of behaviors 39

1. [t]
 8[t0] i� for all approximations ( ty; (ni ) i � 0) to [t0], there is ani � 0 such
that [ t] � [ty � ni ].

2. [t]
 9[t0] i� either [ t0] is not approximable or there is an approximation
(ty; (ni ) i � 0) to [t0] and i � 0 with [t] � [ty � ni ].

Then, for [t]; [t0] 2 T, we de�ne:

3. [t]v 8[t0] i� (a) for all [ t0] 2 T �n , if [t0]
 8[t], then [t0]
 8[t0], and (b) if [t] is
not approximable, then [t0] is not approximable.

4. [t]v 9[t0] i� for all [ t0] 2 T �n , if [t0]
 9[t], then [t0]
 9[t0], and (b) if [t] is not
approximable, then [t0] is not approximable.

The following two lemmas collect some facts aboutv 8 and v 9, respectively,
that show that they indeed are plausible generalization of� . We move their
straightforward but somewhat technical proofs to an appendix.

2.5.4. Lemma. Let M = ( A; T; � ) be a pre-BTS. Then

1. (T; v 8) is a preorder.

2. v 8 and � coincide onT �n .

3. For [t] 2 T �n and [t0] 2 T, we have[t]
 8[t0] i� [t]v 8[t0].

4. For [t]; [t0] 2 T with [t] approximable, we have[t]v 8[t0] i� for all [t0] 2 T �n ,
if [t0]v 8[t], then [t0]v 8[t0].

5. If [t] 2 T doesn't have an approximation, then[t] is in�nite and for all
[t0] 2 T, [t0]v 8[t].

2.5.5. Lemma. Let M = ( A; T; � ) be a pre-BTS. The statements of lemma 2.5.4
remain true after replacing each subscript8 by 9.

A third de�nition for information containment is the following.

2.5.6. Definition . Let M = ( A; T; � ) be a pre-BTS. For [t]; [t0] 2 T, de�ne
[t]v dom[t0] i�

(a) for all approximations � = ( ty; (ni )) to [ t] and � 0 = ( tz; (mj )) to [ t0], � 0

dominates � , i.e., 8i � 0 9j � 0 : [ty � ni ] � [tz � mj ], and

(b) if [ t] is not approximable, then [t0] is not approximable.

In general, however, this is not a preorder. This raises the question of how these
three candidates for information containment can be united.



40 Chapter 2. Trajectory domains 1: Construction

2.5.2 . . . and how they are united

We face a rather messy situation: We have two natural preordersv 8 and v 9 and a
natural attempt v dom which, however, doesn't always work. The following notion
(de�nition 2.5.7) provides the precise condition to bring order to this mess|as
the subsequent proposition 2.5.8 shows.

2.5.7. Definition . Let M = ( A; T; � ) be a pre-BTS. We sayM is limit-
respectingif for all in�nite t 2 T and for all in�nite sequences 0< n 0 < n 1 < : : :
and 0 < m 0 < m 1 < : : : , if [t � n0] � [t � n1] � : : : and [t � m0] � [t � m1] � : : :,
then the latter dominates the former, i.e., for alli � 0, there isj � 0 such that
[t � ni ] � [t � mj ].

This is the minimal de�nition, but we could also phrase it symmetrically:
A pre-BTS M = ( A; T; � ) is limit-respecting i�, for all in�nite t 2 T and
0 < n 0 < n 1 < : : : and 0 < m 0 < m 1 < : : : , if [t � n0] � [t � n1] � : : :
and [t � m0] � [t � m1] � : : :, then they mutually dominate each other: i.e.,
8i9j : [t � ni ] � [t � mj ] and 8k9l : [t � mk ] � [t � nl ].27

2.5.8. Proposition . Let M = ( A; T; � ) be a pre-BTS. The following are equiv-
alent:

1. M is limit-respecting.

2. v 8 = v 9.

3. For all [t] 2 T and approximations(ty; (ni )) to [t], we have, for alli � 0,
that [ty � ni ]
 8[t].

4. v 8 = v dom.

5. v dom is a preorder.

6. v dom is re
exive.

In particular, M is limit-respecting i� all the relations v 8; v 9; v dom coincide and
thus provide a single natural preorder onT.

Proof. (1)) (2). Assume that M is limit-respecting. To showv 8 = v 9, it
su�ces, by de�nition, to show 
 8 = 
 9. So let [t] 2 T �n and [t0] 2 T and show
[t]
 8[t0] i� [ t]
 9[t0]. If [t0] doesn't have an approximation, both sides are true, so let
� 00be an approximation to [t0]. If [t]
 8[t0], then all approximations to [t0] dominate
[t], so in particular, � 00dominates [t], whence [t]
 9[t0]. So assume [t]
 9[t0] and
show [t]
 8[t0].

27Proof: The right-to-left direction is immediate, and for the left-to-right direction apply the
de�nition of being limit-respecting �rst to

�
(ni ); (mj )

�
and then to

�
(mk ); (nl )

�
.



2.5. Information containment of behaviors 41

If [ t0] is �nite, then, since both 
 9 and 
 8 coincide, by lemmas 2.5.4 and 2.5.5,
with � on �nite trajectories, we have that [t]
 9[t0] i� [ t]
 8[t0]. So let [t0] be in�nite.

To show [t]
 8[t0], let � 0 = ( tz; (mj )) be an approximation to [t0], and �nd j � 0
such that [t] � [tz � mj ]. Since [t]
 9[t0] and [t0] is approximable,

(� ) there is an approximation� = ( ty; (ni )) to [ t0] and i � 0 with [t] � [ty � ni ].

Sincety � t0 � tz are in�nite by axiom (3), there are, by axiom (4), k; l � 1 such
that, for all n � 0, [ty � k + n] = [ tz � l + n]. Let i 0 � 0 be such thatni 0 > k . And
let j 0 � 0 be such thatmj 0 > l . For j � j 0, de�ne n(j ) := mj � l � 0. De�ne
(n0

i ) i � 0 := ( ni + i 0 ) i � 0 and (m0
j ) j := ( k + n(j + j 0)) j � 0. Then 0 < n 0

0 < n 0
1 < : : : and

0 < m 0
0 < m 0

1 < : : : .28 Moreover, [ty � n0
i ] = [ ty � ni + i 0 ] � [ty � ni +1+ i 0 ] = [ ty � n0

i +1 ].
Note that

[ty � m0
j ] = [ ty � k + n(j + j 0)] = [ tz � l + n(j + j 0)]

= [ tz � l + ( mj + j 0 � l )] = [ tz � mj + j 0 ]:

Hence, [ty � m0
j ] = [ tz � mj + j 0 ] � [tz � mj +1+ j 0 ] = [ ty � m0

j +1 ].
Now, we apply the property that M is limit-respecting to ty and i from (� ),

and we obtain that there isj 1 � 0 such that [ty � n0
i ] � [ty � m0

j 1
]. Thus, we have

[t] � [ty � ni ] � [ty � ni + i 0 ] = [ ty � n0
i ] � [ty � m0

j 1
] = [ tz � mj 1+ j 0 ]:

Hence, forj := j 1 + j 0, we have [t] � [tz � mj ], as needed.
(2)) (3). If v 8 = v 9, then we have, by lemmas 2.5.4 and 2.5.5, that
 8 = 
 9.

So it su�ces to show (3) for 
 9 instead of 
 8. But this is immediate: If [t] 2 T
has approximation (ty; (ni )), we have, for i � 0, that [ty � ni ] � [ty � ni ], so
[ty � ni ]
 9[t].

(3)) (4). Let [t]; [t0] 2 T and show [t]v 8[t0] i� [ t]v dom[t0].
() ) To show [t]v dom[t0] we need to show properties (a) and (b). Concerning (a),

consider the approximations� = ( ty; (ni )) to [ t] and � 0 = ( tz; (mj )) to [ t0]. Let i � 0
and �nd j � 0 such that [ty � ni ] � [tz � mj ]. Indeed, by (3), we have [ty � ni ]
 8[t].
Since [t]v 8[t0], we hence have [ty � ni ]
 8[t0]. So, for the approximation� 0 to [t0],
there is j � 0 such that [ty � ni ] � [tz � mj ], as needed. Concerning (b), this is
implied by [t]v 8[t0].

(( ) To show [t]v 8[t0], clause (b) ofv 8 is given by clause (b) ofv dom, so
let [t0] 2 T �n with [ t0]
 8[t], and show [t0]
 8[t0]. So let � 0 = ( tz; (mj )) be an
approximation to [t0] and �nd j � 0 such that [t0] � [tz � mj ]. Since [t0] is
approximable, also [t] is by clause (b) ofv dom. So let � = ( ty; (ni )) be an
approximation to [t]. Since [t0]
 8[t], there is i � 0 such that [t0] � [ty � i ]. Since
[t]v dom[t0], there is j � 0 such that [ty � i ] � [tz � mj ]. Together this yields
[t0] � [tz � mj ], as needed.

28For the latter: m0
0 = k + n(j 0) = k + ( mj 0 � l ) � mj 0 � l > 0 and, sincemi < m i +1 we have

m0
j = k + n(j + j 0) = k + mj + j 0 � l < k + mj +1+ j 0 � l = k + n(j + 1 + j 0) = m0

j +1 .



42 Chapter 2. Trajectory domains 1: Construction

(4)) (5). This holds sincev 8 = v dom is a preorder.
(5)) (6). This is trivial.
(6)) (1). Let t 2 T be in�nite, and consider the strictly increasingni ; mj > 0

with [ t � n0] � [t � n1] � : : : and [t � m0] � [t � m1] � : : :. Let i � 0 and �nd
j � 0 such that [t � ni ] � [t � mj ]. Note that � = ( t; (ni )) and � 0 = ( t; (mj ))
are approximations to [t]. Sincev dom is re
exive, we have, by clause (a), that� 0

dominates� , so there isj � 0 such that [t � ni ] � [t � mj ], as needed. 2

2.6 The characterization theorem

Now we get to the main result of this chapter: the characterization theorem.
For countable systems it roughly says that, once united, the natural information
containment preordersv from the previous section not only are the only sensible
ones, but they also form the algebraic domain (T; v ). We �rst state and discuss
the theorem (section 2.6.1) and then prove it (section 2.6.2).

2.6.1 Statement

We �rst introduce two more bits of notation.

2.6.1. Definition . Let M = ( A; T; � ) be a pre-BTS. For a preorder� on T,
de�ne the induced partial order T(M; � ) := ( T; � ). We denote the elements
[[t]� ]� or, if clear from context, simply [[t]]. For [t] 2 T, we de�ne I � ([t]) :=
f [t0] 2 T �n : [t0] � [t]g.

2.6.2. Definition . Let M = ( A; T; � ) be a pre-BTS. We write Idl(T �n ; � ) for
the ideal completion of (T �n ; � ). We de�ne Idl(T �n ; � ) to be Idl(T �n ; � ) if all
[t] 2 T are approximable, and we de�ne it to beIdl(T �n ; � ) with an added top
element> if M has non-approximable trajectories. SoIdl(T �n ; � ) is an algebraic
domain (if existent, > is a compact element). We still use� to denote the order
relation in Idl(T �n ; � ).

Now the characterization theorem reads as follows. After stating it, we discuss
how it indeed provides the answers we were looking for.

2.6.3. Theorem . Let M = ( A; T; � ) be a countable pre-BTS. Let� � T � T be
a relation. The following are equivalent.

1. (a) � is a preorder that coincides with� on T �n .

(b) For [t] 2 T not approximable and[t0] 2 T, (i) [t0] � [t], and (ii) if
[t] � [t0], then [t0] is not approximable, as well.



2.6. The characterization theorem 43

(c) For in�nite t 2 T and 0 < n 0 < n 1 < : : : such that[t � n0] � [t � n1] �
: : :, we have (i) [t] is an � -upper bound, i.e., for alli � 0, [t � ni ] � [t],
and (ii) for all [t0] 2 T �n , if [t0] � [t], then there is i � 0 such that
[t0] � [t � ni ].

(d) For approximable[t]; [t0] 2 T, if, for all [t0] 2 T �n , [t0] � [t] implies
[t0] � [t0], then [t] � [t0].

2. (a) For all approximable[t] 2 T, I � ([t]) is an ideal in (T �n ; � ).

(b) For [t] 2 T not approximable and[t0] 2 T, (i) [t0] � [t], and (ii) if
[t] � [t0], then [t0] is not approximable, as well.

(c) For all approximable[t]; [t0] 2 T, [t] � [t0] i� for all [t0] 2 T �n , if [t0] � [t],
then [t0] � [t0].

(d) For all trajectories t 2 T and 0 < n 0 < n 1 < : : : such that [t � n0] �
[t � n1] � : : :, we have for all[t0] 2 T �n , [t0] � [t] i� [t0] � [t � ni ] for
somei .

3. � is a preorder that coincides with� on T �n and the mapping

� : T(M; � ) ! Idl(T �n ; � )

[[t]] 7!

(
I � ([t]) if [t] is approximable

> otherwise

is a well-de�ned function and:

(a) � is an isomorphism. In particular, T(M; � ) is an ! -algebraic domain.

(b) K (T(M; � )) =
�

[[t]] : [t] 2 T �n
	

[
�

[[t]] 2 T : [t] not approximable
	

.

(c) For all [t] 2 T and 0 < n 0 < n 1 < : : : , if [t � n0] � [t � n1] � : : :,
then [[t]] is the least upper bound inT(M; � ) of the directed subset�

[[t � n0]]; [[t � n1]]; : : :
	

of T(M; � ).

4. One of the following holds:

(a) � 2 fv 8; v 9; v domg and M is limit-respecting.

(b) � = v 8 = v 9.

(c) � = v 8 = v dom.

(d) � = v dom is re
exive.

5. � = v 8 = v 9 = v dom and M is limit-respecting.

Here is how the theorem answers the question of which preorders can sensibly
provide an `information containment' ordering on the set of behaviors of a system.
The theorem considers any possible preorder� (or in fact just a relation) that



44 Chapter 2. Trajectory domains 1: Construction

one might have onT. The �rst two items of the theorem are two formulations of
rather weak demands on� that we would like to be satis�ed if � is to provide
any sensible `information containment' relation. The third item shows that these
minimal demands actually are enough to yield some very strong demands that we
would expect in the best case of an informational order of behaviors. The fourth
and �fth item show that there in fact is only one way of de�ning this information
containment ordering and that this puts an additional demand on the underlying
system: it should be limit-respecting. Let's discuss this in a bit more detail.

Item 1 lists minimal assumptions on what it means that a preorder� is a
`sensible extension' of the information containment preorder� of �nite behaviors:
(a) is the demand that � actually is an extension of� . (b) captures the idea
that non-approximable behaviors are `completely out of reach': they form an
� -cluster which is strictly above any other� -cluster. (c) says that if we consider
an in�nite trajectory t such that its behavior can be approximated by the behaviors
realized by its initial segments, then (i) each of these initial segments [t � ni ] is
informationally contained in [t], and (ii) if a �nite behavior [ t0] is informationally
contained in [t], then this can in principle be observed (i.e., [t0] is already contained
in some step of the approximation). (d) says that, for two approximable behaviors
[t] and [t0], if [t] is not informationally contained in [t0], then this again can in
principle be observed (i.e., there is some �nite behavior that is informationally
contained in [t] but not in [ t0]).

Item 2 similarly lists an equivalent set of minimal requirements for an informa-
tion containment preorder.

Item 3 states a very strong demand on an information containment� : that
the partial order that it induces actually is (a) an ! -algebraic domain where (b)
the compact (i.e., `real' or �nitely accessible) elements precisely are the �nite
behaviors and the non-compact (i.e., the `ideal') elements are the in�nite behaviors,
and (c) where the limit of a chain of �nite behaviors is precisely given by the
in�nite behavior realized by a trajectory extending each of the �nite behaviors.
In short, `�nite behavior of the system' precisely corresponds to `compact element
of the domain' and `limit behavior of the system' precisely corresponds to `limit
in the domain'. Thus, questions about the system's behavior (e.g., concerning
�nite observability, consistency, limit behavior) correspond precisely to domain-
theoretic notions (e.g., compactness, being upper bounded, least upper bound).
Of course, we could simplyde�ne the `trajectory domain' of a system to be the
ideal completion ofT �n , but this then would precisely lack this correspondence
which is what provides meaning to the ideal completion.

Item 4 says that|focusing on the (a)-condition|that the information con-
tainment preorder � actually has to be one of natural onesv 8; v 9; v dom and the
system has to have the unifying property of being limit-respecting. Similarly for
the other conditions (b){(d).

Item 5 states that all three natural information containment preorders actually
collapse to the information containment preorder� under consideration and the



2.6. The characterization theorem 45

system is limit-respecting.

2.6.2 Proof

To show the equivalences, we'll show the following: (3), (2) ) (4) ) (5) ) (1)
) (2).

(3) ) (2) Ad (2)(a). This follows since� is well-de�ned.
Ad (2)(b). If [ t] 2 T is not approximable and [t0] 2 T, then �([[t0]]) � > =

�([[t]]), so, qua isomorphism, [[t0]]� [[t]], so [t0] � [t]. And if [ t] � [t0], then [[t]]� [[t0]],
so, qua isomorphism,> = �([[t]]) � � ([[t0]]), so, qua top element,�([[t0]]) = > , so
[t0] must be non-approximable (if it were approximable,� ([[t0]]) = I � ([t]) would be
in Idl(T �n ) and hence not the top element ofIdl(T �n )).

Ad (2)(c). By the order isomorphism condition we have, for all approximable
[t]; [t0] 2 T that

[t] � [t0] , [[t]]� [[t0]] , I � ([t]) � I � ([t0]) , 8 [t0] 2 T �n : [t0] � [t] ) [t0] � [t0]:

Ad (2)(d). Under the assumptions,I :=
�

[t0] 2 T �n : 9i : [t0] � [t � ni ]
	

is an ideal: It is nonempty, since [t � n0] 2 I . It is a downset and directed
by construction. Moreover, by (3)(c), [[t]] is the least upper bound ofA :=�

[[t � n0]]; [[t � n1]]; : : :
	

in T(M; � ). Since � is an isomorphism and since [t] is
approximable by assumption,

I � ([t]) = �([[t]]) = �(
_

A) =
_

a2 A

� (a) =
[

i

I � ([t � ni ]) = I;

where for the last identity we use that� agrees with� on T �n . Hence, for all
[t0] 2 T �n , we have [t0] � [t] i� [ t0] 2 I � ([t]) i� [ t0] 2 I i� [ t0] � [t � ni ] for somei .

(3) ( (2) First note that, by (2)(b){(c), � is a preorder (re
exive and transi-
tive).29 And by (2)(d), � coincides with� on T �n because: Given [t]; [t0] 2 T �n ,
chooseni := jt0j + 1 + i , then 0 < n 0 < n 1 < : : : and [t0 � ni ] � [t0 � ni +1 ] (because
they all equal [t0]), whence, for [t0] := [ t], we have [t] � [t0] i� there is i with
[t] � [t0 � ni ] = [ t0].

Next, we show that the mapping� is well-de�ned. By (2)(a), I � ([t]) is indeed
an ideal, whence inIdl(T �n ). And the mapping is unique: For [t]; [t0] 2 T, assume
[t] � [t0] and [t0] � [t] and show either both are non-approximable (and thus both

29Re
exive: Given [t] 2 T, if [t] is not approximable, then [t] � [t] by (2)(b), and if [ t] is
approximable, then [t] � [t ] by (2)(c). Transitive: Given [ t] � [t0] � [t00], if [t00] is not approximable,
then, by (2)(b), [ t] � [t00], as needed, so let [t00] be approximable. Then, since [t0] � [t00], (2)(b)
implies that [ t0] is approximable, too, and similarly [t] � [t0] implies that [ t] is approximable. So
we can apply (2)(c) to [t] � [t0] � [t00] and get that, for all [ t0] 2 T �n , if [t0] � [t ], then [t0] � [t00],
so, by (2)(c), [t] � [t00].



46 Chapter 2. Trajectory domains 1: Construction

get mapped to> ) or both are approximable andI � ([t]) = I � ([t0]). If [ t] is not
approximable, then, since [t] � [t0], by (2)(b), also [t0] is not approximable. So
assume [t] is approximable. Then also [t0] is approximable (for otherwise [t0] � [t]
implies, by (2)(b), that [ t] is not approximable). Then we haveI � ([t]) = I � ([t0]),
because if [t0] 2 I � ([t]), then [t0] 2 T �n and [t0] � [t] � [t0], so, by transitivity,
[t0] 2 I � ([t0]), and similarly for the other direction.

Ad (3)(a) We need to show that� is surjective and an order-isomorphism (this
implies injectivity).

Surjective. If Idl(T �n ) has an added top element> , then T has a non-
approximable element [t], and > has a preimage, namely [[t]]. So we need to show
that, given an ideal I � T �n , there is an approximable [t] 2 T such that I = I � ([t])
(since then�([[t]]) = I ).

Since the systemM is assumed to be countable, there are only countable many
�nite A-trajectories, soT �n is countable, too. SoI is a directed subset of the
countable preorder (T �n ; � ), so there is a co�nal sequenceC = ([ t i ])i � 0.

If C stagnates with [tn ] (i.e., for all i � n, [t i ] = [ tn ]), then, for all [t0] 2 I ,
[t0] � [tn ] (by co�nality), so I � f [t0] 2 T �n : [t0] � [tn ]g. We also have�
since [tn ] 2 I and I is a downset. Thus, since� and � agree onT �n , we have
I = f [t0] 2 T �n : [t0] � [tn ]g = f [t0] 2 T �n : [t0] � [tn ]g = I � ([tn ]). So [tn ], which is
approximable qua �nite trajectory, is the required element ofT.

So assumeC doesn't stagnate (i.e., for all [t i ] there is j with [ t i ] < [t j ]).
Without loss of generality, assume that [t0] 6= [ � ] and [t i ] < [t i +1 ] for all i � 0
(otherwise we pick a subsequence ofC with this property which then still is co�nal
in I ). We construct t 2 T and 0 < n 0 < n 1 < : : : as follows. Sett0

0 := t0 and
n0 := jt0j > 0 (if n0 = 0, then [t0] = [ � ]). Given t0

i 2 [t i ] and ni = jt0
i j, we can,

since [t i ] < [t i +1 ], extend t0
i to somet0

i +1 2 [t i +1 ], and since [t i ] 6= [ t i +1 ] we have
ni = jt0

i j < jt0
i +1 j =: ni +1 . We de�ne the sequencet(k) = t0

i (k) for somei such
that jt0

i j > k . This is well-de�ned since thet0
i get arbitrarily long and extend each

other. Moreover, we claim thatt 2 T. First, t is in�nite and an A-trajectory since
eacht(k) is in ! A and the ending state oft(k) is the starting state of t(k + 1).
Second, fori � 0, we havet � ni = t0

i 2 T and [t � ni ] = [ t i ] � [t i +1 ] = [ t � ni +1 ].
So axiom (2) impliest 2 T.

Thus, [t] 2 T which has the approximation� := ( t; (ni )). So it remains to show
I = I � ([t]). Indeed, by 2(d) we have for all [t0] 2 T �n , [t0] � [t] i� [ t0] � [t � ni ] for
somei . Thus, if [t0] 2 I , then, by co�niality, [ t0] � [t i ] = [ t � ni ] for somei , so
[t0] � [t], whence [t0] 2 I � ([t]). And if [ t0] 2 I � ([t]), then [t0] � [t], so, for some
i � 0, [t0] � [t � ni ] = [ t i ] 2 I , so, sinceI is an ideal, [t0] 2 I .

Order-isomorphism. For [t]; [t0] 2 T, we need to show that [[t]]� [[t0]] i�
� ([[t]]) � � ([[t0]]).

If [ t0] is not approximable, then, by 2(b), [t] � [t0], so [[t]]� [[t0]] and �([[t]]) �
> = �([[t0]]). So assume that [t0] is approximable.

First, assume [t] is not approximable. Then we cannot have [t] � [t0] by 2(b)
and we also cannot have�([[t]]) � � ([[t0]]) since the former is> but the latter is in



2.6. The characterization theorem 47

Idl(T �n ; � ).
So assume that both [t] and [t0] are approximable. Then we have

[[t]]� [[t0]] , [t] � [t0]
2(c)
, 8 [t0] 2 T �n : [t0] � [t] ) [t0] � [t0]

, I � ([t]) � I � ([t0]) , � ([[t]]) � � ([[t0]]);

as needed.
Ad (3)(b). The compact elements ofIdl(T �n ) are the principal ideals (those

of the form #[t0] = f [t0] 2 T �n : [t0] � [t0]g for [t0] 2 T �n ) and, if existent, the top
element. Qua isomorphism,K (T(M; � )) = � � 1

�
K (Idl(T �n ))

�
. So we show

A := � � 1
�
K (Idl(T �n ))

�
=

�
[[t]] : [t] 2 T �n

	
[

�
[[t]] 2 T : [t] not approx.

	
=: B:

(� ) If [[ t]] 2 A, then �([[t]]) is compact. If [t] is not approximable, then
[[t]] 2 B , so let [t] be approximable. Then�([[t]]) = I � ([t]) is an ideal (and not
the top element), so, qua compactness,�([[t]]) = #[t0] for some [t0] 2 T �n . Since�
and � agree onT �n and [t0] is approximable, we further have

�([[t]]) = #[t0] = f [t0] 2 T �n : [t0] � [t0]g = I � ([t0]) = �([[t0]]);

so, since� is injective, [[t]] = [[ t0]] 2 B .
(� ) Let [[t]] 2 B , i.e., [t] 2 T �n or [t] is not approximable, and show�([[t]]) is

compact. If [t] is not approximable, then�([[t]]) = > is compact, so [[t]] 2 A. So
[t] 2 T �n . Then, since� and � agree onT �n , we have�([[t]]) = I � ([t]) = f [t0] 2
T �n : [t0] � [t]g = #[t] is compact, so [[t]] 2 A.

Ad (3)(c). Let [ t] 2 T and 0< n 0 < n 1 < : : : with [ t � n0] � [t � n1] � : : :. In
particular, [t] is approximable. Write A :=

�
[[t � n0]]; [[t � n1]]; : : :

	
. Also, each

[t � ni ] is, qua �nite trajectory, approximable. Then, since� is an isomorphism
and � and � agree onT �n ,

�
� _

a2 A

a
�

=
_

a2 A

� (a) =
[

i

I � ([t � ni ]) =
�

[t0] 2 T �n : 9i : [t0] � [t � ni ]
	

2(d)
=

�
[t0] 2 T �n : [t0] � [t]

	
= I � ([t]) = �([[t]]):

Since� is injective, [[t]] =
W

A, as needed.

(2) ) (4) We show that (4)(a) holds by showing that (i) � = v 9 and (ii) M is
limit-respecting. We �rst show that

(� ) For all [ t] 2 T �n and approximable [t0] 2 T, we have [t]
 9[t0] i� [ t] � [t0].

() ) If [ t]
 9[t0], then, since [t0] is approximable, there is an approximation
(tz; (mj )) to [ t0] and j � 0 such that [t] � [tz � mj ]. By (2)(d) applied to tz and
[t0] := [ t], we have [t] � [tz] = [ t0].



48 Chapter 2. Trajectory domains 1: Construction

(( ) Assume [t] � [t0]. Since [t0] is approximable, let (tz; (mj )) be an approxi-
mation to [t0]. By (2)(d) applied to tz and [t0] := [ t], we have that [t] � [t0] = [ tz]
implies that there is j such that [t] � [tz � mj ]. So [t]
 9[t0].

Ad (i). Now, let [ t]; [t0] 2 T and show [t] � [t0] i� [ t]v 9[t0]. If [t0] is not
approximable, then, by (2)(b), [t] � [t0]. And by lemma 2.5.5, [t]v 9[t0]. So assume
that [ t0] is approximable. If [t] is not approximable, then, by (2)(b), we cannot
have [t] � [t0] (otherwise [t0] is not approximable). And, by de�nition of v 9, we
also cannot have [t]v 9[t0] (since clause (b) is violated).

So let both [t] and [t0] be approximable. Then we have

[t] � [t0]
(2)(c)
, 8 [t0] 2 T �n : [t0] � [t] ) [t0] � [t0]

(� )
, 8 [t0] 2 T �n : [t0]
 9[t] ) [t0]
 9[t0] , [t]v 9[t0];

where the last equivalence holds since the clause (b) in the de�nition ofv 9 is
trivially satis�ed if [ t] is approximable.

Ad (ii). Let t 2 T be in�nite and 0 < n 0 < n 1 < : : : and 0< m 0 < m 1 < : : :
such that [t � n0] � [t � n1] � : : : and [t � m0] � [t � m1] � : : :. Let i � 0 and �nd
j � 0 such that [t � ni ] � [t � mj ].

Note that [t � ni ]
 9[t] since � = ( t; (ni )) is an approximation to [t] and
[t � ni ] � [t � ni ]. In particular, [ t] is approximable, so, by (� ), we have [t � ni ] � [t].
Now, by (2)(d) applied to t and 0 < m 0 < m 1 < : : : and [t0] = [ t � ni ], the fact
that [ t � ni ] � [t] implies that there is j � 0 such that [t � ni ] � [t � mj ], as needed.

(4) ) (5) Each of the conditions (4)(a){(d) ensures that� is in fv 8; v 9; v domg
and one of the conditions (1){(6) of proposition 2.5.8 is satis�ed. Thus, that
proposition implies v 8 = v 9 = v dom and M is limit-respecting, and the claim
follows.

(5) ) (1) Ad 1(a). This follows from � = v 8 and lemma 2.5.4 (1) and (2).
Ad 1(b). Let [ t] 2 T be non-approximable and [t0] 2 T. Concerning (i), [t0] � [t]

follows from � = v 8 and lemma 2.5.4 (5). Concerning (ii), if [t] � [t0], then, by
� = v 8 and the de�nition of v 8, also [t0] is not approximable.

Ad 1(c). Let t 2 T be in�nite and 0 < n 0 < n 1 < : : : such that [t � n0] � [t �
n1] � : : :.

Concerning (i), let i � 0 and show [t � ni ] � [t]. Indeed, (t; (ni )) is an
approximation to [t] and [t � ni ] � [t � ni ]. Hence [t � ni ]
 9[t], so, by lemma 2.5.5,
[t � ni ]v 9[t], so the claim follows from� = v 9.

Concerning (ii), let [t0] 2 T �n with [ t0] � [t]. Show that there isi � 0 such that
[t0] � [t � ni ]. Since� = v 8, we have, by lemma 2.5.4 (3), that [t0]
 8[t]. Since
(t; (ni )) is an approximation to [t], there is i � 0 such that [t0] � [t � ni ]. Since�
coincides withv 8 = � on T �n , [t0] � [t � ni ], as needed.



2.7. Behavioral transition systems 49

Ad 1(d). Let [ t]; [t0] 2 T be approximable such that, for all [t0] 2 T �n , [t0] � [t]
implies [t0]� [t0]. Show [t]� [t0]. Indeed, since� = v 8, we have, by lemma 2.5.4 (4),
that [ t]v 8[t0], i.e., [t] � [t0].

(1) ) (2) We prove the items in a di�erent order than stated. Ad (2)(b). This
is implied by|or, rather, identical to|(1)(b).

Ad (2)(d). Let t 2 T and 0 < n 0 < n 1 < : : : be with [t � n0] � [t � n1] � : : :.
Let [t0] 2 T �n and show [t0] � [t] i� [ t0] � [t � ni ] for somei .

If t is �nite, then, there is j such that nj > jtj and, by (1)(a), we have [t0] � [t]
i� [ t0] � [t] = [ t � nj ] i� [ t0] � [t � ni ] for somei , where the reverse direction
holds since [t � ni ] � [t � nj ]: if i � j this holds by assumption, and ifi � j , then
t � ni = t � nj .

So lett be in�nite. If [ t0]� [t], then, by (1)(c)(ii), there is i such that [t0]� [t � ni ],
whence, by (1)(a), [t0] � [t � ni ]. If [t0] � [t � ni ] for somei , then, by (1)(c)(i),
[t0] � [t � ni ] � [t], so, by (1)(a), [t0] � [t].

Ad (2)(c). One direction already follows from (1)(d). For the other direction,
let [t]; [t0] 2 T be approximable with [t] � [t0]. Let [t0] 2 T �n with [ t0] � [t]. Show
[t0] � [t0].

Since [t] is approximable, let (ty; (ni )) be an approximation to [t]. Since
[t0] � [t] = [ ty], there is, by (2)(d) applied to ty, somei � 0 such that [t0] � [ty � ni ].

If ty is �nite, there is j � i such that nj > jtyj, so [t0] � [ty � ni ] � [ty � nj ] =
[ty] = [ t] � [t0]. Thus, by (1)(a), [t0] � [t0].

If ty is in�nite, then, by applying (1)(c)(i) to ty and (nj ), we have [t0] � [ty �
i ] � [ty] = [ t] � [t0]. Thus, by (1)(a), [t0] � [t0].

Ad (2)(a). Let [ t] 2 T be approximable and show thatI � ([t]) is an ideal in
T �n . Let (ty; (ni )) be an approximation to [t].

It is nonempty: We have [ty � n0] � [ty � n0], so, by (2)(d) applied to ty, we
have [ty � n0] � [t], whence [ty � n0] 2 I � ([t]).

It is a downset: Let [t00] � [t0] 2 I � ([t]). So [t00] � [t0] � [t], whence, by (1)(a),
[t00] � [t], so [t00] 2 I � ([t]).

It is directed: Let [t0]; [t00] 2 I � ([t]) and �nd [ t0] 2 I � ([t]) such that [t0]; [t00] �
[t0]. So [t0] � [t] = [ ty] and [t00] � [t] = [ ty]. Hence, by (2)(d) applied toty, there is
i � 0 and j � 0 such that [t0] � [ty � ni ] and [t00] � [ty � nj ]. Let k := max(i; j )
and de�ne [t0] := [ ty � k]. Then [t0]; [t00] � [t0] and [t0] � [ty � k], so, by (2)(d)
applied to ty, [t0] � [ty] = [ t]. Hence [t0] 2 I � ([t]).

This completes the proof of theorem 2.6.3.

2.7 Behavioral transition systems

Guided by the previous sections, we de�ne behavioral transition systems (BTSs) as
pre-BTSs that are limit-respecting, and we discuss examples and basic properties.



50 Chapter 2. Trajectory domains 1: Construction

2.7.1 De�nition

The preceding two sections strongly suggest one additional axiom for the notion
of a pre-BTSM = ( A; T; � ): namely, requiring it to be limit-respecting.

First, this will make the three natural candidates for information containment
coincide (and be a preorder). Thus, being limit-respecting ensures that wecan
de�ne a satisfying notion of information containment. This was the (i)-requirement
for the structures (A; T; � ) that we've identi�ed in section 2.3.3.

Second, for countable pre-BTSs, being limit-respecting ensures that this natural
notion of information containment also is the only one satisfying the rather mild
constraints laid out in item 1 of the characterization theorem (theorem 2.6.3).
So the information containment of the structure (A; T; � ) is unique in a certain
sense.

Third, this also implies that the partial order induced by the information
containment preorder is an! -algebraic domain. (We'll call it the trajectory
domain and study it in the next section.) This was the (ii)-requirement for the
structures (A; T; � ) that we've identi�ed in section 2.3.3.

In short, being limit-respecting is (a)necessaryto be able to de�ne a sensible
notion of information containment and (b) it also already issu�cient for that
notion to be in a sense unique and to yield a domain of behaviors. In other words,
there is no other possible axiom in between satisfying the weaker (i)-demand and
the stronger (ii)-demand.

This stability suggests that a good axiomatization for the structures (A; T; � )
is to be a pre-BTS that is limit-respecting.

2.7.1. Definition . A behavioral transition system(BTS) is a pre-BTS M =
(A; T; � ) that is limit-respecting (see de�nition 2.5.7). We callv M := v 8 = v 9 =
v dom the information containment preorder ofM (see de�nitions 2.5.3 and 2.5.6).
We drop the subscript M̀ ' when clear from context. We callM countableif A is
countable.

Now that we've de�ned BTSs, it's high time to consider examples: Both the
`black box' and `concurrency' examples from section 2.3 and the examples of
pre-BTSs from de�nition 2.4.5 (extensional, temporal, and intensional equivalence)
are, in fact, BTSs. To see this, and many more examples, it will be useful to �rst
introduce some simplifying properties.

2.7.2 Simplifying assumptions

We introduce the following simplifying assumptions on a pre-BTS which help to
show being limit-respecting.

2.7.2. Definition . Let M = ( A; T; � ) be a pre-BTS. We callM



2.7. Behavioral transition systems 51

1. bisimulative if, for all nonempty �nite t; t 0 2 T, if t � t0 and tt 0 2 T extends
t by one element, then there is a �nite extensiont0t1 2 T of t0 such that
tt 0 � t0t1. (Note that t0t1 need not be a one-element extension.)

2. extendableif, for all nonempty �nite t; t 0 2 T, if t � t0 and tt 002 T is �nite,
then t0t002 T and tt 00� t0t00.

3. restrictable if, for all nonempty �nite t; t 0; tt 0; t0t1 2 T, if t � t0 and tt 0 � t0t1,
then, for any t � t2 � tt 0, there is t0 � t3 � t0t1 with t2 � t3.30

4. full (resp., full� ) if T is the set of all (nonempty)A-trajectories.

5. extensional if � is extensional equivalence.

We've encountered (2) as property (d) in section 2.3. The following proposition
states how these properties are simplifying.

2.7.3. Proposition . Let M = ( A; T; � ) be a pre-BTS. Then

1. M is bisimulative i� for all �nite t; t 0 2 T, if t � t0, then [t] � [t0].

2. We have the following implications:

full� & extens. )

extendable ) bisimulative )

full & extens. ) limit-respecting
restrictable )

3. If M is bisimulative, then, for all t 2 T, [t] is approximable.

4. If M is bisimulative, the information containmentv is well-de�ned (since
M is limit-respecting) and, for all t; t 0 2 T,

[t]v [t0] , 8 n � 09m � 0 : [t � n] � [t0 � m]:

Proof. Ad (1). ( ) ) If t is empty, then [t] � [t0], so let t be nonempty. And if
t = t0, then [t] � [t0], so let t � t0. To show [t] � [t0], let t0 2 [t] and �nd t1 2 [t0]
with t0 � t1. Consider the one-step extensiontt 0(n + 1) of t wheren := jtj � 1.
Sincet � t0, there is a �nite extension t0t1 2 T such that tt 0(n + 1) � t0t1. If
tt 0(n + 1) = t0, we chooset1 := t0t1, and if not we continue this way: Consider the
one-step extensiontt 0(n + 1) t0(n + 2) of tt 0(n + 1). Since tt 0(n + 1) � t0t1, there is
a �nite extension t0t1t2 2 T such that tt 0(n + 1) t0(n + 2) � t0t1t2. Sincet0 is �nite,
we will eventually obtain an extensiont1 2 T of t0 such that t0 � t1, as needed.

30Note that t2 and t3 are nonempty initial segments of trajectories inT and hence inT.



52 Chapter 2. Trajectory domains 1: Construction

(( ) To show that M is bisimulative, let t; t 0 2 T be �nite with t � t0 and
tt 0 2 T a one-step extension. Sott 0 is �nite, too, and, by the assumption, [t] � [tt 0].
Hence,t0 2 [t] can be extended to somet0t1 2 T with t0t1 � tt 0.

Ad (2). (full & extensional) extendable) Let t; t 0 2 T be nonempty �nite with
t � t0 and tt 002 T �nite. By extensionality, t and t0 have the same last state.
Thus, alsot0t00is an A-trajectory. SinceM is full, t0t002 T. Sincett 00and t0t00have
the same last state and are �nite, extensionality impliestt 00� t0t00.

(full � & extensional) extendable) As above: nowt0t00 is in T since it is a
nonempty A-trajectory (since t0 is nonempty).

(extendable) bisimulative) Let t; t 0 2 T be nonempty �nite with t � t0 and
tt 0 2 T a one-step extension. In particular,tt 0 2 T is �nite. By being extendable,
t0t0 2 T is a �nite extension of t0 and tt 0 � t0t0, as needed.

(bisimulative) limit-respecting) Let t 2 T be in�nite, and let ( ni ) i and (mi ) i be
strictly increasing sequences of positive integers such that ([t � ni ])i and ([t � mj ])j

are � -increasing. (In particular, t � ni ; t � mj 2 T for all i and j .) Let i � 0 and
�nd j � 0 such that [t � ni ] � [t � mj ]. Choosej � 0 such that mj � ni . Then
t � ni � t � mj are �nite trajectories in T. SinceM is bisimulative, the equivalent
condition from (1) implies [t � ni ] � [t � mj ], as needed.

(restrictable) limit-respecting) Let t 2 T be in�nite, and let ( ni ) i and (mi ) i be
strictly increasing sequences of positive integers such that ([t � ni ])i and ([t � mj ])j

are � -increasing. Leti � 0 and �nd j � 0 such that [t � ni ] � [t � mj ]. Choose
j � 0 and k � i such that ni � mj � nk . To show [t � ni ] � [t � mj ], let
ta 2 [t � ni ] and �nd tb 2 T with ta � tb � t � mj . Since [t � ni ] � [t � nk ], there
is tat1 2 T with tat1 � t � nk . Write t � nk = t � ni t0 2 T and t2 := t � mj . So
t � ni � ta and t � ni t0 � tat1 and t � ni � t2 � t � ni t0. By being restrictable,
there is ta � tb � tat1 such that t2 � tb. So tb has the required properties.

Ad (3). Since, by (1), extension implies� , (t; (i + 1) i � 0) is an approximation
to [t].

Ad (4). ( ) ) Let n � 0 and �nd m � 0 such that [t � n] � [t0 � m]. If n = 0,
choosem := 0, so let n > 0. As just seen,� = ( t; (ni )) with ni = i + 1 and
� 0 = ( t0; (mj )) with mj = j + 1 are approximations to [t] and [t0], respectively.
Since [t]v [t0] and v = v dom, � 0 dominates� , so, for i := n � 1 � 0, there isj � 0
such that [t � n] = [ t � ni ] � [t0 � mj ], and we choosem := mj � 0.

(( ) We show [t]v 9[t0]. Clause (b) ofv 9 is vacuously satis�ed, since any [t]
is approximable. For clause (a), let [t0] 2 T �n with [ t0]
 9[t] and show [t0]
 9[t0].
SinceM is a limit-respecting, the ordersv 9 and v 8 agree, so, by lemmas 2.5.5
and 2.5.4, [t0]
 9[t] implies [t0]
 8[t]. Again, � = ( t; (i + 1) i ) and � 0 = ( t0; (j + 1) j )
are approximations to [t] and [t0], respectively. Thus, since [t0]
 8[t], there is
i � 0 such that [t0] � [t � i + 1]. By the assumption, there ism � 0 such that
[t � i + 1] � [t0 � m]. Hence, forj := m, [t0] � [t0 � m] � [t0 � j + 1], whence
[t0]
 9[t0]. 2



2.7. Behavioral transition systems 53

2.7.3 Examples

We discuss several examples (and non-examples) of BTSs. The �rst three are
`positive' in the sense of providing BTSs, while the last three are `negative' in the
sense of showing that various assumptions that we've discussed are not vacuous.

We start with the two guiding examples of `black box systems' and `concurrency'
and the extensional, temporal, and intensional equivalence construction: they are
all extendable BTSs.

2.7.4. Example . (1). In the guiding examples from section 2.3, we've considered
structures (A; T; � ) where A is an LTS, T a set of A-trajectories, and � an
equivalence relation onT such that properties (a){(d) are satis�ed. Such structures
are extendable BTSs: As seen before, properties (a){(c) ensure that they are
pre-BTSs and property (d) is that of being extendable.

(2). If A is an LTS, T the set of all (nonempty)A-trajectories (starting in iA )
as in example 2.4.3, and� any of the examples from de�nition 2.4.5 (extensional,
temporal, or intensional equivalence), thenM := ( A; T; � ) is a extendable BTS:

Indeed, we know already thatM is a pre-BTS, so we need to show thatM
is extendable. This is done as in the `full & extensional' case above: Ift; t 0 2 T
are nonempty �nite with t � t0 and tt 002 T �nite, then, for all the above choices
of � , we havelast(t) = last(t0). Thus, also t0t00is an A-trajectory. And t0t00is a
(nonempty if t0 is nonempty) A-trajectory (that starts in iA if t0 starts in iA ), so
t0t00is again inT. Finally, tt 00� t0t00for any of the above choices for� : sincet � t0,
tt 00and t0t00have the same last state, and the same length ift and t0 have the same
length, and the same label-sequence ift and t0 have the same label-sequence.

There is a natural way to generalize extensional equivalence: rather than
demanding the last states to be identical, one can demand them to be in a
bisimulation relation. (This is a generalization since the identity relation on states
is a bisimulation.) This yields bisimulative BTSs and does justice to the term
`bisimulative'.

2.7.5. Example . Let A be an LTS and let�� SA � SA be a bisimulation (see
e.g. Sangiorgi 2012, ch. 1): for alls � s0 and � 2 LA ,

ˆ Forth: If s ��! s0, then there iss1 2 SA with s0��! s1 and s0 � s1.

ˆ Back: If s0��! s1, then there iss0 2 SA with s ��! s0 and s0 � s1.

Also assume that� is an equivalence relation. This is the case if� is identity
(as in extensional equivalence). The coarsest choice is bisimilarity:s � s0 i� there
is a bisimulation � such that s � s0.

Let T be the set of allA-trajectories and let � be generated (in the sense of
proposition 2.4.4) by: fort; t 0 2 T nonempty �nite, t � t0 i� last( t) � last(t0).



54 Chapter 2. Trajectory domains 1: Construction

So M = ( A; T; � ) is a pre-BTS, and we see that it is bisimulative: Assume
t; t 0 2 T are nonempty �nite with t � t0 and tt 0 2 T is a one-step extension. Write
t0 = ( s; �; s 0). Then s = last(t) � last(t0) =: s0. By the forth condition, there
is s1 2 SA with s0��! s1 and s0 � s1. Let t0t1 := t0(s0; �; s 1). SinceT is the set of
all A-trajectories, t0t1 2 T, and, sincelast(tt 0) = s0 � s1 = last(t0t1), we have
tt 0 � t0t1.

Next, here are examples of restrictable BTSs:

2.7.6. Example . (1). In section 2.3.2, we've introduced transition systemsA with
independenceI and said that the independence relationI induces an equivalence
relation on the setT of all A-trajectories: t � t0 i� jt j = jt0j and, for n < jtj, t(n)
and t0(n) are occurrences of the same event. This straightforwardly yields a pre-
BTS M = ( A; T; � ), and M is restrictable: Assumet; t 0; tt 0; t0t1 2 T are nonempty
�nite with t � t0 and tt 0 � t0t1. If t � t2 � tt 0, let n be such that t2 = tt 0 � n,
then, sincett 0 and t0t1 are the same sequences of events, alsot2 = tt 0 � n and
t3 := t0t1 � n are the same sequences of events, and, sincejtj = jt0j, t0 � t3 � t0t1.

(2). In model checking, one adds to an LTSA an interpretation function I
assigning each states 2 SA a subsetI (s) of a set of atomic propositions (see
e.g. Baier and Katoen 2008). Intuitively,I (s) is the set of basic properties ofs
(or observations abouts). The trace of a trajectory t = s0

� 0�! s1
� 1�! : : : then is

the sequenceI (s0); I (s1); : : :. So we can chooseT as the set of allA-trajectories
and � as having the same trace (i.e., being `observationally equivalent'). This
straightforwardly yields a pre-BTSM = ( A; T; � ), and M is restrictable similarly
as in (1) above.

Now to the `negative' examples. First, we now can see more precisely why
we generally cannot appropriately de�ne information containment for in�nite
behaviors just like for �nite behaviors:

2.7.7. Example . Consider the following LTSA:

i s

and let T be the set of allA-trajectories and � extensional equivalence. In
particular, M = ( A; T; � ) is a countable bisimulative pre-BTS.

Assume we'd de�ne information containment for all behaviors like for �nite
ones: [t] � [t0] i� 8t0 2 [t]9t1 2 [t1] : t0 � t1. As discussed, saying that this
is an appropriate de�nition of information containment means that� satis�es
one of the equivalent items (1){(5) of theorem 2.6.3. But then� = v M and,
by proposition 2.7.3 (4), [t] � [t0] i� 8n9m : [t � n] � [t0 � m]. So these two
characterizations of [t] � [t0] should be equivalent.

However, consider the two in�niteA-trajectories t = i ! s ! i ! s ! : : : and
t0 = i ! i ! i ! : : :. Then 8n9m : [t � n] � [t0 � m] (since there is always a path



2.7. Behavioral transition systems 55

from last(t � n) to last(t0 � m)). But we do not have 8t0 2 [t]9t1 2 [t1] : t0 � t1:
Otherwiset can be extended tot1 � t0, whencet = t1 and t � t0, so t and t0 would
have the same tail.

The following example shows that the countability assumption in theorem 2.6.3
is necessary. The assumption was used when showing that� is surjective by
employing the fact that a countable directed set has a co�nal chain. This fact
fails for uncountable directed sets, and the usual counterexample inspires the
example (see e.g. Abramsky and Jung 1994, exercise 2.3.9 (6)).

2.7.8. Example . Consider the LTSA = ( S; i; L; ! ) where S is the set of �nite
subsets of the real numbers (soA is uncountable),i := ; , L := f � g, and s �! s0

i� s � s0. Let M := ( A; T; � ) where T is the set of allA-trajectories and � is
extensional equivalence. SoM is an uncountable BTS, and we show that (T; v )
is not an ! -algebraic domain: it even fails to be a dcpo. Indeed,A := f [[t]] : t 2
T nonempty �nite g is a directed subset ofT, but A cannot have an upper bound
[[t]] 2 T for somet 2 T, since then

S
n s(t)(n) = R (using proposition 2.7.3) would

be countable.

Finally, here is a small example to illustrate how being limit-respecting can
fail in a pre-BTS.

2.7.9. Example . Consider the following unlabeled transition systemA where
state s1 has the color red and the statess2 and s3 have the color green:

s1 s2 s3

i

red green

Let T be the set of allA-trajectories starting in i and � is generated by: for
t; t 0 2 T nonempty �nite, t � t0 i� last( t) and last(t0) have the same color.

So M := ( A; T; � ) is a pre-BTS, but it is not limit-respecting: Consider
t = i ! s1 ! s2 ! s1 ! : : : 2 T. Let (ni ) be the sequence 2< 4 < : : : of even
numbers, and let (mj ) be the sequence 1< 3 < : : : of odd numbers. Sot � ni ends
in the green states2 and t � mj ends in the red states1. Hencet � ni � t � ni +1

and, in particular, [t � ni ] � [t � ni +1 ]. Similarly, [t � mj ] � [t � mj +1 ]. However,
for i := 0 there is no j � 0 such that [t � ni ] � [t � mj ] becauset0 := i ! s3 2 T
ends in a green state and hence is in [t � ni ], but the only extensions are of the
form t0 := i ! s3 ! s3 ! : : : and hence never end in a red state, so cannot be in
[t � mj ].



56 Chapter 2. Trajectory domains 1: Construction

2.8 Trajectory domains

As mentioned, the additional axiom of being limit-respecting is not only enough
to de�ne a sensible information containment ordering, it also is su�cient, in the
countable case, for this ordering to yield a domain of behaviors:

2.8.1. Definition . Let M = ( A; T; � ) be a countable BTS. In the notation
of theorem 2.6.3, we call the! -algebraic dcpoT(M ) := T(M; v ) = ( T; v ) the
trajectory domain of M .

This raises the question: which! -algebraic domains can be obtained (up to
isomorphism) as trajectory domains of countable BTS? The answer is: all of
them.31

2.8.2. Theorem . For every ! -algebraic domainD, there is a countable BTSM
such thatD is isomorphic to T(M ). Moreover, M can be chosen to be full� and
extensional.

Proof. If D is the empty domain, chooseA := ( f ig; i; ; ; ; ) and T as the set of
all nonempty A-trajectories (i.e., T = ; ) and � as extensional equivalence (i.e.,
� = ; ). So M := ( A; T; � ) is a BTS that is countable full� and extensional and
T(M ) = ; �= D.

So let D be nonempty. De�ne the LTSA = ( S; i; L; ! ) by:

ˆ S := K (D) (since D is nonempty, the set of compact elementsK (D) is
nonempty),

ˆ i is any �xed element ofK (D).

ˆ L = f � g for some object� .

ˆ s �! s0 i� s � s0 (in D).

Let T be the set of all nonemptyA-trajectories, and let � be extensional equiva-
lence. SoM := ( A; T; � ) is a full� and extensional BTS andM is countable since
A is countable (becauseK (D) is countable).

We show that (T �n ; � ) �= (K (D); � ). Then, by theorem 2.6.3 and the fact
that M has no non-approximable elements,

T(M ) �= Idl(T �n ) = Idl(T �n ) �= Idl(K (D)) �= D;

31In the context of concurrent computation (section 2.3.2), this question has been investigated
for the domain constructions used there: see Droste (1990), Bracho and Droste (1994), and Stark
(1990). Given that BTSs are a considerable generalization of the transition systems considered
there, we should expect a considerable larger class of domains|indeed, the largest possible as
the theorem shows.



2.9. Generalizations of information systems 57

where the last isomorphism is a basic fact about algebraic domains.
We de�ne � : T �n ! K (D) by �([t]) = last(t). This is well-de�ned: If [t] 2 T �n

for t 2 T, then t is �nite nonempty, so last(t) is de�ned. And if [ t] = [ t0], then
last(t) = last(t0) by extensional equivalence. This is injective: If [t] 6= [ t0], then
t 6= t0, so last(t) 6= last(t0). And surjective: If x 2 K (D), then t := x ��! x is a
nonempty �nite trajectory in A, so [t] 2 T �n and �([t]) = last( t) = x.

It remains to show that � is an order-isomorphism. Let [t]; [t0] 2 T �n , and show
[t] � [t0] i� � ([t]) � � ([t0]).

Assume [t] � [t0]. Hencet can be extended tot1 � t0. So there is a trajectory
from last(t) to last(t1) = last(t0). Sinces �! s0 implies s � s0, we have�([t]) =
last(t) � last(t0) = �([t0]).

Assume�([t]) � � ([t0]). Then last(t) = �([t]) � � ([t0]) = last(t0). So t1 :=
t(last(t); �; last(t0)) 2 T is an extension oft with t1 � t0. SinceM is bisimulative,
[t] � [t1] = [ t0]. 2

An important corollary is that for every BTS there is a particularly simple
one which has the same behavior:

2.8.3. Corollary . For every countable BTSM there is a countable full� and
extensional BTSN such thatM and N have the same behavior in the sense that
their trajectory domains are isomorphic.

2.9 Generalizations of information systems

We argue that we can regard the notion of a BTS and their induced trajectory
domains as a generalization of the well-known notion of a Scott information system
and their induced Scott domains.

2.9.1 Scott information systems . . .

Scott information systems were introduced by Scott (1982). They are important
both as a technical tool for `doing domain theory' (by representing Scott domains
through their more manageable bases) and as a conceptual tool for motivating
domains and providing connections to other �elds (event structures, logic, locale
theory, etc.). For references see Winskel (1993, sec. 12) and Abramsky and Jung
(1994, sec. 8.1.4), and for a general categorical treatment see Edalat and Smyth
(1993). Here we'll use the de�nition of Winskel (1993, ch. 12).

2.9.1. Definition . An information system is a triple I = ( U;Con; ` ) where U is
a countable set (informationtokens), Conis a non-empty class of �nite subsets of
U (consistent sets), and` � (Conn f;g ) � U (entailment relation) such that

1. If X � Y 2 Con, then X 2 Con.



58 Chapter 2. Trajectory domains 1: Construction

2. If a 2 U, then f ag 2 Con.

3. If X ` a, then X [ f ag 2 Con.

4. If a 2 X 2 Con, then X ` a.

5. If X; Y 2 Con and X ` Y (i.e., X ` b for all b 2 Y), then Y ` a implies
X ` a.

An element of I is a subsetx � U such that

1. x 6= ;

2. If X � x is �nite, then X 2 Con.

3. If X � x and X ` a, then a 2 x.

The set of elements ofI is denotedjI j. For X 2 Con, de�ne X := f a 2 U : X ` ag.

The point of information systems is that they induce domains (see e.g. Winskel
1993, prop. 12.8):DS(I ) := ( jI j; � ) is an ! -algebraic dcpo where every nonempty
subset with an upper bound has a least upper bound.32 The compact elements
are of the formX for ; 6= X 2 Con.

Some useful basic facts are the following:

2.9.2. Lemma. Let I = ( U;Con; ` ) be an information system. Then

1. Monotonicity: For Y � X 2 Con, if Y ` a, then X ` a.

2. If X 2 Conand X ` f a1; : : : ; ang (n � 1), then X [ f a1; : : : ; ang 2 Con.

3. If X; Y 2 Conand X

`

` Y (i.e., X ` Y and Y ` X ), then X = Y.

Proof. Ad (1). By axiom 1, Y 2 Con. By axiom 4, X ` b for all b2 Y � X , so
X ` Y. SinceY ` a, axiom 5 impliesX ` a.

Ad (2). First, we have X ` a1, so, by axiom 3,X [ f a1g 2 Con. Now,
we proceed inductively fori = 2; : : : ; n: AssumeX [ f a1; : : : ; ai � 1g 2 Con, and
showX [ f a1; : : : ; ai g 2 Con. We haveX ` ai . By monotonicity, sinceX � X [
f a1; : : : ; ai � 1g 2 Con, alsoX [f a1; : : : ; ai � 1g ` ai . By axiom 3, X [f a1; : : : ; ai � 1g[
f ai g 2 Con, as needed.

Ad (3). Let a 2 U and showX ` a i� Y ` a. If X ` a, then, sinceY ` X ,
axiom 5 impliesY ` a. Similarly for the other direction. 2

32Such domains hence are Scott domains without, possibly, a least element, whence they also
are called Scott predomains.



2.9. Generalizations of information systems 59

2.9.2 . . . and their generalizations as BTSs

We show that we can interpret an information systemI as a countable BTSM I

such that the trajectory domain T(M I ) of M I is isomorphic to the domainDS(I )
induced by I . In that sense, we can regard BTSs and the trajectory domain
construction as a generalization of information systems and the `set of elements'
construction.

The main intuition for the BTS M I that interprets I = ( U;Con; ` ) is to think
of the consistent setsX 2 Conas trajectories (modulo order) through the space
of information tokens U that satisfy the global constraint of being consistent.
Formally, we do this as follows.

2.9.3. Definition . Let I = ( U;Con; ` ) be an information system. De�neM I :=
(A; T; � ) as follows:

ˆ SA := U [ f ig wherei is some object not inU.

ˆ iA := i .

ˆ LA := f � g (i.e., A essentially is `unlabeled' and we omit labels in! ).

ˆ a ! b i� a; b2 SA (so ! = SA � SA is the trivial relation).

ˆ T := the set of all A-trajectories t with the following properties:

(a) t is nonempty (i.e., jt j > 0) and of the form i ! a1 ! a2 ! : : : for
ai 2 U. (Hence, if t is �nite, then last( t) = ajt j .)

(b) For all n � 1, if n � j t j, then f a1; : : : ; ang 2 Con.

ˆ (For t 2 T �nite, let S(t) be the set of states occurring int and Si (t) :=
S(t) n f ig. Note Si (t) 2 Conby (b).)

ˆ � is the equivalence induced by: fort; t 0 2 T �nite nonempty, t � t0 i�
Si (t) = Si (t0).

Thus, the `globally possible' trajectories through the spaceS of information tokens
(together with an additional starting state i ) are precisely those with consistent
initial segments. And two such �nite trajectories are behaviorally equivalent if
they contain the same information, i.e., the information that can be deduced from
the information tokens that they visit is the same.

Thus, one way that BTSs generalize Scott information systems, is as follows:
In information systems, two consistent trajectoriest and t0 of information tokes are
considered to be equivalent if, roughly, they are entailment equivalent:t

`

` t0. This
`logic' is monotonic and insensitive to count and order of premises. Thus, one could
move to non-monotonic or resource sensitive logics (like linear logic) and their



60 Chapter 2. Trajectory domains 1: Construction

respective notion of equivalence� , to obtain more general (BTS representations
of) information systems.33

We discuss this further in the next section, but now let's prove the two
announced claims:

2.9.4. Proposition . If I is an information system, thenM I is a countable
bisimulative BTS.

Proof. We �rst show that M I is a pre-BTS. We show thatT satis�es axioms (1)
and (2)� ; then the claim follows by proposition 2.4.4.

Concerning axiom (1), lett0 be a nonempty �nite initial segment of t 2 T,
and showt0 2 T. By de�nition, t is of the form i ! a1 ! a2 ! : : : and t0 is of
the form i ! a1 ! a2 ! : : : an for some 1� n � j tj. And, since t 2 T, we in
particular have, for all 1 � m � n = jt0j � j t j, that f a1; : : : ; amg 2 Con. Hence
t0 2 T.

Concerning (2)� , let t be an in�nite A-trajectory such that t 62T, and �nd
n � 1 such that t � n 62T. So t fails to have property (a) or (b). If it fails (a),
it is not of the form i ! a1 ! a2 ! : : :, i.e., t either doesn't start with i or it
goes back toi after having started with i . Thus, some nonempty initial segment
of t fails to be of the formi ! a1 ! a2 ! : : :, and we can choosen � 1 large
enough such thatt � n includes that initial segment, whencet � n 62T. So assume
t has (a) but fails (b), whencet is of the form i ! a1 ! a2 ! : : : but there is
n � 1 with n � j tj and f a1; : : : ; ang 62Con. Then t � n fails to have property (b),
so t � n 62T.

Next, note that M I is countable sinceA is countable (sinceSA is countable
becauseU is countable). So it remains to show thatM I is bisimulative.

So let t; t 0 2 T be �nite nonempty with t � t0 and tt 0 2 T a one-step extension.
We need to �nd an extensiont0t1 2 T such that tt 0 � t0t1. (In fact, we'll show
that we can chooset0t1 as one-step extension, too.)

Sincet; t 0 2 T are �nite, they are of the form t = i ! a1 ! a2 ! : : : ! an

and t0 = i ! a0
1 ! a0

2 ! : : : ! a0
m for n; m � 1 and t0 = an ! b.

We claim that t0t1 := i ! a0
1 ! a0

2 ! : : : ! a0
m ! b is in T. Since! is the

trivial relation, t0t1 is anA-trajectory and it satis�es (a). So we need to show that it
satis�es (b). It su�ces to show f a0

1; : : : ; a0
m ; bg 2 Con. Sincett 0 2 T, we know that

f a1; : : : ; an ; bg 2 Con. Sincet � t0, we haveSi (t) = Si (t0). So, fora0
j 2 Si (t0), we

have Si (t) ` a0
j . SinceSi (t) = f a1; : : : ; ang � f a1; : : : ; an ; bg 2 Con, monotonicity

impliesSi (t)[f bg ` a0
j . Hence, by lemma 2.9.2 (2),Si (t)[f bg[f a0

1; : : : ; a0
mg 2 Con.

Then f a0
1; : : : ; a0

m ; bg is a subset of a set inConand hence inConby axiom 1.
So it remains to showtt 0 � t0t1. Note that Si (tt 0) = Si (t) [ f bg and Si (t0t1) =

Si (t0) [ f bg, so it su�ces to show Si (t) [ f bg = Si (t0) [ f bg. SinceSi (t0) [ f bg

33For some benchmark axiomatizations of logical equivalence (or synonymy) that are �ner
than classical logic, see Hornischer (2020).



2.9. Generalizations of information systems 61

and Si (t) [ f bg are in Con this follows from lemma 2.9.2 (3) once we can show
Si (t0) [ f bg

`

` Si (t) [ f bg.
Concerning` , let c 2 Si (t) [ f bg and showSi (t0) [ f bg ` c. If c = b, then

c 2 Si (t0) [ f bg 2 Con, and the claim follows by axiom 4. So letc 2 Si (t) 2 Con.
Then, again by axiom 4,Si (t) ` c, so c 2 Si (t) = Si (t0), so Si (t0) ` c. Since
Si (t0) � Si (t0) [ f bg 2 Con, monotonicity implies Si (t0) [ f bg ` c. The other
direction is shown analogously. 2

2.9.5. Proposition . If I is an information system, thenT(M I ) �= DS(I ).

Proof. Write M I = ( A; T; � ). We claim that � : K (T(M I )) ! K (DS(I )) de�ned
by [[t]] 7! Si (t) is a well-de�ned isomorphism. Then the claim follows sinceT(M I )
and DS(I ) are algebraic domains (so they are isomorphic to the ideal completion
of their compact elements). To do so, we show:

1. If t 2 T is �nite, then ; 6= Si (t) 2 Con, whenceSi (t) is a compact element
of DS(I ).

2. For all �nite t; t 0 2 T, [t] � [t0] i� Si (t) � Si (t0).

3. If x is a compact element ofDS(I ), then there is a �nite trajectory t 2 T
with Si (t) = x.

Then (1) shows that, for [[t]] 2 K (T(M I )), we have that �([[t]]) 2 K (DS(I ))
and (2) shows that the mapping is well-de�ned. Moreover,� is injective by (2)
and surjective by (3). Finally, it is an order-isomorphism by (2).

Ad (1). So t is of the form i ! a1 ! : : : ! an with n � 1 and Si (t) =
f a1; : : : ; ang 2 Conis nonempty.

Ad (2). Let t; t 0 2 T be �nite. So t = i ! a1 ! : : : ! an and t0 = i ! a0
1 !

: : : ! a0
m for n; m � 1.

() ) If [ t] � [t0], then t can be extended tot1 2 T with t1 � t0. Hence
Si (t) � Si (t1) are in Con, so, by monotonicity, Si (t) � Si (t1) = Si (t0).

(( ) AssumeSi (t) � Si (t0). Consider

t1 := t an ! a0
1 ! : : : ! a0

m :

This is an A-trajectory since t ends inan and ! A is the trivial relation. We will
show that t1 2 T and t1 � t0. Then, becauseM I is bisimulative, [t] � [t1] = [ t0],
as needed.

To do so, we'll �rst show that

(� ) Si (t0) ` Si (t1).



62 Chapter 2. Trajectory domains 1: Construction

Indeed, let a 2 Si (t1) = Si (t) [ Si (t0) and showSi (t0) ` a. If a 2 Si (t0) 2 Con,
then, by axiom 4,Si (t0) ` a. So let a 2 Si (t). Then, again by axiom 4,Si (t) ` a.
Soa 2 Si (t) � Si (t0), whenceSi (t0) ` a.

In particular, Si (t1) 2 Con: By (� ), we have Si (t0) ` f a1; : : : ; ang, so, by
lemma 2.9.2 (2),Si (t1) = Si (t0) [ f a1; : : : ; ang 2 Con.

Now we showt1 2 T. Indeed, theA-trajectory t1 is of the right form, whence
it satis�es (a), and, since Si (t1) 2 Con, also subsets thereof are inCon, so t1

satis�es (b).
So it remains to show thatt1 � t0: We haveSi (t1); Si (t0) 2 Conand Si (t0) `

Si (t1) by ( � ) and Si (t1) ` Si (t0) because of axiom 4 andSi (t0) � Si (t1) 2 Con. So
lemma 2.9.2 (3) impliesSi (t1) = Si (t0), as needed.

Ad (3). If x is a compact element ofDS(I ), then x = X for ; 6= X 2 Con. In
particular, X = f a1; : : : ; ang is �nite nonempty. Then t := i ! a1 ! : : : ! an is
a �nite A-trajectory satisfying (a) and (b), sot 2 T. And Si (t) = X = x. 2

2.10 Conclusion

We conclude with six open questions for future work.
First, arguably the most pressing question by now is about thecategory of

BTSs: We've introduced and studied BTSs as objects, but how do they relate
to each other, i.e., what are morphisms between BTSs? Does this capture the
common idea of one system being simulated in another? Does the trajectory
domain construction respect these relations, i.e., is functorial?34 After all, a lesson
from Winskel and Nielsen (1995) is that only with this categorical structure can
we consider BTSs as a computational model that we can fruitfully relate to other
computation models. We'll study these (and more) questions in the next chapter
and provide a positive answer.

Second, we've seen that BTSs generalize Scott information systems. Further
work should investigate this, for example, by considering (as indicated) various
classes of `generalized information systems' that correspond to processing informa-
tion according to various �ner substructural logics. We explore one direction in
the next chapter by showing that the trajectory domains provide an interpretation
to relevance logic. Another direction could be to consider the closely related linear
logic:

Third, in the game semantics for linear logic of Abramsky and Jagadeesan
(1994), the meaning of a formula is a game and a proof for the formula is a

34We may regard this as one implication of the equivalence between operational and denotations
semantics that the full abstraction problem (mentioned in the introduction) asks for: equivalence
(i.e., isomorphism) in the operational semantics implies equivalence (i.e., isomorphism) in the
denotational semantics. We discuss this further in the next chapter.



2.10. Conclusion 63

winning strategy for this game.35 Using their notation for a game, it is tempting
to try to view a game as a BTS (A; T; � ): the state spaceS = M � f P; Og
is the set of movesM labeled by whether it is a move of Player or Opponent
and the transition relation is the trivial one, T = � [ � 1 consists of the set�
of �nite trajectories that are possible in the game (where Player and Opponent
are alternating) together with the set� 1 of in�nite trajectories all whose initial
segments are in� , and trajectory equivalence is chosen in way to capture strategies
(maybe indistinguishability by strategies?). Can this game semantics fruitfully be
captured this way? And, to come full circle, how does this relate to the solution to
the full abstraction problem (mentioned in the introduction) which this semantics
provided (Abramsky and McCusker 1999)?

Fourth, how do these di�erent logical perspectives relate to existing logics
for LTSs like linear temporal logic (see e.g. Baier and Katoen 2008), and could
they provide a domain theory for trajectory domains `in logical form' (Abramsky
1991)?

Fifth, Bratteli{Vershik diagrams play an important role in the study of zero-
dimensional topological systems. (See Downarowicz and Karpel 2016 for a brief
introduction and references.) At least super�cially, they have some `BTS-like'
structure: they are certain graphs, their space of in�nite paths represents dynamical
systems, and also orders on the space of all �nite and in�nite paths are considered.
Can they be fruitfully captured as BTSs?

Sixth, an algebraic way to analyze a graph (i.e., an unlabeled transition system)
is through its Leavitt path algebra (Abrams, Ara, and Siles Molina 2017): These
algebras can be seen as algebraic analogues ofC � -algebras and are constructed
based on the idea of identifying certain paths of the underlying graph. Is there a
connection?

Appendix

Proof of lemma 2.5.4. Item (1), that ( T; v 8) is a preorder, is immediate from
the de�nition. Before getting to the other items, we show two claims:

(C1) For all [t] 2 T �n , [t]
 8[t].
Proof: To show [t]
 8[t], let � = ( ty; (ni )) be an approximation to [t], and �nd

i � 0 such that [t] � [ty � ni ]. Indeed, since [t] = [ ty] and t is �nite, also ty is �nite.
Since (ni ) is inde�nitely increasing, there is i such that ni � j tyj. Then we have
[t] = [ ty] = [ ty � ni ], which implies [t] � [ty � ni ].

(C2) For [t]; [t0] 2 T �n , [t]
 8[t0] implies [t] � [t0].
Proof: Assume [t]
 8[t0]. Consider the approximation� = ( t0; (ni )) to [ t0] with

ni := jt0j + 1 + i . Then there is i � 0 such that [t] � [t0 � ni ] = [ t0], as needed.

35For more on the topic of `games in logic' see Van Benthem (2014) or Hodges and V•a•an•anen
(2019).



64 Chapter 2. Trajectory domains 1: Construction

Ad (2). Let [ t]; [t0] 2 T �n , and show [t]v 8[t0] i� [ t] � [t0]. Assume [t]v 8[t0]. For
[t0] := [ t] we have, by (C1), [t0]
 8[t]. Hence [t0] = [ t]
 8[t0]. By (C2), [t] � [t0].

Conversely, assume [t] � [t0]. To show [t]v 8[t0], �rst observe that condition (b)
is trivially satis�ed since [t] is �nite and hence approximable. For condition (a), let
[t0] 2 T �n with [ t0]
 8[t], and show [t0]
 8[t0]. So let (tz; (mj )) be an approximation
to [t0] and �nd j � 0 such that [t0] � [tz � mj ]. Sincet0 is �nite, also tz is �nite,
so there isj � 0 such that mj � j tzj. By (C2), [t0]
 8[t] implies [t0] � [t]. Hence,
[t0] � [t] � [t0] = [ tz] = [ tz � mj ], as needed.

Ad (3). Let [ t] 2 T �n and [t0] 2 T and show [t]
 8[t0] i� [ t]v 8[t0]. If [t]v 8[t0],
then, by (C1), [t]
 8[t], so, by condition (a), [t]
 8[t0].

Conversely, assume [t]
 8[t0]. To show [t]v 8[t0], condition (b) is trivially satis�ed
since [t] is �nite and hence approximable, and for condition (a) let [t0] 2 T �n

with [ t0]
 8[t], and show [t0]
 8[t0]. So let (tz; (mj )) be an approximation to [t0]
and �nd j � 0 such that [t0] � [tz � mj ]. Since [t]
 8[t0], there is j � 0 such that
[t] � [tz � mj ]. By (C2), [t0]
 8[t] implies [t0] � [t]. So [t0] � [tz � mj ], as needed.

Ad (4). This follows from (3) and the de�nition of v 8 which, for approximable
[t]; [t0] 2 T, reduces to just condition (a).

Ad (5). If [ t] 2 T doesn't have an approximation, then [t] is in�nite (since
all �nite trajectories have an approximation) and, for [t0] 2 T, we have [t0]v 8[t]
because condition (a) holds vacuously since [t0]
 8[t] holds vacuously, and condi-
tion (b) holds vacuously since [t] is not approximable. 2

Proof of 2.5.5. Item (1), that ( T; v 8) is a preorder, is immediate from the
de�nition. Before getting to the other items, we show two claims:

(C1) If [ t] 2 T �n , then [t]
 9[t].
Proof: We have that (t; (jt j + 1 + i ) i � 0) is an approximation to [t] and [t] �

[t � jt j + 1 + 0], whence [t]
 9[t].
(C2) For [t]; [t0] 2 T �n , if [t]
 9[t0], then [t] � [t0].
Proof: Since [t0] is �nite, it is approximable, so [t]
 9[t0] holds because there

is an approximation (tz; (mj )) to [ t0] and j � 0 such that [t] � [tz � mj ]. Choose
k � j big enough such thatmk > jtzj (tz is �nite since it is equivalent to the �nite
t0). Then [t] � [tz � mj ] � [tz � mk ] = [ tz] = [ t0], as needed.

Ad (2). Let [ t]; [t0] 2 T �n . And show [t]v 9[t0] i� [ t] � [t0]. Assume [t]v 9[t0].
By (C1), [t]
 9[t], so, by condition (a), [t]
 9[t0], so, by (C2), [t] � [t0].

Conversely, assume [t] � [t0]. To show [t]v 9[t0], condition (b) is satis�ed since
[t] is approximable, and for condition (a), let [t0] 2 T �n with [ t0]
 9[t], and show
[t0]
 9[t0]. Consider the approximation (t0; (jt0j + 1 + j ) j ) to [t0] and j := 0. Then
[t] � [t0] = [ t0 � jt0j + 1 + j ], as needed.

Ad (3). Let [ t] 2 T �n and [t0] 2 T, and show [t]
 9[t0] i� [ t]v 9[t0]. Assume
[t]v 9[t0]. For [t0] := [ t] we have, by (C1), [t0]
 9[t], so [t] = [ t0]
 9[t0].

Conversely, assume [t]
 9[t0]. To show [t]v 9[t0], condition (b) is satis�ed since
[t] is approximable, and for condition (a), let [t0] 2 T �n with [ t0]
 9[t], and show
[t0]
 9[t0]. If [t0] is not approximable, then [t0]
 9[t0], so let [t0] be approximable



2.10. Conclusion 65

and (tz; (mj )) an approximation to [t0]. Since [t]
 9[t0] (and [t0] is approximable),
there is j � 0 such that [t] � [tz � mj ]. By (C2), [t0]
 9[t] implies [t0] � [t]. So
[t0] � [tz � mj ], as needed.

Ad (4). This follows from (3) and the de�nition of v 9 which, for approximable
elements, reduces to just condition (a).

Ad (5). If [ t] 2 T doesn't have an approximation, then [t] is in�nite (since
all �nite trajectories have an approximation) and, for [t0] 2 T, we have [t0]v 9[t]
because condition (a) holds vacuously since [t0]
 9[t] holds vacuously, and condi-
tion (b) holds vacuously since [t] is not approximable. 2





Chapter 3

Trajectory domains 2: Category

Abstract In the previous chapter, we provided a denotational semantics
to labeled transition systems (LTS): We introduced the notion of a behavioral
transition system (BTS) which extends an LTS by some structure to specify its
behavior, and, for countable systems, we constructed their trajectory domain
which serves as their denotation (or `behavior description'). In this chapter, we
complete this construction category-theoretically: We introduce the category
(! )BTS of (countable) BTSs and show that the trajectory domain construction
extends to a functorT : ! BTS ! ! ALG into the category of ! -algebraic domains.
The main result is that we build an adjunction between a subcategory of! BTS
and a version of! ALG: thus, the well-known `computational model' of! -algebraic
domains can be embedded into (i.e., can be abstracted from) the computational
model of BTSs. We also note that the trajectory domain construction naturally
leads to a new interpretation of relevance logic in terms of LTSs.

3.1 Introduction

Labeled transition systems (LTS) are a widely used computational model providing
operational semantics to systems (or processes): in the previous chapter, we've
mentioned as examples computer programs (or Turing machines more generally),
reactive systems interacting with a nondeterministic environment, model checking,
concurrent computation, or observing dynamical systems. So they can be seen as
a general model of symbolic computation. An LTS provides operational meaning
in the sense of describing the possible states of the system and their dynamics,
i.e., how the system can transform from one state to another.1 In the previous
chapter, we constructed a corresponding denotational semantics: a more system-
independent and static description of the possible behavior of the system that
facilitates mathematical analysis.

1The states could be fairly `low-level' (e.g., describing the tape and internal state of a Turing
machine) or more `high-level' (e.g., bundling together low-level states with a similar function).

67



68 Chapter 3. Trajectory domains 2: Category

To this end, we introduced the notion of a behavioral transition system (BTS).
This extends an LTSA by two more entities to specify its behavior: First, a
set T of A-trajectories that not only are `locally' possible (each step being a
possible transition in the LTS), but also `globally' possible (e.g., re
ecting memory
constraints); and second, an equivalence relation onT to say that two trajectories
are instances of the same (type of) behavior (e.g., two concurrent versions of
the same computation). So an equivalence class describes a possible behavior of
A (relative to T and � ), and the set of equivalence classesT= � describes the
possible behavior|and thus acts like a denotation of the LTS. We de�ned BTSs
as such structuresM = ( A; T; � ) satisfying �ve axioms capturing the intended
interpretation. We've shown that, for countable systems, there is essentially a
unique way of de�ning an information containment order onT= � turning it into
an ! -algebraic domain (a well-behaved partial order studied in domain theory).
We wrote T(M ) for this domain and called it the trajectory domain ofM .

This left open the issue of extending this to a category-theoretic treatment|
which is the purpose of this chapter. But why is this important? The short answer
is: only then do we have a complete description of BTSs as a computational model.
This is necessary to show that the trajectory domain semantics is `compositional'
(as we'd expect of a semantics) and to understand the relations to other com-
putational models. But it also is needed for a structural understanding of the
class of BTSs: for example, to see whether a BTS suggested as a model for the
safety veri�cation of a reactive system is equivalent to another (simpler) one or to
analyze it into subsystems. Let's explain.

Computational models as categories A lesson from Winskel and Nielsen
(1995) is that computational models (like LTSs) are fruitfully regarded as cate-
gories: the objects are instances of the computational model (i.e., any LTS) and
the morphisms are simulations between instances of the model (one LTS being
simulated in another).2 For example, consider the following two LTSs:A on the
left and B on the right.

s0

s0 s1 � � ��

�

�

�
r 0

r �

� 


We can simulateA in B by mapping sn 7! r and s0 7! r 0 (and � 7! �; � 7! � ):
then any transition in A is simulated by a transition in B. (For the precise
de�nition see section 3.2.1.) Thus, we can form the categoryLTS in which we
can not just talk about LTSs (objects) but also about their relationships given by
simulations (morphisms).

2Also see Sassone, Nielsen, and Winskel (1996).



3.1. Introduction 69

Somewhat more liberally, we may also think of the category of! ALG of
! -algebraic domains with Scott-continuous functions (formally de�ned in sec-
tion 3.2.2) as a computational model.3 A domain D can be regarded as the
data type of the possible (interim) outputs of a (type of) computational pro-
cess.4 For example, such a process may be that of computing an increasingly
precise binary representation of a real numberx in the unit interval [0 ; 1], say
x :=

p
2=2 = 0:7071: : :, so the interim outputs are 1; 10; 101; : : :.5 Then D may

be taken as the set of all �nite or �nite binary sequences ordered by extension.
A morphism, i.e., Scott-continuous functionf : D ! E maps D-outputs to
E-outputs in a computational way: to obtain a �nite approximation to the output
f (x) we only need a �nite approximation to the input x.

Two advantages of this view of a computational model as a category are the
following (Winskel and Nielsen 1995). First, constructions within the computa-
tional model (e.g., forming products of LTSs or domains) can now be characterized
category-theoretically: i.e., purely `structurally' without reference to the notational
details of the computational model. Second, one can compare computational
models even if they are stated in very di�erent terms: IfC and D are categories
representing two computational models, a functorF : C ! D turns an instanceA
of C into an instanceF(A) of D, and it turns a simulation f : A ! B in C into
a simulation F(f ) : F(A) ! F(B) in D. Most importantly, we can also formally
reconstruct the idea that modelD is moreabstract than (i.e., can be embedded
into) model C: we also have functorG : D ! C in the other direction such that,
roughly, if we start with B in D and build G(B) to go to C and then build F(G(B))
to go back to D, then we're back to where we started. Formally,F and G form a
(co-) re
ective adjunction (as de�ned in section 3.2.3).

Inspired by this, our categorical treatment of BTSs and their trajectory domains
establishes the following four results.

Result 1 We de�ne the categoryBTS of BTSs where the morphisms are also
based on the notion of simulation (as for LTSs). We show that BTSs do indeed
structurally extend LTSs: We have the forgetful functorG : BTS ! LTS that
assigns each BTS to its underlying LTS, and this is part of a core
ective adjunction.
So, the computational modelLTS can indeed be embedded intoBTS. We also
show that we can `systematically' ignore the `pathological' non-approximable
behavior in a BTS (i.e., in�nite behavior that cannot be represented as limit of
�nite behavior). In categorical terms, the inclusion from the categoryBTSa of

3This is not explicitly mentioned by Winskel and Nielsen (1995), but see their section 8 on
event structures (in particular, the domain of con�gurations).

4See, e.g., Scott (1970), Abramsky and Jung (1994) or Stoltenberg-Hansen, Lindstr•om, and
Gri�or (1994, esp. the preface).

5The output starts with 1 since x is in the upper half of [0; 1], i.e., x 2 [ 1
2 ; 1]. It continues

with 0 since x is in the lower half of [1
2 ; 1], i.e., x 2 [ 1

2 ; 3
4 ]. It then continues with 1 since x is in

the upper half of [1
2 ; 3

4 ], etc.



70 Chapter 3. Trajectory domains 2: Category

approximable BTSs (where every behavior is approximable) to the categoryBTS
has a right adjoint (and hence forms a re
ective adjunction).

Result 2 We show that the trajectory domain constructionT is functorial:
As mentioned, for a countable BTSM , the trajectory domain T(M ) is an ! -
algebraic domain. Here we show thatT also maps simulations between systems
to Scott-continuous functions between their trajectory domains. In categorical
terms, writing ! BTS for the full subcategory ofBTS consisting of countable BTS,
T : ! BTS ! ! ALG is a functor. Thus, the denotational semantics provided by
the trajectory domains is `compositional': it preserves the fundamental simulation
relations between BTSs. A corollary is that equivalence in the operational se-
mantics (i.e., isomorphism between LTSs) implies equivalence in the denotational
semantics (i.e., isomorphism of trajectory domains). We further discuss this point
in the open questions.

Result 3 Thus, we may ask whether the computational model! ALG is an
abstraction of the computational model! BTS, obtained through the trajectory
domain functor.

We tackle this question for the mildly restricted subcategory! BTSs
a of ! BTS:

First, as justi�ed before, we restrict us to approximable BTSs (hence thea). Second,
instead of the generalpartial simulations where transitions may be simulated by
inaction, we restrict us tosynchronoussimulations where transitions are always
simulated by transitions (hence thes). We're also led to a mild restriction on
! ALG: First, the Scott-continuous functions between trajectory domains that come
from simulations are always compactness preserving (they map �nite behavior to
�nite behavior). Second, the distinguishedness of the initial state of the system is,
in some cases, re
ected by the distinguishedness of an element of the trajectory
domain (namely the behavior ending in the initial state). This leads us to consider
the categoryiALG whose objects are pairs (D; c) of an ! -algebraic domainD with
a distinguished compact elementc and whose morphisms are Scott-continuous
functions preserving compactness and the distinguished element.

With these details out of the way, we show that there is indeed an adjunction

! BTSs
a iALG

Abs

Emb

a

which we obtain as a composition of three re
ective adjunctions. Thus, we
can indeed think of the computational modeliALG as an abstraction of the
computational model! BTSs

a.

Result 4 Fourth, while speculating on how this adjunction may be extended
to partial simulations, we make the surprising observation that LTSs and their



3.2. Background 71

trajectory domains provide an interpretation of relevance logic. The importance
of this is that relevance logic is often criticized for only having a formal but not a
`concrete' semantics.

Related work Much of the related work that we've already discussed in chap-
ter 2 is also done at a categorical level: For example, the work on the correspon-
dence of operational and denotational semantics for programming languages (Car-
done 2021; Ong 1995) or the connections between concurrent computation and
domain theory (Bracho and Droste 1994; Winskel and Nielsen 1995). As men-
tioned, here we consider denotational semantics for LTSs directly (without recourse
to a programming language), and BTSs may be viewed as a generalization of
various LTS-based models of concurrency. Also, our focus here is not on providing
a categorical equivalence between `system-based' categories and `domain-based'
categories (cf. Bracho and Droste 1994). Rather, we focus on re
ective adjunctions
(which, as discussed above, still have a strong computational interpretation) with
the aim of establishing connections to categories of domains that are close to the
standard ones of domain theory.

Outline The chapter is structured as follows. In section 3.2, we make sure that
this chapter is self-contained: we provide the relevant background on labeled
transition systems and domain theory, and we summarize the previous chapter.

In section 3.3, we de�ne the categoryBTS of behavioral transition systems
and show the adjunctionsLTS � BTS and BTS � BTSa. In section 3.4, we show
that the trajectory domain construction is a functor T : ! BTS ! ! ALG.

In section 3.5, we develop the adjunction! BTSs
a � iALG. And in section 3.6,

we speculate on possible extensions of the adjunction and sketch the interpretation
of relevance logic. In section 3.7, we conclude with some open questions. A
summary of the categories and their established connections is given in �gure 3.1.

3.2 Background

We provide the relevant background on labeled transition systems (section 3.2.1),
domain theory (section 3.2.2), and category theory (section 3.2.3). Then we
summarize the relevant parts from the previous chapter (section 3.2.4).

3.2.1 Category of labeled transition systems

In the previous chapter, we've already recalled the notion of a labeled transition
system (LTS) following the handbook article of Winskel and Nielsen (1995). In
this chapter, we continue following this article and use the same standard notion
for sequences: if� is a �nite or in�nite sequence, j� j � ! is its length, � � n is the
restriction to its �rst n elements, and� denotes sequence extension.



72 Chapter 3. Trajectory domains 2: Category

3.2.1. Definition . A labeled transition system(LTS ) A is a structure (S; i; L; ! )
whereS is a set ofstateswith initial state i , L is a set oflabels, and !� S � L � S
is the transition relation. We write s ��! s0 for (s; �; s 0) 2! . Given an LTS A, we
useSA , iA , LA , and ! A to refer to its set of states, initial state, set of labels,
and transition relation, respectively. We callA countable if both S and L are
countable sets. AnA-trajectory is a sequence

t = ( s0; � 0; s0
0); (s1; � 1; s0

1); : : : ; (sn ; � n ; s0
n ); : : :

of elements of! such that s0
i = si +1 . We then write s0

� 0�! s1
� 1�! : : :. If t is

nonempty, we calls0 the starting state of t and, if t also is �nite, we call the s0 of
the last entry the ending or last state of t, which we refer to by `last(t)'.

A natural notion of morphism between LTSs is given by the idea of asimulation:
A simulation of an LTS A in the LTS B (or an interpretation of A in B) is a
way to map the states and labels ofA to states and labels ofB such that an
A-transition is mimicked by a B-transition under this mapping. There at least
two ways to understand `mimicked'. The most general way is that of apartial
simulation: an A-transition either is mapped to aB-transition or is ignored and
hence interpreted as `inaction'. A more speci�c way is that of asynchronous
simulation: here we don't allow the `inaction' interpretation, whence every action
in A is interpreted by an action inB . Thus, the original LTS A and the host LTS
B (in which A is simulated) run `in sync'. Formally, this is spelled out as follows.
(For more background, see Winskel and Nielsen (1995).)

3.2.2. Definition . Let A = ( SA ; iA ; LA ; ! A ) and B = ( SB ; iB ; LB ; ! B ) be two
LTSs. An LTS-morphism f : A ! B is a pair (�; � ) where � : SA ! SB is a total
function and � : LA ! LB is a partial function such that

1. � (iA ) = iB

2. if s ��! A s0, then � (s)
� (� )
��! B � (s0) if � (� ) is de�ned, and otherwise� (s) = � (s0).

If f is an LTS-morphism, we writef = ( � f ; � f ). We call f synchronousif � f is
total.

3.2.3. Definition . Labeled transition systems together with their morphisms
form the category LTS. The identity morphism idA is (idSA ; idL A ) (where idX

denotes the identity function on the setX ). Morphism composition is pairwise
function composition: g � f = ( � g � � f ; � g � � f ).6

Note that an LTS-morphism f : A ! B sendsA-trajectories to B-trajectories:
If t is an A-trajectory, it is of the following form

6Composition of two partial functions is de�ned by � g � � f (� ) := � g(� f (� )) if both � f (� )
and � g(� f (� )) are de�ned, and otherwise � g � � f (� ) is unde�ned.



3.2. Background 73

t = t(0) t(1) t(2) : : :
= s0

� 0�! s0
0 s1

� 1�! s0
1 s2

� 2�! s0
2 : : :

with s0
i = si +1 . For eacht(n), we havef (t(n)) := � (sn ) � n�! � (s0

n ) if � (� n ) is de�ned
and otherwisef (t(n)) := ( � (sn ); � (s0

n )) is a pair of two identical elements, which
we call an idle pair.7 We write f � (t) for the sequencef (t(0))f (t(1))f (t(2)) : : :
and we write f (t) for the B-trajectory obtained from f � (t) after removing all idle
pairs.

Here are some basic facts (which we often use without explicit reference).

3.2.4. Lemma. Let f : A ! B and g : B ! C be LTS-morphisms, and lett and
t0 beA-trajectories. Then

1. If t � t0, then f (t) � f (t0).

2. jf (t)j � j t j.

3. For n � 0, we havef (t � n) � f (t) � n.

4. For all n � 0, there is m � 0 such thatf (t) � n = f (t � m). In words: an
initial segment of f (t) is determined by an initial segment oft.

5. If f is synchronous, then, for alln � 0, f (t) � n = f (t � n).

6. g(f (t)) = g � f (t). In words: applyingg to the B-trajectory f (t) is the same
as applyingg � f to the A-trajectory t.

Proof. Ad (1). If t � t0, then f � (t) � f � (t0), so f (t) � f (t0).
Ad (2). Since idle pairs are only deleted but never added, we havejf (t)j �

jf (t(0))f (t(1)) : : : j = jtj.
Ad (3). We have t � n � t, so, by (1), f (t � n) � f (t). Since, by (2),

jf (t � n)j � j t � nj � n, we havef (t � n) � f (t) � n.
Ad (4). By induction on n: If n = 0, we choosem := 0. For n + 1, if f (t)(n)

is not de�ned, then f (t) � n + 1 = f (t) � n and the claim follows by induction
hypothesis. So assumef (t)(n) is de�ned. So f (t) � n + 1 = ( f (t) � n)f (t)(n). By
induction hypothesis, letmn be such thatf (t) � n = f (t � mn ). If, for all m � mn ,
t(m) is a transition whose label is not in the domain of� , then none of these
transitions will contribute to f (t), whencef (t) = f (t � mn ) = f (t) � n, so f (t)(n)

7 The name alludes to the concept of an idle transition (Winskel and Nielsen 1995): one �xes
a symbol � (which no LTS is allowed to use as a label) which is interpreted as the `do nothing
action'. So every LTS can be extended by adding all transitions of the forms ��! s which are called
idle transitions. Then partial simulations can be rephrased as mapping (proper) transitions to
(proper) transitions if de�ned or to idle transitions if unde�ned (and the latter are essentially
the idle pairs above). Albeit elegant, we don't use this to keep notation minimal (but we'll
encounter this idea again in section 3.6).



74 Chapter 3. Trajectory domains 2: Category

wouldn't be de�ned. So letm � mn be minimal such that the label oft(m) is in the
domain of� . Then f (t � m) = f (t � mn )f (t(m)) = ( f (t) � n)f (t)(n) = f (t) � n+1,
as needed.

Ad (5). If f is synchronous, each� f (� ) is de�ned, so nof (t(n)) is idle, so
f (t � n) = f (t) � n.

Ad (6). If f (t(n)) = ( s; s) is an idle pair, de�ne g(f (t(n)) := ( � g(s); � g(s)),
and accordingly write

t = t(0) t(1) t(2) t(3) : : :
f � (t) = f (t(0)) f (t(1)) f (t(2)) f (t(3)) : : :

g� (f � (t)) := g(f (t(0))) g(f (t(1))) g(f (t(2))) g(f (t(3))) : : :

For eachn � 0 with t(n) = s ��! s0 de�ned, we have the following equivalences:

g(f (t(n))) is idle i� f (t(n)) is idle or it is a transition but g is not de�ned
on it i� � f (� ) is not de�ned or it is de�ned but � g(� f (� )) is not de�ned i�
� g� f (� ) is not de�ned i� g � f (t(n)) is idle.

And if g(f (t(n))) and, equivalently, g � f (t(n)) are not idle (i.e., are transitions),
then

g
�
f (t(n))

�
= g

�
� f (s)

� f (� )
���! � f (s0)

�
= � g(� f (s))

� g (� f (� ))
�����! � g(� f (s0))

= � g� f (s)
� g� f (� )
����! � g� f (s0) = g � f (t(n)) :

Henceg� (f � (t)) = ( g � f )� (t), whenceg(f (t)) = g � f (t). 2

Thus, while trajectory length|i.e., `computation time'|may get shorter along
a partial simulation, it remains the same along a synchronous simulation (which,
again, explains the name).

3.2.2 Domain theory

We recall some basic domain theory. A standard reference is Abramsky and Jung
(1994). A partial order (D; � ) is directed complete(in short, a dcpo) if any directed
subsetA � D has a least upper bound

W
A (also called supremum). (A is directed

if A is nonempty and any two elements ofA have an upper bound inA.) An
elementc of a dcpoD is compact if, for all directed subsetsA � D, if

W
A � c,

there is a 2 A with a � c. The set of compact elements ofD is written K (D). A
dcpo D is algebraicif, for all x 2 D, the set f c 2 K (D) : c � xg is directed and
has supremumx. Finally, an ! -algebraic dcpo is an algebraic dcpo whereK (D)
is countable.

A function f : D ! E between dcpos isScott-continuousif it is monotone and
preserves all directed suprema, i.e., ifA � D is directed, thenf (

W
A) =

W
f (A).



3.2. Background 75

We write ! ALG for the category of ! -algebraic dcpos with Scott-continuous
functions.

A useful fact to establish continuity is the following.

3.2.5. Lemma. Let f : D ! E be a monotone function between two! -algebraic
domains. Assume that for every! -chain C � K (D) we havef (

W
C) �

W
f (C).

Then f is continuous.

Proof. Let A � D be directed and showf (
W

A) =
W

f (A). Since f is mono-
tone, we have� , and for � we show that, if A0 � K (D) is directed, then
f (

W
A0) �

W
f (A0): Indeed, A0 is directed and countable, so it has a co�nal chain

C = a0 � a1 � : : :, so
W

A =
W

C, whence, by assumption,f (
W

A0) = f (
W

C) �W
f (C) �

W
f (A0). Now take A0 := f x 2 K (D) : 9a 2 A:x � ag: by algebraicity,

A0 is still directed and
W

A0 =
W

A, sof (
W

A) = f (
W

A0) �
W

f (A0) �
W

f (A). 2

We'll also use the following two facts on reconstructing Scott-continuous
functions between algebraic domains from monotone functions between their
compact elements (i.e., their bases). (For the more general theory on reducing
domains to bases see Abramsky and Jung (1994, sec. 2.2.6).)

3.2.6. Lemma. Let D and E be algebraic domains andf : K (D) ! K (E) an
order-isomorphism. Thenf̂ : D ! E de�ned by

f̂ (x) :=
_ �

f (c) : x � c 2 K (D)g

is a well-de�ned order isomorphism extendingf .

Proof. Well-de�ned: SinceD is algebraic,f c 2 K (D) : x � cg is directed, so,
sincef is monotone,f f (c) : x � c 2 K (D)g is a directed subset ofE and hence
has a least upper bound.

Monotone: If x � y, then
�

f (c) : x � c 2 K (D)g �
�

f (c) : y � c 2 K (D)g,
so f̂ (x) =

W�
f (c) : x � c 2 K (D)g �

W�
f (c) : y � c 2 K (D)g = f̂ (x).

Surjective: If y 2 E, then B := f d 2 K (E) : y � dg is directed with
W

B = y.
Sincef is an order-isomorphism,A := f � 1(B ) is directed in D. Let x :=

W
A.

We showf̂ (x) = y, i.e.,
W�

f (c) : x � c 2 K (D)g =
W

B. Concerning� , given
z = f (c) for some

W
A = x � c 2 K (D), we have, sincec is compact, c � a

for somea 2 A = f � 1(B ), so z = f (c) � f (a) 2 B, so z �
W

B. Concerning
� , given d 2 B � K (E), note that c := f � 1(d) is in A sincef (c) = d 2 B. So
d 2

�
f (c) : x � c 2 K (D)g, whenced �

W�
f (c) : x � c 2 K (D)g.

Order-respecting: Letx; y 2 D with f̂ (x) � f̂ (y) and showx � y. It su�ces to
show, forc 2 K (D), that c � x implies c � y (then x =

W
f c 2 K (D) : c � xg �W

f c 2 K (D) : c � yg = y). If c � x, then f (c) �
W�

f (c) : x � c 2 K (D)g �W�
f (c) : y � c 2 K (D)g. Sincef (c) is compact in E, there is y � c0 2 K (D)

with f (c) � f (c0), so, sincef is an order-isomorphism,c � c0 � y, as needed.



76 Chapter 3. Trajectory domains 2: Category

Extension: If x 2 D is compact, we havef̂ (x) =
W

f
��

c 2 K (D) : c �
xg

�
= f (x) since f (x) is de�ned and, by monotonicity, an upper bound of

f
��

c 2 K (D) : c � xg
�
, and, sincef (x) is in this set, it also is a least upper

bound. 2

3.2.7. Lemma. Let f; g : D ! E be Scott-continuous functions between algebraic
domains. If f and g agree on compact elements, thenf = g.

Proof. For x 2 D, we have

f (x) = f
� _

f c 2 K (D) : c � xg
�

=
_

f
�
f c 2 K (D) : c � xg

�

=
_

g
�
f c 2 K (D) : c � xg

�
= g

� _
f c 2 K (D) : c � xg

�
= g(x);

as needed. 2

3.2.3 Category theory

We only use the basic concepts of a category, a functor, and an adjunction; as
found in standard references like Leinster (2014) or the classic Mac Lane (1998).
We follow the slightly more general terminology of Sassone, Nielsen, and Winskel
(1996) and Winskel and Nielsen (1995) and call an adjunctionre
ective (resp.,
co-re
ective) if the counit (resp., unit) is a natural isomorphism. This generalizes
the usual terminology of a subcategoryD of a categoryC being re
ective (resp.,
co-re
ective) if the inclusion I : D ! C has a left adjoint (resp., right adjoint).

3.2.4 Recap from the previous chapter

The previous chapter provides an extensive discussion and motivation of the
notion of a behavioral transition system (BTS) and its axiomatization. As already
mentioned, the main idea was to extend an LTSA by a setT of `globally possible'
trajectories and an equivalence relation� on T indicating when two trajectories
are instances of the same (type of) behavior. To support this interpretation, the
resulting structures (A; T; � ) should satisfy �ve axioms:

3.2.8. Definition . A behavioral transition system(BTS) is a structure M =
(A; T; � ) where A is an LTS, T is a set ofA-trajectories, and� is an equivalence
relation on T such that the following holds. (For �nite t; t 0 2 T, [t] � M [t0] :,
8t0 2 [t]9t1 2 [t0] : t0 � t1; we just write � if clear from context.)

1. For all t 2 T, if t0 is a nonempty �nite initial segment of t, then t0 2 T.



3.2. Background 77

2. For all in�nite A-trajectories t, if 0 < n 0 < n 1 < : : : with t � ni 2 T and
[t � ni ] � [t � ni +1 ] (for all i � 0), then t 2 T.

3. For all t; t 0 2 T with t � t0, if t is empty, then t0 is empty, and if t is �nite,
then t0 is �nite.

4. For all in�nite t; t 0 2 T, if t � t0, there is i; j � 1 such that, for all n � 0,
t � i + n � t0 � j + n.

5. For all in�nite t 2 T and 0 < n 0 < n 1 < : : : and 0 < m 0 < m 1 < : : : , if
[t � n0] � [t � n1] � : : : and [t � m0] � [t � m1] � : : :, then, for all i � 0,
there is j � 0 such that [t � ni ] � [t � mj ].

We call M countableif A is countable.

A simple construction of a BTS from an LTSA is as follows: LetT be a set of
A-trajectories that is closed under nonempty �nite initial segments (axiom 1) and
satis�es the following strengthening of axiom 2:

(2)� For all in�nite A-trajectories t, if t 62T, then there is n � 1 such that
t � n 62T.

For example,T could be the set of allA-trajectories. De�ne � as extensional
equivalence: for t; t 0 2 T, de�ne t � t0 i�

ˆ both t and t0 are empty, or

ˆ both t and t0 are nonempty �nite and last(t) = last( t0), or

ˆ both t and t0 are in�nite and there are i; j � 0 such that, for all n � 0,
t(i + n) = t0(j + n).

Then, as shown in the previous chapter,M := ( A; T; � ) is a BTS.
In a BTS, we can de�ne an `information containment' order. (In the previous

chapter, we've discussed various equivalent de�nitions.)

3.2.9. Definition . Let M = ( A; T; � ) be a BTS. Let t 2 T. We write [t] :=
f t0 2 T : t0 � tg. An approximation to [t] is a pair (ty; (ni ) i � 0) with ty 2 [t]
and (ni ) a strictly increasing sequence of positive integers such that the sequence
([ty � ni ])i is � M -increasing. We callt approximableif there is an approximation
to [t]. For t; t 0 2 T we de�ne [t]v M [t0] i�

(a) For all approximations � = ( ty; (ni )) to [ t] and � 0 = ( tz; (mj )) to [ t0], � 0

dominates � , i.e., 8i � 09j � 0 : [ty � ni ] � M [tz � mj ].

(b) If [ t] is not approximable, then [t0] is not approximable.



78 Chapter 3. Trajectory domains 2: Category

As shown in the previous chapter,v M is a preorder onT=� that coincides with �
on equivalence classes of �nite trajectories. We call it theinformation containment
preorder ofM and just write v if M is clear from context.

This de�nition simpli�es if M = ( A; T; � ) is bisimulative: i.e., for all nonempty
�nite t; t 0 2 T, if t � t0 and t0 2 T extendst by one element, then there is a �nite
extensiont1 2 T of t0 such that t0 � t1. (Equivalently, for all �nite t; t 0 2 T, if
t � t0, then [t] � [t0].) As shown in the previous chapter, then, for allt; t 0 2 T, we
have

[t]v [t0] , 8 n � 09m � 0 : [t � n] � [t0 � m]:

The characterization theorem of the previous chapter shows that, for countable
BTSs, the information containment preorder is, in a sense, unique and the partial
order induced by the information containment preorder is an! -algebraic domain.

3.2.10. Definition . Let M = ( A; T; � ) be a countable BTS. LetT(M ) be
the partial order induced by (T=� ; v M ): its elements are equivalence classes
[[t]� ]v :=

�
[t0] 2 T=� : [t0]v M [t]; [t]v M [t0]

	
, which often just denote [[t]], and they

are ordered by [[t]]v M [[t0]] i� [ t]v M [t0]. We often write v M = v M . We call T(M )
the trajectory domain of M .

Below we see, as this notation suggests, that the trajectory domain construction
T(M ) extends to a functor.

3.3 Category of behavioral transition systems

We de�ne the categoryBTS of behavioral transition systems (section 3.3.1) and
we prove some basic facts about its morphisms (section 3.3.2). Then we show that
the categoryLTS can be `embedded' intoBTS (section 3.3.3) and that we can
ignore non-approximable behavior (section 3.3.4).

3.3.1 De�nition

The notion of morphism for LTSs extends naturally to BTSs by requiring that they
additionally preserve the structure we care about: globally possible trajectories
should be mapped to globally possible trajectories and information containment
should be preserved.

3.3.1. Definition . Let M = ( AM ; TM ; � M ) and N = ( AN ; TN ; � N ) be BTSs. A
BTS-morphism f : M ! N is an LTS-morphismf : AM ! AN such that

1. For all t 2 TM , f (t) 2 TN .



3.3. Category of behavioral transition systems 79

2. For all t; t 0 2 TM , if [t]v M [t0], then [f (t)]v N [f (t0)].

We call f synchronousif it is a synchronous LTS-morphism.

3.3.2. Proposition . We can form the categoryBTS whose objects are BTSs
and whose morphisms are BTS-morphisms. The identity morphism isidM =
(idSM ; idL M ) and morphism composition is given by pairwise function composition.

Proof. Since LTS-morphisms already form a category, we need to check that (a)
the identity LTS-morphism indeed satis�es the additional conditions (1) and (2)
on BTS-morphism, and that (b) compositions of BTS-morphisms are again BTS-
morphism. Now, (a) is immediate, so letf : M ! N and g : N ! K be
BTS-morphism and showg � f = ( � g � � f ; � g � � f ) again satis�es conditions (1)
and (2). Indeed, concerning (1), ift 2 TM , then f (t) 2 TN , so g(f (t)) 2 TK , so,
using lemma 3.2.4,g � f (t) = g(f (t)) 2 TK . And concerning (2), if t; t 0 2 TM and
[t]v M [t0], then [f (t)]v N [f (t0)], so [g(f (t))]v K [[g(f (t0))]. So, sinceg(f (t)) = g� f (t)
and g(f (t0)) = g � f (t0), we have [g � f (t)]v K [[g � f (t0)]. 2

We de�ne various subcategories ofBTS that we'll use below.

3.3.3. Definition . Let BTSs be the (wide) subcategory ofBTS where morphisms
are required to be synchronous. Let! BTS be the full subcategory ofBTS
consisting of countable BTS. For further propertiesp of BTSs, let BTSp be the
full subcategory ofBTS whose objects have propertyp. Examples ofp that we'll
use are the following: IfM = ( A; T; � ) is a BTS, we sayM is

f full if T is the set of allA-trajectories.

e extensional if � is extensional equivalence.

u unlabeledif the label setLA is a singleton.

r re
exive if, for all s 2 SA and � 2 LA , s ��! s.

a approximableif every t 2 T is approximable.

y antisymmetric if � M is antisymmetric (i.e., a partial order).8

Thus, for example,! BTSa is the full category ofBTS consisting of countable and
approximable BTSs. And! BTSs

fey is the full subcategory ofBTSs consisting of
countable, full, extensional, and antisymmetric BTSs. More generally, the naming
pattern is this: Categories are denoted by three upper case, sans serif letters. The
countability restriction on objects is so prominent to deserve a place at the front

8Since the letters a (as in antisymmetric) and s (as in antisymmetric) are already taken,
the next best mnemonic seems to be the lettery which appears rather idiosyncratically in
`antisymmetric'.



80 Chapter 3. Trajectory domains 2: Category

(i.e., a pre�xed ! ). Restrictions on morphisms are noted as su�xed superscripts.
And restrictions on objects (other than the countability restriction) are noted as
su�xed subscripts. If there are several properties, we don't need any notation to
separate them since a single letter stands for a unique property.

In the previous chapter we've establishedf&e ) bisimulative ) a.

3.3.2 Basic properties

We show two basic properties about BTS-morphisms: First, that their de�nition
simpli�es considerably for various subcategories ofBTS. And second, that they
preserve approximability.

3.3.4. Proposition . Let M = ( AM ; TM ; � M ) and N = ( AN ; TN ; � N ) be BTSs
and f : AM ! AN an LTS-morphism. Then:

1. Assume M is approximable andN is bisimulative. Then f is a BTS-
morphism i�

(a) for all t 2 TM , f (t) 2 TN , and

(b) for all nonempty �nite t; t 0 2 TM , if [t] � M [t0], then [f (t)] � N [f (t0)].

2. In (1), clause (b) is implied by

(c) for all nonempty �nite t; t 0 2 TM , if t � M t0, then f (t) � N f (t0).

Moreover, if N additionally is antisymmetric, then (b) also implies (c).

3. If M and N are full and extensional, thenf already is a BTS-morphism.

Proof. Ad (1). ( ) ) If f is a BTS-morphism, it has property (a) by de�nition.
Concerning (b), lett; t 0 2 TM be nonempty �nite with [ t] � M [t0]. Sincev coincides
with � on �nite trajectories, we have [t]v M [t0], whence, sincef is a BTS-morphism,
[f (t)]v N [f (t0)], whence, sincef (t) and f (t0) are �nite, [ f (t)] � N [f (t0)].

(( ) Assumef satis�es properties (a) and (b). By property (a), clause (1) of
being a BTS-morphism is satis�ed. For clause (2), lett; t 0 2 TM with [ t]v M [t0], and
show [f (t)]v N [f (t0)]. As noted in section 3.2.4, we have, sinceN is bisimulative,
[f (t)]v N [f (t0)] i� 8n9m : [f (t) � n] � N [f (t0) � m]. So let n � 0 and �nd m � 0
such that [f (t) � n] � N [f (t0) � m].

If t is empty, then we can choosem := 0 since then [f (t) � n] = [ � ] � N [� ] =
[f (t0) � m]. So let t be nonempty.

SinceM is approximable, let (ty; (ni )) and (tz; (mj )) be approximations to [t]
and [t0], respectively. Also letk � 0 be such thatf (t) � n = f (t � k). Let i � 0 be
big enough such thatni > k � 0. SinceN is bisimulative and f (t � k) � f (t � ni ),



3.3. Category of behavioral transition systems 81

we have [f (t) � n] = [ f (t � k)] � N [f (t � ni )]. Since [t]v M [t0], there is j � 0 such
that [ t � ni ] � M [t0 � mj ]. We claim that we can choosem := mj .

If t0 � mj is empty, then alsot � ni is empty (otherwise it cannot be extended
to a trajectory equivalent to t0 � mj ), so t is empty (otherwise, sinceni > 0, also
t � ni is nonempty). Hence alsof (t) is empty, so [f (t) � n] = [ � ] � N [f (t0) � mj ],
as needed.

So assumet0 � mj is nonempty. Sinceni > 0 and t is nonempty, alsot � ni is
nonempty. And t � ni and t0 � mj are in TM qua nonempty initial segments of
the trajectories t and t0 in TM , respectively. Since [t � ni ] � M [t0 � mj ], clause (b)
implies

[f (t) � n] = [ f (t � k)] � N [f (t � ni )] � N [f (t0 � mj )] � N [f (t0) � mj )];

where the last step follows sincef (t0 � mj ) � f (t0) � mj and N is bisimulative.
Ad (2). First, we show, in the setting of (1), that (c)) (b).
Indeed, let t; t 0 2 TM be nonempty �nite with [ t] � M [t0]. Sot can be extended

to t1 2 TM with t1 � M t0. In particular, t1 also is nonempty �nite. So, by (c),
f (t) � f (t1) � N f (t0). SinceN is bisimulative, [f (t)] � N [f (t1)] = [ f (t0)].

Next, assume thatN additionally is antisymmetric and show (b)) (c).
Indeed, let t; t 0 2 TM be nonempty �nite with t � M t0. By re
exivity of v ,

[t]v M [t0] and [t0]v M [t], so, by (b), we have [f (t)]v N [f (t0)] and [f (t0)]v N [f (t)].
Sincev N coincides with� N on �nite trajectories and � N is antisymmetric, we
have [f (t)] = [ f (t0)], so f (t) � N f (t0).

Ad (3). Let M and N be full and extensional. In particular,M is approximable
and N is bisimulative. By (1) and (2), it su�ces to show that clauses (a) and (c) are
satis�ed. Indeed, (a) is satis�ed sinceN is full. For (c), let t; t 0 2 TM be nonempty
�nite with t � M t0. Since� M is extensional equivalence,last(t) = last(t0). Hence

last(f (t)) = � f (last(t)) = � f (last(t0)) = last( f (t0)) ;

so, since� N is extensional equivalence,f (t) � N f (t0). 2

3.3.5. Proposition . Let f : M ! N be a BTS-morphism. If[t] is approximable
in M , then [f (t)] is approximable inN .

Proof. By assumption, there is an approximation (ty; (ni )) to [ t]. It su�ces to
show that f (ty) is approximable in N : Then, sincet � ty, we have, by re
exivity
of v , [t]v M [ty], whence, sincef preservesv , [f (t)]v N [f (ty)]. By de�nition of v ,
this implies that, if [ f (t)] is non-approximable, also [f (ty)] is non-approximable.
So if [f (ty)] is approximable, also [f (t)] is.

If f (ty) is �nite, it is approximable, so let it be in�nte (so also ty is in�nite).
Hencejf (ty � ni )j grows unboundedly (otherwise there ism such that all transitions
ty(m0) with m0 � m get mapped byf to unde�ned transitions, so f (ty) is �nite).
Let (ni j ) j � 0 be a subsequence such that 0< jf (ty � ni j )j < jf (ty � ni j +1 )j.



82 Chapter 3. Trajectory domains 2: Category

Now, de�ne mj := jf (ty � ni j )j. Note that f (ty � ni j ) = f (ty) � mj .9 Then
0 < m 0 < m 1 < : : : and, for any j � 0, we have [ty � ni j ] � M [ty � ni j +1 ], so, since
f preservesv which coincides with� on �nite trajectories, we have

[f (ty) � mj ] = [ f (ty � ni j )] � N [f (ty � ni j +1 )] = [ f (ty) � mj +1 ]:

Hence, (f (ty); (mj )) is an approximation to f (ty) in N . 2

3.3.3 Embedding labeled transition systems

We have the forgetful functorG : BTS ! LTS that maps a BTS M = ( A; T; � )
to the underlying LTS A and that maps a BTS-morphismf : M ! N to
G(f ) := f : AM ! AN . Conversely, we show that there also is an optimal way of
turning an LTS into a BTS, i.e., the forgetful functor G has a left adjoint F:

LTS BTS
F

G

a

and the unit of the adjunction is an isomorphism. Thus, the computational model
LTS can be abstracted from (i.e., embedded into) the computational modelBTS.
Spelled out, this means the following.

3.3.6. Proposition . The forgetful functor G : BTS ! LTS is a right adjoint:
For eachB in LTS there is F(B) in BTS and an isomorphism� B : B ! G(F(B))
such that, for everyM in BTS and everyg : B ! G(M ), there is a unique
morphism f : F(B) ! M with G(f ) � � B = g.

B G(F(B))

G(M )

g

� B

G(f )

Proof. Construction of F(B). De�ne F(B) := ( B; TB ; � B ) with TB := ; and
� B := ; . This is a BTS: B is an LTS, TB is a set ofB-trajectories, and� B is an
equivalence relation onTB , and it vacuously satis�es the axioms (1){(5).

Construction of � B . De�ne � B := idB = ( idSB ; idL B ) : B ! B = G(F(B)). This,
in particular, is an isomorphism inLTS.

Universality. Now, let M = ( A; T; � ) be in BTS and let g : B ! G(M ) be
a morphism, and �nd a uniquef : F(B) ! M with G(f ) � � B = g. Uniqueness
is immediate: if f; f 0 are such morphisms, thenf = f � idB = G(f ) � � B = g =

9Proof: Sincety � ni j � ty, we havef (ty � ni j ) � f (ty), so f (ty � ni j ) = f (ty) � jf (ty � ni j )j =
f (ty) � mj .



3.3. Category of behavioral transition systems 83

G(f 0) � � B = f 0� idB = f 0. For existence, it su�ces to show that f := g : F(B) ! M
is a BTS-morphism (since it automatically has the propertyG(f ) � � B = g� idB = g).
Indeed, it is an LTS-morphismB ! G(M ) of the underlying LTSs and, since
TB = ; , it vacuously satis�es the axioms (1){(2) of BTS-morphisms. 2

3.3.4 Removing non-approximable behavior

We show that we can systematically ignore the `pathological' non-approximable
behavior: The operationA of `removing' non-approximable trajectories from a
BTS yields an approximable BTS and is optimal in the sense of being right-adjoint
to the inclusion

BTS BTSa:
A

I

a

Spelled out, this means the following.

3.3.7. Theorem . The inclusion I : BTSa ! BTS is a left adjoint: For eachM
in BTS there is A(M ) in BTSa and � M : A(M ) ! M such that, for everyN in
BTSa and everyf : N ! M , there is a unique morphismg : N ! A(M ) with
� M � g = f .

N

A(M ) M

fg

� M

Proof. Construction of A(M ). Write M = ( A; T; � ). De�ne

T0 :=
�

t 2 T : [t] approximable in M
	

:

De�ne A(M ) := ( A; T 0; � 0), where � 0 is the restriction of the equivalence relation
� on T to the subsetT0. SoT0 is a set ofA-trajectories and� 0 an equivalence
relation on T0, so, to verify that A(M ) is in BTSa, we need to show that it satis�es
axioms (1){(5) and is approximable.

We signal notions inA(M ) by an apostrophe (e.g.,� 0 or [t]0). We �rst show
four claims.

(C1). For �nite t; t 0 2 T0, we have [t]0 � 0 [t0]0 i� [ t] � [t0].
Proof: For �nite t 2 T0, we have, since �nite trajectories are approximable

and since �nite trajectories can only be equivalent to �nite trajectories, that
[t]0 = f t0 2 T0 : t0 � 0 tg = f t0 2 T : t0 � tg = [ t]. Hence, [t]0 � 0 [t0]0 i�
8t0 2 [t]09t1 2 [t0]0 : t0 � t1 i� 8t0 2 [t]9t1 2 [t0] : t0 � t1 i� [ t] � [t0].

(C2). If ( ty; (ni )) is an approximation to [t] in M , it is also an approximation
to [t]0 in A(M ), and vice versa.



84 Chapter 3. Trajectory domains 2: Category

Proof: So theni > 0 are strictly increasing and ([ty � ni ]) is � -increasing and
ty 2 [t]. In particular, ty 2 T also is approximable, soty 2 T0, whence also all
ty � ni are in T0. Hencety 2 [t]0 and ([ty � ni ]0) i is, by (C1), � 0-increasing. So
(ty; (ni )) is an approximation to [t]0 in A(M ).

Conversely, if (ty; (ni )) is an approximation to [t]0 in A(M ), then (ni ) is strictly
increasing and ([ty � ni ]0) is � 0-increasing andty 2 [t]0. So alsoty 2 [t] and, by (C1),
([ty � ni ]) is � -increasing, so (ty; (ni )) is an approximation to [t] in M .

(C3). In particular, each t 2 T0 is approximable inA(M ).
Proof: By de�nition of T0, [t] has an approximation inM , which is, by (C2),

an approximation in A(M ), so t is approximable inA(M ).
(C4). For t; t 0 2 T0, [t]0v 0[t0]0 i� [ t]v [t0].
Proof: () ) Assume [t]0v 0[t0]0, and show [t]v [t0]. Sincet 2 T0, [t] is approximable

in M , so the (b)-condition ofv is satis�ed, and we need to show the (a)-condition.
So let (ty; (ni )) and (tz; (mj )) be approximations in M to [t] and [t0], respectively,
and let i � 0. By (C2), these also are approximations inA(M ) to [t]0 and [t0]0,
respectively. Since [t]0v 0[t0]0, there is j � 0 such that [ty � ni ]0 � 0 [tz � mj ]0,
so, by (C1), [ty � ni ] � [tz � mj ], as needed. (( ) Assume [t]v [t0], and show
[t]0v 0[t0]0. Since, by (C3), [t]0 is approximable inA(M ), the (b)-condition of v 0 is
satis�ed, and we need to show the (a)-condition. So let (ty; (ni )) and (tz; (mj ))
be approximations inA(M ) to [t]0 and [t0]0, respectively, and leti � 0. By (C2),
these are also approximations inM to [t] and [t0], respectively, Since [t]v [t0], there
is j � 0 such that [ty � ni ] � [tz � mj ], so, by (C1), [ty � ni ]0 � 0 [tz � mj ]0.

Now, concerning axiom (1), assumet0 � t 2 T0 with t0 nonempty �nite. So
t0 is approximable, and it is inT qua nonempty initial segment oft 2 T0 � T,
whencet0 2 T0.

Concerning axiom (2), assumet is an in�nite A-trajectory and 0 < n 0 < n 1 <
: : : with t � ni 2 T0 and [t � ni ]0 � 0 [t � ni +1 ]0. Then t � ni 2 T and, by (C1),
[t � ni ] � [t � ni +1 ]. This implies that [t] is approximable inM , and, sinceM
satis�es this axiom (2), t 2 T. Hencet 2 T0.

Concerning axiom (3), ift; t 0 2 T0 with t � 0 t0, then t; t 0 2 T with t � t0, so, if
t is empty, alsot0 is empty, and if t is �nite, also t0 is �nite, as needed.

Concerning axiom (4), ift; t 0 2 T0 are in�nite with t � 0 t0, then t; t 0 2 T are
in�nite with t � t0, so there isi; j � 1 such that, for all n � 0, t � i + n � t0 � j + n,
whence, since these trajectories are inT0 (qua nonempty �nite initial segments of
trajectories in T0), t � i + n � 0 t0 � j + n, as needed.

Concerning axiom (5), assumet 2 T0 is in�nite and ( ni ) and (mj ) are strictly
increasing with ([t � ni ]0) i and ([t � mj ]0) j � 0-increasing. By (C1), ([t � ni ])i and
([t � mj ])j are � -increasing. So, for alli � 0, there isj � 0 with [t � ni ] � [t � mj ],
so, by (C1), [t � ni ]0 � 0 [t � mj ]0, as needed.

Finally, A(M ) is approximable by (C3).
Construction of � M . Write A = ( S; i; L; ! ) for the underlying LTS of M .

Let � M := ( idS; idL ) be the identity LTS-morphism. To show that it is a BTS-
morphism, we need to verify properties (1) and (2). Concerning (1), ift 2 T0,



3.4. Trajectory domain functor 85

then � M (t) = t 2 T sinceT0 � T. Concerning (2), if t; t 0 2 T0 with [ t]0v 0[t0]0, then,
by (C4), [� M (t)] = [ t]v [t0] = [ � M (t0)].

Universality. Now, let N be in BTSa and f : N ! M a BTS-morphism. We
need to �nd a unique morphismg : N ! A(M ) with � M � g = f .

Uniqueness is immediate: ifg; g0 are such morphisms, we have, since� M is
the identity LTS-morphism, g = � M � g = f = � M � g0 = g0. For existence,
we need to show thatg := f : N ! A(M ) is a BTS-morphism. It is an LTS-
morphism AN ! A, so we need to show that it satis�es properties (1) and (2) of
a BTS-morphism.

Concerning (1), if t 2 TN , then, qua BTS-morphismN ! M , f (t) 2 T. Since
[t] is approximable in N (since N is in BTSa), [f (t)] is, by proposition 3.3.5,
approximable in M , so f (t) 2 T0.

Concerning (2), assumet; t 0 2 TN with [ t]v N [t0]. Sincef is a BTS-morphism
N ! M , we have [f (t)]v [f (t0)]. Since f (t); f (t0) 2 T0, we have, by (C4), that
[f (t)]0v 0[f (t0)]0, as needed. 2

We also note that the adjunction restricts to the countable case.

! BTSs ! BTSs
a

A

I

a

Indeed, if M is in ! BTSs, then the LTS A underlying M is countable, so, since
A is also the LTS underlyingA(M ), also A(M ) is countable and hence in! BTSs.
Moreover, the morphism� M : A(M ) ! M is in ! BTSs since it is synchronous
(� � M is the identity).

3.4 Trajectory domain functor

We show that the trajectory domain construction is functorial: it naturally
extends to a functor from the category! BTS to the category! ALGof ! -algebraic
domains with Scott-continuous functions. This will follow easily from the following
proposition.

3.4.1. Proposition . Let M and N be in ! BTS and f : M ! N a BTS-
morphism. Then the functionT(f ) : T(M ) ! T(N ) given by[[t]] 7! [[f (t)]]
is well-de�ned and Scott-continuous.

Proof. Well-de�ned: Sincet 2 TM , f (t) 2 TN , so [[f (t)]] 2 T(N ), and if [[t]] =
[[t0]], then [t]v [t0] and [t0]v [t], so, by clause (2) of BTS-morphisms, [f (t)]v [f (t0)]
and [f (t0)]v [f (t)], so [[f (t)]] = [[ f (t0)]]. Similarly, we see thatT(f ) is monotone.

Thus, T(f ) is a monotone function between the two! -algebraic domainsT(M )
and T(N ). So to show that it is continuous, it su�ces, by lemma 3.2.5, to show
that, for an ! -chain C � K (T(M )), we haveT(f )(

W
C)v

W
T(f )(C).



86 Chapter 3. Trajectory domains 2: Category

Now, C is of the form [[t0]]v [[t1]]v : : : for t i 2 TM , whence [t0] � [t1] � : : :. If
C has a greatest element (i.e., `stagnates' with some [tk ]), the claim is immediate
by monotonicity. So we can assume without loss of generality that the chain is
strictly increasing, doesn't start with [� ], and all tk are �nite (if some tk were
in�nite, it must be non-approximable since it is compact, so it would be maximal).

Let t0
0 := t0 2 [t0] and n0 := jt0

0j > 0. Then we can extendt0
0 to t0

1 2 [t1] and
haven1 := jt0

1j > jt0
0j = n0. We continue and extendt0

1 to t0
2 2 [t2], etc., and de�ne

t 2 T by: t(n) := t0
k(n) for somek with jt0

k j > n . Then C = [[ t � n0]] � [[t � n1]] �
: : :, so, by the characterization theorem (from the previous chapter),

W
C = [[ t]].

Moreover,T(f )(C) = f [[f (t � n0)]]; [[f (t � n1)]]; : : :g.
By monotonicity, [f (t)] is a v -upper bound ofT(f )(C). So if f (t) is �nite,

there is a big enoughni such that f (t) = f (t � ni ), so [[f (t)]] 2 T(f )(C) is the
least upper bound, i.e.,T(f )(

W
C) = T(f )([[t]]) =

W
T(f )(C).

So assumef (t) is in�nite. For each ni de�ne mi := jf (t � ni )j. Then
f (t � ni ) = f (t) � mi (since f (t � ni ) is an initial segment off (t) of length mi ).
Note that mi � mi +1 and [f (t) � mi ] = [ f (t � ni )] � [f (t � ni +1 )] = [ f (t) � mi +1 ].
And the mi grow unboundedly (if not, f (t) would be �nite). Pick a subsequence
(mi j ) j that is strictly increasing with mi 0 > 0. Then we have, by the characteriza-
tion theorem, that [[f (t)]] =

W
i [[f (t) � mi ]]. And since [f (t) � mi ] 2 T(f )(C), we

have T(f )(
W

C) = T(f )([[t]]) = [[ f (t)]] =
W

[f (t) � mi ]v
W

T(f )(C), as needed.2

3.4.2. Theorem . We have thetrajectory domain functor T : ! BTS ! ! ALG
which sends a BTSM to its trajectory domain T(M ) and which sends a BTS-
morphism f : M ! N to the Scott-continuous functionT(f ) : T(M ) ! T(N )
de�ned by [[t]] 7! [[f (t)]].

Proof. It remains to check that T satis�es the compositionality conditions.
Indeed,T(idM ) maps [[t]] to [[idM (t)]] = [[ t]] and hence is the identity onT(M ).
And if f : M ! N and g : N ! K are BTS-morphisms, then we have, for all
t 2 TM , that g � f (t) = g(f (t)), hence

T(g) � T(f )
�
[[t]]

�
= T(g)

�
T(f )([[t]])

�
= T(g)

�
[[f (t)]]

�

= [[ g(f (t))]] = [[ g � f (t)]] = T(g � f )
�
[[t]]

�
;

so T(g � f ) = T(g) � T(f ). 2

Three comments: First, when restricting to approximable BTSs, any simulation
between BTSs is turned byT into a Scott-continuous function that preserves
compactness (i.e., maps compact elements to compact elements): Iff : M ! N is
in ! BTSa and [[t]] 2 T(M ) is compact, thent is a �nite trajectory, so T(f )([[t]]) =
[[f (t)]] 2 T(N ) is compact sincef (t) is �nite.

Second, the fact thatT(f ) preserves compactness is, in a sense, the consequence
of LTS-morphisms being `uniform' or `context insensitive': Whether a states



3.5. Adjunction between systems and domains 87

or label � in A is mapped to a states0 or label � 0 in B has to be determined
without reference to the context|i.e., trajectory|in which s and � occur. Thus,
one might considergeneralizedBTS-morphisms that can be sensitive to context
(but are insensitive to informationally equivalent trajectories) as Scott-continuous
functions T(M ) ! T(N ). Here, tough, we stick to the standard de�nition.

Third, since T is a functor, it maps isomorphisms to isomorphisms. So
equivalence in operational semantics in the sense of isomorphism of countable
BTSs implies equivalence in denotational semantics in the sense of isomorphism of
the trajectory domains. In the context of the discussion of full abstraction (Cardone
2021; Ong 1995), this is the di�cult direction in establishing the coincidence of
operational and denotational semantics (since in that setup the denotational
semantics usually is too rich). Here it is the other way round since the denotation
abstracts away information as will become clear in the next section. We discuss
this further in section 3.7.

3.5 Adjunction between systems and domains

As motivated in the introduction, the functor T : ! BTS ! ! ALG invites the
question whether the computational model! ALG is an abstraction of the com-
putational model ! BTS. In this section, we tackle this question|as explained
in the introduction|by establishing an adjunction ! BTSs

a � iALG obtained as a
composition of the following three re
ective adjunctions:

! BTSs
a ! BTSs

fey ! BTSs
feyur iALG

E

I

a

U

I

a

T i

B

a

The following three subsections establish these three adjunctions in turn (from left
to right) and also formally de�ne (and recall) the involved categories and functors.

Thus, we can indeed think of the computational modeliALG as an abstraction
of the computational model! BTSs

a.

3.5.1 Extensionalizing

Recall that if a BTS M is full and extensional, it in particular is approximable,
so we have the inclusionI : ! BTSs

fey ! ! BTSs
a. (To recall, f stands for full, e for

extensional, andy for antisymmetric.) In this subsection, we show that this is
a right adjoint: i.e., there is an optimal way of rendering anM in ! BTSs

a full,
extensional, and antisymmetric.

! BTSs
a ! BTSs

fey

E

I

a



88 Chapter 3. Trajectory domains 2: Category

Spelled out, this means the following.

3.5.1. Proposition . The inclusion I : ! BTSs
fey ! ! BTSs

a is a right adjoint: For
each M in ! BTSs

a there is E(M ) in ! BTSs
fey and � M : M ! E(M ) such that,

for every N in ! BTSs
fey and everyg : M ! N , there is a unique morphism

f : E(M ) ! N with f � � M = g.

M E(M )

N

g

� M

f

Proof. Construction of E(M ). Write M = ( A; T; � ) and A = ( S; i; L; ! ).
First, we de�ne a preliminary LTS A0: De�ne the equivalence relation� 0 on

S by

s � 0 s0 :, s = s0 or 9t; t 0 2 T nonempty �nite : last( t) = s; last(t0) = s0; t � t0:10

Write the equivalence classes as [s]0. Now, we de�neA0 := ( S0; i0; L0; ! 0) as:

ˆ S0 := S=� 0, i 0 := [ i ]0, L0 := L.

ˆ [s]0
��! 0[s0]0 i� 9s0 2 [s]09s1 2 [s0]0 : s0

��! s1.

Next we de�ne the actual LTS A1: De�ne an equivalence relation� 1 on S0

by: [s]0 � 1 [s0]0 i�, roughly, there is a (possibly empty) path in A0 from [s]0 to
[s0]0 and one from [s0]0 back to [s]0. Precisely:

[s]0 � 1 [s0]0 i� [ s]0 = [ s0]0 or there is a nonempty �nite A0-trajectory t starting
in [s]0 and ending in [s0]0 and there is a nonempty �nite A0-trajectory t0

starting in [s0]0 and ending in [s]0.11

(This is a very familiar concept: if we think of states as topological spaces
and trajectories as continuous functions between these spaces with a trivial
notion of homotopy between functions, then [s]0 � 1 [s0]0 means that [s]0 and
[s0]0 are homotopy equivalent.) So, essentially,� 1 clustersS0 into its connected
components.

Write the equivalence classes as [[s]0]1. We de�ne A1 := ( S1; i1; L1; ! 1) as:

10This is indeed an equivalence relation: It is re
exive by construction. Symmetry is immediate
since � is symmetric. And for transitivity: if s � 0 s0 and s0 � 0 s00, then if one or both of these
relations hold due to identity, we immediately get s � 0 s00, so assume these relations hold since
there are nonempty �nite t; t 0; t002 T with last(t) = s, last(t0) = s0, last(t00) = s00, t � t0, and
t0 � t00, then we have, by transitivity of � , that t � t00, so s � 0 s00, as needed.

11This is indeed an equivalence relation: It is re
exive by construction. Symmetry is immediate
(swap t and t0). And for transitivity: if [ s]0 � 1 [s0]0 and [s0]0 � 1 [s00]0, then if one or both of
these relations hold due to identity, we immediately get [s]0 � 1 [s00]0, and if we have the loop
(t0; t0

0) between [s]0 and [s0]0 and the loop (t1; t0
1) between [s0]0 and [s00]0, then (t0t1; t0

1t0
0) is a

loop between [s]0 and [s00]0.



3.5. Adjunction between systems and domains 89

ˆ S1 := S0= � 1, i 1 := [ i 0]1, L1 := L0 = L.

ˆ [[s]0]1
��! 1[[s0]0]1 i� 9[sa]0 2 [[s]0]19[sb]0 2 [[s0]0]1 : [sa]0

��! 0[sb]0.

Then we de�ne E(M ) := ( A1; T1; � 1) where T1 is the set of allA1-trajectories and
� 1 is extensional equivalence.

So E(M ) is a full and extensional BTS (as mentioned in section 3.2.4), and it
is countable (sinceL1 = L is countable andjS1j � j S0j � j Sj � ! is countable).
So we need to show that it is antisymmetric:

Assumet; t 0 2 T1 are �nite with [ t] � [t0] and [t0] � [t], and show [t] = [ t0].
If t or t0 are empty, this implies that both are empty, so [t] = [ t0]. So let both
be nonempty. If last(t) = last(t0), then t � 1 t0 and the claim follows. So let
last(t) 6= last(t0). Then there is nonempty pathta in A1 from last(t) to last(t0)
and a nonempty pathtb in A1 from last(t0) to last( t). Write

ta : last(t) = [[ s0]0]1
� 1�! 1[[s1]0]1

� 2�! 1 : : : � n�! 1[[sn ]0]1 = last( t0)

tb : last(t0) = [[ r 0]0]1
� 0

1�! 1[[r 1]0]1
� 0

2�! 1 : : :
� 0

m��! 1[[r m ]0]1 = last( t):

We show that [s0]0 � 1 [sn ]0, so last(t) = last( t0), whencet � 1 t0, as needed.
By de�nition, for i = 0; : : : ; n � 1, there is [si

a]0 2 [[si ]0]1 and [si +1
b ]0 2 [[si +1 ]0]1

with [si
a]0

� i +1��! 0[si +1
b ]0. Similarly, for j = 0; : : : ; m � 1, there is [r j

a]0 2 [[r j ]0]1 and

[r j +1
b ]0 2 [[r j +1 ]0]1 with [ r j

a]0
� 0

j +1��! 0[r j +1
b ]0. Thus,

[s0]0 � 1 [s0
a]0

� 1�! 0[s1
b]0 � 1 [s2

a]0
� 2�! 0 : : : � n�! 0[sn

b ]0 � 1 [sn ]0 � 1 [r 0]0

� 1 [r 0
a]

� 0
1�! 0[r 1

b]0 � 1 [r 2
a]0

� 0
2�! 0 : : :

� 0
m��! 0[r m

b ]0 � 1 [r m ]0 � 1 [s0]0:

Note that [s]0 � 1 [s0]0 in particular means that there is a (possibly empty) path
in A0 from [s]0 to [s0]0. So we have:

ˆ from [s0]0 there is a (possibly empty)A0-path to [s0
a]0, from which there is a

(one-step)A0-path to [s1
b]0, from which there is (possibly empty)A0-path

to [s2
a]0, from which . . . , from which there is a (one-step)A0-path to [sn

b ]0,
from which there is (possibly empty)A0-path to [sn ]0

ˆ from [sn ]0 there is a (possibly empty)A0-path to [r 0
a]0, from which there is

a (one-step)A0-path to [r 1
b]0, from which there is (possibly empty)A0-path

to [r 2
a]0, from which . . . , from which there is a (one-step)A0-path to [r m

b ]0,
from which there is (possibly empty)A0-path to [s0].

In sum, there is a nonemptyA0-path from [s0]0 to [sn ]0, and there is a nonempty
A0-path from [sn ]0 to [s0]0. Hence [s0]0 � 1 [sn ]0, as needed.

Construction of � M . We de�ne � M := ( �; � ) : M ! E(M ) by � : S ! S1; s 7!
[[s]0]1 and � : L ! L1; � 7! � .



90 Chapter 3. Trajectory domains 2: Category

This is an LTS-morphism: First, it maps i to [[i ]0]1 = i 1. Second, assume

s ��! s0 in A. Note that � (� ) always is de�ned, so we need to show� (s)
� (� )
��! � (s0).

Indeed, since� 2 L and s 2 [s]0 and s0 2 [s0]0, we have, by de�nition, [s]0
��! 0[s0]0.

Similarly, [[s]0]1
��! 1[[s0]0]1, i.e., � (s)

� (� )
��! � (s0).

We see that it is an BTS-morphismM ! E(M ) as follows. SinceM is
approximable andE(M ) is bisimulative (since full and extensional), we can apply
proposition 3.3.4. So it su�ces to show: (a) for allt 2 T, � M (t) 2 T1, and (c) for
all nonempty �nite t; t 0 2 T, if t � t0, then � M (t) � 1 � M (t0).

SinceT1 is the set of allA0-trajectories, (a) is trivial. Concerning (c), assume
t; t 0 2 T are nonempty �nite with t � t0. Note that, since � is total, � M (t) and
� M (t0) are nonempty �nite, too. Write s := last(t) and s0 := last(t0). So s � 0 s0,
whence� (s) = [[ s]0]1 = [[ s0]0]1 = � (s0), so

last(� M (t)) = � � M (last(t)) = � (s) = � (s0) = � � M (last(t0)) = last( � M (t0)) :

Since� 1 is extensional equivalence, we have� M (t) � 1 � M (t0).
Finally, since � is total, � M is synchronous, whence a morphism in! BTSs

a.
Universality. Now, let N be in ! BTSs

fey and let g : M ! N be a morphism,
and �nd a unique f : E(M ) ! N with f � � M = g.

Concerning uniqueness, Assumef; f 0 are such morphisms. On labels, since
� � M is the identity, we have� f = � f � � � M = � g = � f 0 � � � M = � f 0. On states, we
have, for a state [[s]0]1 in E(M ), that

� f ([[s]0]1) = � f � � � M (s) = � g(s) = � f 0 � � � M (s) = � f 0([[s]0]1):

Concerning existence, de�nef = ( � f ; � f ) as follows: � f := � g, and � f :
SE(M ) ! SN is de�ned by

� f ([[s]0]1) := � g(s):

To show that this is well-de�ned, we show (a) ifs � 0 s0, then � g(s) = � g(s0), and
(b) if [ s]0 � 1 [s0]0, then � g(s) = � g(s0).

Concerning (a), assumes � 0 s0 and show� g(s) = � g(s0). If s = s0, this is
trivial, so assumes 6= s0. Then, by de�nition of � 0, there are nonempty �nite
t; t 0 2 T with last(t) = s, last(t0) = s0, and t � t0. In particular, [ t]v M [t0] and
[t]v M [t0]. Since BTS-morphisms preservev , [g(t)]v N [g(t0)] and [g(t0)]v N [g(t)].
Sincev agrees with� on �nite trajectories, [g(t)] � N [g(t0)] and [g(t0)] � N [g(t)].
SinceN is antisymmetric, [g(t)] = [ g(t0)], whenceg(t) � N g(t0). Moreover, g(t)
and g(t0) also are nonempty �nite sinceg is synchronous, so, sinceN is extensional,
they have the same last state. So

� g(s) = � g(last(t)) = last( g(t)) = last( g(t0)) = � g(last(t0)) = � g(s0):

Concerning (b), assume [s]0 � 1 [s0]0 and show� g(s) = � g(s0). If [ s]0 = [ s0]0,
then, by (a), � g(s) = � g(s0), so assume [s]0 6= [ s0]0. Then, by de�nition of � 1,



3.5. Adjunction between systems and domains 91

there is a nonempty �nite A0-trajectory t (resp., t0) starting in [s]0 (resp., [s0]0)
and ending in [s0]0 (resp., [s]0). We show that there is a nonempty �nite path ta in
N from � g(s) to � g(s0) and another onetb back. Then, sinceN is extensional and
full, [ ta] � [tatb] = [ tb] and [tb] � [tbta] = [ ta], so tb � ta, so, sinceN is extensional,
� g(s) = last( tb) = last( ta) = � g(s0), as needed.

Write t as [s0]0
� 1�! 0[s1]0

� 2�! 0 : : : � n�! 0[sn ] with s0 = s and sn = s0. For each
i = 0; : : : ; n� 1, there is, by de�nition, si

a 2 [si ]0 and si +1
b 2 [si +1 ]0 with si

a
� i +1��! si +1

b .
Thus,

s = s0 � 0 s0
a

� 1�! s1
b � 0 s1 � 0 s2

a
� 2�! s2

b � 0 s2 � 0 s3
a

� 3�! : : : � n�! sn
b � 0 sn = s0

By applying the synchronous LTS-morphismg = ( � g; � g) we get, using (a), that

� g(s) = � g(s0) = � g(s0
a)

� g (� 1 )
����! � g(s1

b) = � g(s1) = � g(s2
a)

� g (� 2 )
����!

� g(s2
b) = � g(s2) = � g(s3

a)
� g (� 3 )
����! : : :

� g (� n )
����! � g(sn

b ) = � g(sn ) = � g(s0)

This is a nonempty path ta in N from � g(s) to � g(s0). Similarly, the nonempty
�nite A0-trajectory t0 from [s0]0 to [s]0 yields a nonempty pathtb in N from � g(s0)
to � g(s), as needed.

Next, we show thatf is an LTS-morphism. First, we have� f (i 1) = � f ([[i ]0]1) =
� g(i ) = iN . Second, assume [[s]0]1

��! 1[[s0]0]1 in E(M ). Since � f = � g is always

de�ned (qua synchronous morphism), we need to show� f ([[s]0]1)
� f (� )
���! � f ([[s0]0]1).

Indeed, by de�nition, there is [sa]0 2 [[s]0]1 and [sb]0 2 [[s0]0]1 such that
[sa]0

��! 0[sb]0. So, again by de�nition, there is sc 2 [sa]0 and sd 2 [sb]0 such
that sc

��! sd. Note that [sc]0 = [ sa]0, so [[sc]0]1 = [[ sa]0]1 = [[ s]0]1, and similarly
[[sd]0]1 = [[ s0]0]1. Sinceg is an LTS-morphism, we have

� f ([[s]0]1) = � f ([[sc]0]1) = � g(sc)
� g (� )= � f (� )
�������! � g(sd) = � f ([[sd]0]1) = � f ([[s0]0]1):

Also note that, by construction, f � � M = g (as LTS-morphisms): On labels,
� f � � � M = � f = � g. On states, fors 2 SM , � f � � � M (s) = � f ([[s]0]1) = � g(s).

So it remains to show that f is a BTS-morphism (we already know it to
be synchronous). SinceE(M ) and N are extensional and full, this follows by
proposition 3.3.4. 2

3.5.2 Unlabeling and re
exing

In this subsection, we show that there is an optimal way of rendering anM
in ! BTSs

fey unlabeled and re
exive (recall thatu stands for unlabeled andr for
re
exive):



92 Chapter 3. Trajectory domains 2: Category

! BTSs
fey ! BTSs

feyur

U

I

a

Spelled out, this means the following.

3.5.2. Proposition . The inclusion I : ! BTSs
feyur ! ! BTSs

fey is a right adjoint:
For each M in ! BTSs

fey there is U(M ) in ! BTSs
feyur and � M : M ! U(M ) such

that, for every N in ! BTSs
feyur and everyg : M ! N , there is a unique morphism

f : U(M ) ! N with f � � M = g.

M U(M )

N

g

� M

f

Proof. Construction of U(M ). Write M = ( A; T; � ) and A = ( S; i; L; ! ). De�ne
U(M ) = ( A0; T0; � 0) with A0 = ( S0; i0; L0; ! 0) as

ˆ S0 := S, i 0 := i , L0 := f�g (where � is some object),

ˆ s ��!
0
s0 i� (a) s = s0 or (b) 9� 2 L : s ��! s0.

ˆ T0 is the set of allA0-trajectories

ˆ � 0 is extensional equivalence.

Then U(M ) is a countable, full and extensional BTS. It is unlabeled and re
exive
by construction. So we need to show that it still is antisymmetric:

Let t; t 0 2 T0 be �nite with [ t] � [t0] and [t0] � [t] in U(M ). If t or t0 is empty,
this implies that both are empty, whence [t] = [ t0], so let both be nonempty. Write
s := last( t) and s0 := last( t0) and shows = s0 (whencet � t0).

By the assumption, there is a (possibly empty)A0-path t0 from s to s0 and a
(possibly empty)A0-path t1 from s0 to s. If t0 or t1 are empty, thens = s0, as needed.
So assume both are nonempty. Writet0 = t0(0) : : : t0(n) and t1 = t1(0) : : : t1(m).
Let t �

0 be the result of deleting thoset0(i ) of the form (s; �; s). Thus, t �
0 is still an

A0-trajectory, and if t �
0 is empty, then s = s0, as needed. Similarly, lett �

1 be the
result of deleting thoset1(j ) of the form (s; �; s). Thus, t �

1 is still an A0-trajectory,
and if t �

0 is empty, then s = s0, as needed.
So assume botht �

0 and t �
1 are nonempty. In particular, they still start in s

(resp., s0) and end in s0 (resp., s). Write n� := jt �
0j � 1 and m� := jt �

1j � 1.
Then eacht �

0(i ) (with i = 0; : : : ; n� � 1) must be due to clause (b), i.e., of the
form si

��! s0
i such that there is � i 2 L with si

� i�! s0
i . Similarly, each t �

1(j ) (with



3.5. Adjunction between systems and domains 93

j = 0; : : : ; m� � 1) must be due to clause (b), i.e., of the formr j
��! r 0

j such that

there is � 0
j 2 L with r j

� 0
j�! r 0

j . But then we have the followingA-trajectories

ta : s = s0
� 0�! s0

0 = s1
� 1�! s0

1 = s2
� 2�! : : :

� n � � 1���! s0
n � � 1 = s0

tb : s0 = r0
� 0

0�! r 0
0 = r1

� 0
1�! r 0

1 = r2
� 0

2�! : : :
� 0

m � � 1����! r 0
m � � 1 = s

So, sinceM is full and extensional, [tb] � [tbta] = [ ta] and [ta] � [tatb] = [ tb], so,
sinceM is antisymmetric, tb � ta, so s = last( tb) = last( ta) = s0, as needed.

Construction of � M . We de�ne � M = ( �; � ) : M ! U(M ) as follows: � : SM !
SU(M ) ; s 7! s and � : LM ! LU(M ) ; � 7! � .

This is an LTS-morphism: It mapsiM to iM = iU(M ) and if s ��! s0, then � (� ) = �

is de�ned and, by clause (b),s
� (� )= �
����! s0.

Moreover, it is synchronous and, qua LTS-morphism between full and exten-
sional systems, also a BTS-morphism.

Universality. Now let N be in ! BTSs
feyur and let g : M ! N be a morphism.

Find a unique morphismf : U(M ) ! N with f � � M = g.
Uniqueness: Letf; f 0 be two such morphisms. On labels, they have to map

the one label ofU(M ) to the one label ofN qua synchronous morphisms between
unlabeled systems. On states, lets 2 SU(M ) . Then � f (s) = � f � � � M (s) = � g(s) =
� f 0 � � � M (s) = � f 0(s).

Existence: De�ne f = ( � f ; � f ) : U(M ) ! N by � f : SU(M ) = SM ! SN ; s 7!
� g(s) and � f as the unique function from the singletonLU(M ) to the singletonLN .

This is an LTS-morphism: First, it maps iU(M ) = iM to � g(iM ) = iN . Second,

assumes ��! s0, and show, since� f (�) = �N is de�ned, that � f (s)
� f (�)
���! � f (s0). If

s ��! s0 is due to clause (a), thens = s0, so � f (s) = � f (s0), whence, sinceN is

re
exive, � f (s)
� f (�)
���! � f (s0). If s ��! s0 is due to clause (b), then there is� 2 LM

with s ��! s0. Sinceg is a synchronous LTS-morphism,� g(� ) = �N is de�ned and

� f (s) = � g(s)
�N = � f (�)
�����! � g(s0) = � f (s0).

Moreover, f is synchronous and, qua LTS-morphism between full and exten-
sional systems, also a BTS-morphism. 2

3.5.3 Adjunction to domains

In this subsection, we establish the remaining re
ective adjunction. We show that
with a slight extensionT i of the trajectory domain construction we can go from
! BTSs

feyur to iALG, and we show that there is an optimal way back: i.e.,

! BTSs
feyur iALG

T i

B

a



94 Chapter 3. Trajectory domains 2: Category

is a re
ective adjunction.
First, we need to de�neiALG and then T i . In the introduction, we've already

motivated and intuitively de�ned the category iALG. The formal de�nition is as
follows.

3.5.3. Definition . An initialized domain (or, in full, an initialized ! -algebraic
dcpo) is a pair (D; c) where D is an ! -algebraic dcpo andc 2 K (D). We call c
the initial element ofD.

A morphism f : (D; c) ! (E; d) between initialized domains is a Scott-
continuous function f : D ! E that preserves compactness (ifx 2 K (D), then
f (x) 2 K (E)) and the initial element (f (c) = d).

Let iALG be the category of initialized domains and their morphisms (the
identity morphism is the identity function and morphism composition is function
composition).

Intuitively, in a domain with a least element, the least element acts like an
`initial' element. But in the absence of a least element, many choices of an initial
element are possible, and the notion of an initialized domain makes these choices
explicit.

In particular, we have a forgetful functorGi : iALG! ! ALG sending (D; c) to
D and f : (D; c) ! (E; d) to f : D ! E.

The trajectory domain of a system in! BTSs
feyur naturally yields an initialized

domain.

3.5.4. Lemma. The following de�nes a functorT i : ! BTSs
feyur ! iALG:

ˆ For M in ! BTSs
feyur, de�ne T i (M ) :=

�
T(M ) n f [[� ]]g; [[iM

�M�! iM ]]
�
.

ˆ For f : M ! N in ! BTSs
feyur, de�ne T i (f ) := T(f ) n f ([[� ]]; [[� ]])g.

Proof. First, we show that T i (M ) is in iALG. We already know that T(M ) is
an ! -algebraic domain and sinceM is full, � 2 TM , so [[� ]] is the least element of
T(M ) (since M is bisimulative, it su�ces to note that, for every n � 0, there is
m := 0 � 0 such that [� � n] = [ � ] � [t � m]). So, after removing the least element,
T(M ) n f [[� ]]g still is an ! -algebraic domain, and its compact elements are those of
T(M ) minus the least element.12 Moreover, sinceM is full and re
exive, i ��! i 2 T,
whence [[i ��! i ]] 2 K

�
T(M ) n f [[� ]]g

�
.

12To show this in detail: Let D be an ! -algebraic dcpo with least element? , and show that
D 0 := D n f?g (with the inherited order) is again an ! -algebraic dcpo. Indeed,D 0 is a partial
order, and it is directed: If A � D 0 is directed, then alsoA � D is directed, sox :=

W
A exists

in D and x 2 D 0 (because there is, sinceA is nonempty, somea 2 A � D 0, so ? < a � x) and
x is a least upper bound ofA in D 0. Also note that if A � D is directed with

W
A 6= ? , then

A0 := A n f?g � D 0 is directed and
W

A =
W

A0. So, for all x 2 D 0, we have: x is compact
in D 0 i� x is compact in D . HenceK (D 0) = K (D) n f?g . In particular, K (D 0) is countable.
So it remains to show algebraicity: If x 2 D 0, then A := f c 2 K (D) : c � xg is directed andW

A = x > ? , so A n f?g = f c 2 K (D 0) : c � xg is directed and
W

A n f?g =
W

A = x, as
needed.



3.5. Adjunction between systems and domains 95

Second, we show thatT i (f ) : T i (M ) ! T i (N ) is a morphism between initialized
domains. First, it is well-de�ned: T(f ) : T(M ) ! T(N ) is a Scott-continuous
function that maps [[� ]] to [[� ]] and any [[t]] with t nonempty to [[f (t)]] with
f (t) nonempty sincef is synchronous. SoT(f ) n f ([[� ]]; [[� ]])g : T(M ) n f [[� ]]g !
T(N ) n f [[� ]]g is a well-de�ned function and it still is Scott-continuous.13 Moreover,
if [[t]] is compact, thent 2 TM is �nite, so f (t) 2 TN is �nite, so T(f )([[f (t)]]) is
compact. And we haveT(f )([[ iM

�M�! iM ]]) = [[ f (iM
�M�! iM )]] = [[ iN

�N�! iN ]].
Third, the functor conditions are satis�ed: We have

T i (idM ) = T(idM ) n f ([[� ]]; [[� ]])g = idT(M ) n f ([[� ]]; [[� ]])g = idT i (M )

and

T i (g � f ) = T(g � f ) n f ([[� ]]; [[� ]])g =
�
T(g) � T(f )

�
n f ([[� ]]; [[� ]])g

= T(g) n f ([[� ]]; [[� ]])g � T(f ) n f ([[� ]]; [[� ]])g = T i (g) � T i (f );

as needed. 2

In fact, this functor T i : ! BTSs
feyur ! iALG has a right adjoint.

3.5.5. Proposition . The functor T i : ! BTSs
feyur ! iALG is a left adjoint: For

each (D; c) in iALG there is B(D; c) in ! BTSs
feyur and an isomorphism� (D;c ) :

T i B(D; c) ! (D; c) such that, for everyM in ! BTSs
feyur and everyf : T i (M ) !

(D; c), there is a unique morphismg : M ! B(D; c) with � (D;c ) � T i (g) = f .

M T i (M )

B(D; c) T i B(D; c) (D; c)

g f
T i (g)

� ( D;c )

Proof. Construction of B(D; c). We de�ne B(D; c) := ( A; T; � ) with A :=
(S; i; L; ! ) as follows:

ˆ S := K (D), i := c, L := f�g ,

ˆ s ��! s0 i� s � s0.

ˆ T is the set of allA-trajectories,

ˆ � is extensional equivalence.

13If A � T(M ) n f [[� ]]g is directed, alsoA � T(M ) is directed, soT i (f )
� W

A
�

= T(f )
� W

A
�

=W
T(f )

�
A

�
=

W
T i (f )

�
A

�
.



96 Chapter 3. Trajectory domains 2: Category

So B(D; c) is a full and extensional BTS. It is countable sinceK (D) is countable
(D is ! -algebraic). It is unlabeled and re
exive by construction. And it is
antisymmetric: For t; t 0 2 T, if [t] � [t0] and [t0] � [t], then, if t or t0 are empty,
[t] = [ � ] = [ t0], and if both t and t0 are nonempty, there is a (possibly empty)
path from last(t) to last(t0) and one fromlast(t0) to last(t), which, by de�nition
of ! , means last(t) � last(t0) � last(t), so, since (D; � ) is a partial order,
last(t) = last( t0), so t � t0. HenceB(D; c) is in ! BTSs

feyur.

Construction of � (D;c ) . We �rst show that the function ' : K
�
T(B(D; c)) n

f [[� ]]g
�

! K (D) given by [[t]] 7! last(t) is a well-de�ned order-isomorphism (then
we'll de�ne � (D;c ) as an extension of' ). We've essentially given the proof already
in the previous chapter, but we repeat it here for convenience.

Well-de�ned: Note that [[ t]] 6= [[ � ]] so t is nonempty �nite, whencelast(t) 2
S = K (D). Moreover, if t; t 0 2 TB(D;c ) are �nite with [[ t]] = [[ t0]], then, by
antisymmetry, t � t0, so last(t) = last( t0).

Surjective: Let x 2 K (D), then t := x ��! x is in T and ' ([[t]]) = last( t) = x.
Monotone: Assume [[t]] � [[t0]] for t; t 0 2 T �nite nonempty, and show ' ([[t]]) �

' ([[t0]]). Sincet can be extended to a trajectory equivalent tot0, there is a trajectory
from last(t) to last(t0), whence, since! = � , we have' ([[t]]) = last(t) � last(t0) =
' ([[t0]]).

Order-respecting: Assume' ([[t]]) � ' ([[t0]]) for t; t 0 2 T �nite nonempty, and
show [[t]] � [[t0]]. Then s := last(t) = ' ([[t]]) � ' ([[t0]]) = last(t0) =: s0. So we
have [t] � [t0]: if t0 2 [t], then last(t0) = last(t) = s, so t1 := t0s ��! s0 2 T is an
extension oft0 with t1 2 [t0] since last(t1) = s0 = last( t0).

Now, we de�ne � (D;c ) : T i B(D; c) ! (D; c) by

� (D;c )([[t]]) :=
_ �

' ([[t0]]) : [[t0]] 2 K (T i B(D; c)); [[t0]]v [[t]]
	

=
_ �

last(t0) : t0 2 TB(D;c ) �nite ; [[t0]]v [[t]]
	

which is an order-isomorphismT(B(D; c)) n f [[� ]]g ! D by lemma 3.2.6. In par-
ticular, � (D;c ) is Scott-continuous and preserves compactness. And� (D;c ) preserves
the initial element: Since the initial element [[i ��! i ]] is compact,� (D;c )([[i

��! i ]]) =
' ([[i ��! i ]]) = last(i ��! i ) = i = c. Hence also the inverse� � 1

(D;c ) is Scott-continuous,
preserves compactness, and preserves the initial element. So� (D;c ) is an isomor-
phism in iALG.

Universality. Now, let M be in ! BTSs
feyur and f : T i (M ) ! (D; c) a morphism,

and �nd a unique morphism g : M ! B(D; c) with � (D;c ) � T i (g) = f .
Uniqueness: Assumeg; g0 are such morphisms. On labels, they both are, qua

synchronous BTS-morphisms between unlabeled systems, the unique function
from the singleton LM = f� M g to the singleton LB(D;c ) = f�g . On states, let
s 2 SM , and show� g(s) = � g0(s). SinceM is re
exive and full, t := s

�M�! s 2 TM



3.6. Toward incorporating labels on domains 97

is nonempty. So [[g(t)]] is compact in T(B(D; c)) n f [[� ]]g and

� g(s) = � g(last(t)) = last( g(t)) = � (D;c )([[g(t)]])

= � (D;c ) � T i (g)([[t]]) = f ([[t]]) = � (D;c ) � T i (g0)([[t]])

= � (D;c )([[g0(t)]]) = last( g0(t)) = � g0(last(t)) = � g0(s):

Existence: De�neg = ( �; � ) : M ! B(D; c) as follows: � is the unique function
from the singletonLM to the singleton LB(D;c ) and � : SM ! SB(D;c ) is de�ned by

� (s) := f ([[s
�M�! s]])

This is well-de�ned: SinceM is re
exive and full, t := s
�M�! s 2 TM , so [[s

�M�! s]] 2
T(M ) n f [[� ]]g on which f is de�ned. Sincef preserves compactness,f ([[s

�M�! s]]) 2
K (D) = SB(D;c ) .

We show that g is an LTS-morphism: First, it maps iM to f ([[iM
�M�! iM ]]) = c

sincef preserves the initial element. Second, assumes
�M�! s0, and show, since� , is

total, � (s)
� (�M )= �
����! � (s0). We have [s

�M�! s] � [s0�M�! s0] because ift0 2 [s
�M�! s], then,

sinceM is extensional,t0 ends ins, so t1 := t0(s
�M�! s0) is, sinceM is full, in TM ,

and last(t1) = s0, so t0 � t1 2 [s0�M�! s0], as needed. Hence, sincef is monotone,
� (s) = f ([[s

�M�! s]]) � f ([[s0�M�! s0]]) = � (s0), i.e., � (s) ��! � (s0).
Finally, g is a BTS-morphism since it is an LTS-morphism between extensional

and full BTSs, and it is synchronous by construction.
So it remains to show� (D;c ) � T i (g) = f . Since both sides are Scott-continuous

functions T(M ) n f [[� ]]g ! D, it is enough to show that they agree on compact
elements (lemma 3.2.7). Indeed, given [[t]] with t 2 TM �nite nonempty, write
last(t) = s, whence, sinceM is extensional, [[t]] = [[ s

�M�! s]]. Then

� (D;c ) � T i (g)
�
[[t]]

�
= � (D;c ) � T i (g)

�
[[s

�M�! s]]
�

= � (D;c )

�
[[g(s

�M�! s)]]
�

= last( g(s
�M�! s)) = � (last(s

�M�! s)) = � (s) = f ([[s
�M�! s]]) = f ([[t]]);

as needed. 2

3.6 Toward incorporating labels on domains

The trajectory domain of a BTS abstracts away labels. (Though, depending on
the choice of trajectory equivalence, information about labels may be `hidden'
in equivalence classes). So if we think of the trajectory domain as denotations
of LTSs, we may wonder whether we can appropriately add explicit information
about labels. In this section, we show how this might be done and that this
curiously leads to an interpretation of relevance logic.



98 Chapter 3. Trajectory domains 2: Category

3.6.1 Marked domains

In fact, there actually are two reasons for considering labels. The �rst is the one
just mentioned: In other words, now that we know thatiALG is a computational
model that is more abstract than! BTSs, we may ask whether we can bring them
closer together by adding labels. The second reason is that if we want to extend
the adjunction ! BTSs

a � iALG to the partial simulation case, it seems like we
have to keep some information about the labels: namely, on which labels the label
function is de�ned.

Looking at trajectory domains, there is a suggestive idea of how to add labels:
Given a countable BTSM = ( A; T; � ), assume we have �nitet; t 0 2 T such
that t0 extends t by one transition, i.e., t0 = ts ��! s0. If we have [[t]]v [[t0]] in
the trajectory domain T(M ), it then is natural to think of the order interval
([[t]]; [[t0]]) :=

�
x 2 T(M ) : [[t]]v xv [[t0]]

	
as beingmarked by the label � . More

generally, we think of ([[t]]; [[t0]]) as being marked by a label� (abbreviated as
([[t]]; [[t0]]) m� ), if there are representativeta and tb of [[t]] and [[t0]], respectively,
that are of the form tb = talast(ta) ��! last(tb).14

We can extend this idea by adding the concept of anidle transition. (See
Winskel and Nielsen (1995) and footnote 7 above.) We �x a symbol� (which
no LTS is allowed to use as a label) and interpret it as the `do nothing action'.
Thus, we can extend each LTS by adding all transitions of the forms ��! s, which
we call idle transitions. Then we can think of the trivial intervals in the trajectory
domain|i.e., those ([[ t]]; [[t0]]) with [[ t]] = [[ t0]]|as always being marked by the
idle label � since we can `extend' a representative of [[t]] by the `do nothing action'
and obtain a representative of [[t0]]. Since the idle label cannot occur in other
transitions, we have ([[t]]; [[t0]]) m� i� [[ t]] = [[ t0]].

This, then, suggests a general idea of adding labels to an (! -algebraic) domain
in a domain-theoretic fashion: We have a domainD (e.g., the trajectory domain)
and a countable set of labelsL (e.g., from the countable BTS) with an additional
label � , together with a relation (x; y) ma between pairs (x; y) of elements inK (D)
that are in the � -relation and elementsa of L [ f�g . Now, L [ f�g naturally
forms a domain: A common way to represent a (countable) setL in domain
theory (e.g., the natural numbers) is as the
at domain L? consisting ofL with
the discrete order (x � y i� x = y) together with a least element? = � . If L
is countable, this is indeed an! -algebraic domain. Thus, we get the following
purely domain-theoretic de�nition.

3.6.1. Definition . A marked domainis a structure (D; m; F ) where D is an
! -algebraic domain,F is a countable 
at domain, and m �

�
� D � K (D)

�
� F is

a relation such that

1. for all (x; y) 2� D � K (D), we have (x; y) m? F i� x = y.

14Also cf. the labelled domains of Bracho and Droste (1994) for another way of adding labels
to domains (in the context of automata with concurrency).



3.6. Toward incorporating labels on domains 99

We read (x; y) ma as `the interval (x; y) is marked with a'.
A morphism f : (D; m; F ) ! (E; n ; G) between marked domains is a pair

(�; � ) of Scott-continuous functions� : D ! E and � : F ! G such that

1. � preserves compactness,

2. � (? ) = ? , and

3. if (x; y) ma, then (� (x); � (y)) n � (a).

We write f = ( � f ; � f ) and call it a marked domain morphism.
Let mALG be the category of marked domains with their morphisms. The

identity morphism is id(D; m ;F ) = ( idD ; idF ) and composition is component-wise:
g � f = ( � g � � f ; � g � � f ).

Two comments: First, condition (1) on morphisms ensures that condition (3)
`type-checks': ifx � y are compact, then, since� is monotone and preserves
compactness,� (x) � � (y) are compact.

Second, the partiality of simluations of BTSs is mirrored on the domain-side as
follows: if f : (D; m; F ) ! (E; n ; G) is a morphism and (x; y) ma with � f (a) = ?
(i.e., is `unde�ned'), then (� (x); � (y)) n � (a), so � (x) = � (y).

Next, we show that the observation about the structure of trajectory domains
that motivated the above de�nition of marked domains does indeed yield a marked
domain|in a functorial way.

3.6.2. Proposition . The following de�nes a functorTm : ! BTSa ! mALG:

ˆ M is sent to
�
T(M ); m; (LM )?

�
, where([[t]]; [[t0]]) ma with t; t 0 �nite i� (a)

[[t]] = [[ t0]] and a = ? or (b) [[t]]v [[t0]] and there is ta 2 [t0] 2 [[t]] and
tb 2 [t1] 2 [[t0]] with tb = talast(ta) ��! last(tb).

ˆ f : M ! N is sent to
�
T(f ); �

�
where� maps? to ? and � 2 LM to � f (� )

if de�ned and otherwise to? .

Proof. First, note that
�
T(M ); m; (LM )?

�
is indeed a marked domain:T(M ) is

an ! -algebraic domain, (LM )? is a countable 
at domain, and, by construction
m �

�
v � K (T(M )) � (LM )?

�
with ( x; y) m? i� x = y.

Second, note that
�
T(f ); �

�
satis�es requirements (1){(3): Concerning (1),

sinceM is approximable,T(f ) preserves compactness. Concerning (2), by de�ni-
tion, � (? ) = ? . Concerning (3), assume ([[t]]; [[t0]]) ma and show

�
[[f (t)]]; [[f (t0)]]

�
m� (a):

If a = ? , this always follows.15 So let a 6= ? . Hence� := a 2 LM and [[t]]v [[t0]]
and there ista 2 [t0] 2 [[t]] and tb 2 [t1] 2 [[t0]] with tb = talast(ta) ��! last(tb). Since
T(f ) is monotone and well-de�ned, [[f (ta)]] = [[ f (t)]]v [[f (t0)]] = [[ f (tb)]].

15If ( x; y) ma and a = ? , then x = y, so � (x) = � (y), so (� (x); � (y)) n? = � (? ).



100 Chapter 3. Trajectory domains 2: Category

If � f (� ) is unde�ned, then f (tb) = f (ta), so [[f (t)]] = [[ f (t0)]] and � (� ) = ? ,
so ([[f (t)]]; [[f (t0)]]) m� (a), as needed.

So assume� f (� ) = � (� ) is de�ned. Then [[f (t)]]v [[f (t0)]] and f (ta) 2 [f (ta)] 2
[[f (ta)]] = [[ f (t)]] and f (tb) 2 [f (tb)] 2 [[f (tb)]] = [[ f (t0)]] and

f (tb) = f (ta) last(f (ta))
| {z }
= � f (last( ta ))

� f (� )= � (� )
�������! last(f (tb))| {z }

= � f (last( tb))

;

so ([[f (t)]]; [[f (t0)]]) m� (a), as needed.
Third, the functor conditions are satis�ed: Concerning identity,Tm (idM ) =

(T(idM ); � ) whereT(idM ) = idT(M ) is the identity on T(M ) and � maps the bottom
element to the bottom element and� 2 LM to idL M (� ) = � , so it is the identity
on (LM )? .

Concerning composition, letf : M ! N and g : N ! K be in ! BTSa. Write
Tm (f ) = ( T(f ); � ) and Tm (g) = ( T(g); � 0) and Tm (g � f ) = ( T(g � f ); � 00), and
showTm (g) � Tm (f ) = ( T(g) � T(f ); � 0 � � ) = ( T(g � f ); � 00) = Tm (g � f ). SinceT
is a functor, we haveT(g � f ) = T(g) � T(f ). So it remains to show� 0 � � = � 00,
which is readily seen.16 2

3.6.2 An interpretation of relevance logic

Relevance logic (or relevant logic) aims at providing a conditional' !  where
the antecedent' is relevant to the consequence . Notoriously, classical logic (or,
more precisely, the material conditional or the strict conditional) cannot provide
this: a sentence like' ! ( !  ) is logically valid, although the antecedent'
doesn't need to provide a reason for|or be relevant to|the consequence !  .

Various logical systems have been developed that provide such `relevant
conditionals'|both proof-theoretically and semantically. A common semantics is
the ternary relation semantics (for an overview see Mares 2020). As in the usual
Kripke semantics for modal logics, formulas are interpreted at possible worlds,
but instead of a binary relation (interpreting the necessity operator) one uses a
ternary relation R on worlds to interpret the conditional: a j= ' !  i�, for all
worlds b and c, if Rabcand b j= ' , then c j=  .

This provides a powerful formal semantics, though a common criticism is
that it doesn't have a clear intended interpretation that provides contentful (as
opposed to `formal') meaning. (See e.g. Beall et al. (2012) and Mares (2020) for
discussion.) Several such interpretations have been suggested revolving around

16By construction, both sides preserve the bottom element, so let� 2 L M and show � 0 �
� (� ) = � 00(� ). If � f (� ) is not de�ned, then also � g� f (� ) = � g � � f (� ) is not de�ned, so
� 0 � � (� ) = � 0(? ) = ? = � 00(� ). So let � f (� ) =: � 0 be de�ned. If � g(� 0) is not de�ned, then
also � g� f (� ) = � g � � f (� ) is not de�ned, so � 0 � � (� ) = � 0(� 0) = ? = � 00(� ). So let � g(� 0) be
de�ned, then also � g� f (� ) = � g � � f (� ) is de�ned, so � 0� � (� ) = � g � � f (� ) = � g� f (� ) = � 00(� ).



3.6. Toward incorporating labels on domains 101

the notion of information (for an overview see Mares 2020). Here we sketch a
di�erent concrete interpretation in terms of the behavior of labeled transition
systems (or the abstracted version as marked domains).

Interpretation Surprisingly, a marked domain (D; m; F ) essentially has the
structure of a frame in the simpli�ed semantics of relevance logic (Priest and
Sylvan 1992; Restall 1993; Restall and Tony 2009). We get the frame (g; W; R)|
i.e., an interpretation minus the assignment of truth-values|with the base world
g := ? F , the set of worldsW := K (D) [ F , and the ternary relation R � W 3

de�ned by

(� ) Rabci� (i) ( b; c) ma or (ii) a = g and b= c 2 F .

In particular, clause (1) of marked domains ensures that we have the condition
on frames thatRgbci� b= c. (This explains the somewhat technical additional
clause (ii) above.) This condition makes the truth conditions for the conditional
univocal (otherwise one would need to distinguish ina j= ' !  betweena = g
and a 6= g).

Thus, the conditional � j= p ! q says: for any order interval (x; y) that is
marked with � , if x has property p, then y has property q. In the case of a
trajectory domain of a system, this says: whenever behavior [[t0]] can be obtained
from behavior [[t]] by a single� -action, if behavior [[t]] has propertyp, then [[t0]]
has propertyq.

Under this interpretation, the notorious sentencep ! (q ! q) can be falsi�ed|
as is typical, though not de�ning, for a relevance logic. Indeed, consider the
following marked domain (D; m; F ): D is the chain consisting of two elementsx
and y (the � -order is indicated by lines below),F is the 
at domain of the singleton
f � g together with the least elementg, and m relates (x; y) m� (indicated as
dotted lines below) and has otherwise only the `trivial' relations (x; x) m? and
(y; y) m? . The atomic sentencep is set to be true at� and the atomic sentenceq
is set to be truex. Visualized:

y �

x g

p

q

(3.1)

Then g 6j= p ! (q ! q) since Rg�� and � j= p but � 6j= q ! q becauseR�xy
and x j= q but y 6j= q. A very simple BTS that realizes this marked domain is
M = ( A; T; � ) where A is the following LTS

i s�

and T is the set of all trajectories and� is extensional equivalence. Sox = [[ � ]]
and y = [[ i ��! s]]. Intuitively, q could be the property of being the empty behavior
and p could be the property of being a label.



102 Chapter 3. Trajectory domains 2: Category

Permuting The interpretation of R as in (� ) above is somewhat rigid: for
x; y 2 D and � 2 F we can at most haveR�xy , but never, say,Rx�y . (As a
result, for any x 2 D, every conditional ' !  is trivially true at x.) Though
this `permutation' Rx�y also would have a suggestive interpretation:x j= p ! q
meaning wheneverx forms an interval with y that is marked by � and � has
property p, then y has propertyq.

This suggests allowing permutations of the�; x; y as long as they form a
`marking triangle': To be precise, a setf a; b; cg � W forms amarking if there is
x; y 2 D and � 2 F such that (x; y) m� and f a; b; cg = f x; y; � g. Then we de�ne
the `closure' ofR under these permutations:

(�� ) Rabci� (i) f a; b; cg forms a marking or (ii) a = g and b= c 2 F .

(Of course, one might also consider only allowing some but not all permutations.)
If we also loosen clause (ii) under some permutation, say, add \a 6= g, b = g,
c = a 2 F ", then we have Rabc ) Rbac which makes the assertion axiom
' !

�
(' !  ) !  

�
true (Restall 1993, thm. 2). (This axiom is part of the

famous relevance logicR.) Note that both with and without this extension of (ii)
we still have Rgbc, b= c.

Containment More correspondences between common axioms of various rel-
evance logics and semantic conditions are obtained by extending the simpli�ed
semantics with a notion of containment (Restall 1993, p. 498): a relation� on W
such that propositional atoms are monotone along� and, givena � b, if a 6= g,
then Rbcd) Racd, and if a = g, then Rbcd) c � d.

We also have the domain-theoretic information containment order onW: the
`merging' of the order ofD and the order ofF , i.e., a � b i� a � D b or a � F b.
We assume thatD and F are (made) disjoint.

So it stands to reason that domain-theoretic information containment interprets
the notion of containment in relevance logic. Indeed, this is the case for anyR
coming from a marked domain as in (� ) together with any interpretation of atoms
that is monotone along� :

Assumea � b. First, if a 6= g and Rbcd, then the latter implies b2 F (both in
case (i) and in case (ii) the �rst entry of R is in F ), whencea � b implies a 2 F ,
so a 6= g = ? F implies that a is maximal in F , whencea � b implies a = b, so
Racd. Second, ifa = g and Rbcd, then, if c 2 D, Rbcdmust be due to clause (i),
whence, by de�nition of the marking relation,c � d, and if c 2 F , then Rbcdmust
be due to clause (ii), soc = d, whencec � d.

This prompts some discussion: First, note that in the second part we didn't
use the assumptiona = g, whenceRabc ) b � c. This implies, for any � -
monotone interpretation of atoms, that ' ! ( !  ) is valid (Restall 1993,
thm. 11). Whether this validity is welcomed should be discussed: On the one
hand, although not de�ning, the non-validity of this sentence is nonetheless typical



3.7. Conclusion 103

for `proper' relevance logics. On the other hand, however, this crucially hinges on
the monotonicity assumption: we've seen in (3.1) above that with anon-monotone
assignment of atoms, this formula can be violated (therex j= q but x � y 6j= q).
And for the example interpretation of q as `is the empty behavior' we indeed
shouldn't expect this property to be monotone along� . Thus, if we restrict us to
the simpler logic of properties that are monotone along the domain order, we get
a stronger logic that validates ' ! ( !  )|and this logic may be interesting
in its own right.

Second, with the (�� )-interpretation as R, the above reasoning doesn't go
through. So one may explore variants or special cases ofR or � that deliver a
containment relation.

Morphisms Furthermore, the conditions on a marked domain morphismf =
(�; � ) : (D; m; F ) ! (E; n ; G) ensures that it translates into a `frame-morphism',
i.e., a function between the set of worlds that preserves the base-world and the
ternary relation:

' : K (D) [ F ! K (E) [ G

w 7!

(
� (w) if w 2 K (D)

� (w) if w 2 F :

Indeed, ' mapsgD = ? F to gE = ? G. And if RD abc, then RE ' (a)' (b)' (c): If
RD abcis due to clause (i), then (b; c) ma, so (� (b); � (c)) n � (a), soRE ' (a)' (b)' (c).
If RD abc is due to clause (ii), thena = gD and b = c 2 F , so ' (a) = gE and
' (b) = ' (c) 2 G, so RE ' (a)' (b)' (c).

Similarly for R: For clause (ii) we reason identically, and ifRD abcis because
f a; b; cg forms a marking (x; y) m� , then f ' (x); ' (y); ' (� )g = f ' (a); ' (b); ' (c)g
forms a marking, soRE ' (a)' (b)' (c).

Open questions This interpretation poses many interesting questions: Which
models of relevance logic can be represented this way|both with (� ) and with ( �� )?
What is (an axiomatization of) the relevance logic of this interpretation (i.e., the
set of sentences valid on it)? How do additional relevance logic axioms correspond
to restriction on the domains and the systems giving rise to them? Does this then
yield a logic for LTSs and BTS? And how does it compare to the usual one: linear
temporal logic?

3.7 Conclusion

To summarize, we've established the categorical connections depicted in �gure 3.1:
Each adjunction either is re
ective or co-re
ective. The dotted arrows are to
indicate the adjunction ! BTSs

a � iALGmasking the three adjunctions from which



104 Chapter 3. Trajectory domains 2: Category

! BTS ! ALG

! BTSs ! BTSs
a ! BTSs

fey ! BTSs
feyur iALG

BTS BTSa

LTS

T

A

I

I

I

a
E

I

I

a

U

I

a

T i

B

a

Gi

A

G

I

a

F

`

Figure 3.1: Summary of the results.

it is built. Intuitively, moving from left to right in the �gure, the categories grad-
ually become less `system-like' and more `domain-like'. Note that commutativity
is not claimed: While the small square involving the functorA commutes trivially,
there is no reason why the big square (or rather rectangle) involving the functor
T should commute.

We end with four open questions.
First, can the adjunction ! BTSs

a � iALG be extended to partial simulations?
One approach may be using the above concept of a marked domain, and another
approach may be using the representation of domains via Scott information systems
which are generalized, as seen in the previous chapter, as BTSs.

Second, the issue of coincidence of the operational and denotational semantics
(full abstraction) should be discussed further. We've seen that the strong sense
of operational equivalence as isomorphism between countable BTSs implies the
natural sense of denotational equivalence as trajectory domain isomorphism. What
about weaker senses of operational equivalence like bisimulation? (For a categorical
treatment of bisimulation, see Joyal, Nielsen, and Winskel (1996).) Approached
from the other direction, is there an `operational' equivalent to `having the same
trajectory domain', and is this related to bisimulation?

Third, we've seen that the denotational semantics provided by trajectory
domains has some compositionality (in virtue of being a functor). Which further
compositionality properties does it have? For example, is the denotation of
a product of BTSs the product of the denotations of the BTSs? Some such
preservation properties are already given by the established adjunctions, though
what more can be said? In particular, what are the categorical constructions and



3.7. Conclusion 105

properties ofBTS?
Fourth, we've already listed several open questions on the interpretation on

relevance logic. Moreover, in the previous chapter, we've already asked whether
the generalization of Scott information systems provided by BTSs can be seen
as generalizing the underlying logic to substructural logics like relevance logic or
linear logic: This is motivated by the seeming connection to the game semantics
of linear logic discussed there and by the above interpretation of relevance logic.





Part Two

Non-symbolic computation





Chapter 4

Systems and domains 1: Model

Abstract With the aim of providing a new general tool for analyzing dynamical
systems, we de�ne the category ofdynamical domains. These are structures in the
sense of domain theory and can be seen as computational models for dynamical
systems. We show that every dynamical system is isomorphic to the dynamical
system modeled by some dynamical domain.

4.1 Introduction

Dynamical systems are tremendously important and ubiquitous in all areas of
science. Hence, a lot of e�ort has been put into developing tools to understand
dynamical systems. In this chapter (and the following ones), we wish to contribute
to this ongoing e�ort: For every dynamical systemX, we construct what we
will call a dynamical domainD. This is a mathematical structure in the sense
of domain theory (which is a mathematical theory of computation). Intuitively,
it consists of `basic' elements that represent increasingly �ner observations of
the systemX together with the `limits' of these basic elements. The additional
domain-theoretic structure onD is such that it induces a dynamical system on
these limit elements that is isomorphic toX. Thus, to every dynamical system
X we associate the dynamical domainD which is a computational model for
X. So we can translate questions about dynamical systems into questions about
corresponding dynamical domains, to which the rich domain theory can be applied.

In this introduction, we motivate the class of dynamical systems that we'll
consider, and we sketch both how we construct the dynamical domain for a
system and how we de�ne the category of dynamical domains independently in a
domain-theoretic spirit. We state our main result that every dynamical system
can be modeled by a dynamical domain, and we mention two motivations for it.
Finally, we discuss related work and outline the structure of the chapter.

The chapter is self-contained and provides all relevant background from both
dynamical systems theory and domain theory. The length of this introduction is

109



110 Chapter 4. Systems and domains 1: Model

due to providing all the conceptual explanation and motivation for the formal
results and de�nitions to follow. The separation in paragraphs should help to skip
the parts that may be less relevant to some readers.

Dynamical systems There are many (formal) notions of dynamical systems.
What they have in common is that a dynamical system consists of astate space
together with a dynamics which is a collection of `transformations' of the state
space indexed by atime parameter. These notions di�er in what structure the
state space has (measurable space, probability space, topological space, manifold),
which of it is preserved by the transformations (measurable, measure-preserving,
continuous, di�eomorphism), and what the time parameters are (the integers, the
reals, a group).

Ergodic theory is about studying the qualitative behavior of dynamical systems
in these various senses. In doing so, the abstract setting of a measure-preserving
transformation of a probability space has proven to be particularly fruitful. (Formal
de�nitions of the concepts to follow are given in section 4.2.2.) Thus, a dynamical
system is a structureX = ( X; A ; �; T ) where (X; A ; � ) is a probability space and
T : X ! X is a measure-preserving function.1 Usually, one additionally assumes
that ( X; A ; � ) is a standard probability space (also called Lebesgue space) and
that T is invertible. In that case, we callX a standard dynamical system.

However, in many applications (we'll mention an example below), the natural
measure on the state space may not be preserved by the dynamics: measure-
preservation is a theorem (e.g., the Liouville theorem in classical mechanics)
rather than an obvious axiom. Thus, by anabstract dynamical system we mean
a structure X = ( X; A ; �; T ) where (X; A ; � ) is a probability space andT :
X ! X is measurable (but not necessarily measure-preserving). To develop our
representation result also in this setting, we'll eventually also add a (somewhat
milder) `standardness' assumption on the underlying probability space: namely,
to be a standard Borel space. (As in the Lebesgue case, this allows for a uni�ed
theory of isomorphism.) Thus, we call an abstract dynamical system (X; A ; �; T )
general if (X; A ) is a standard Borel space.

To summarize, abstract dynamical systems include both the standard and
general ones and their main di�erence is that the latter don't make any assumptions
about the dynamics except for being measurable. A topological perspective on
dynamical systems will eventually also be useful, in which case we call a structure
(X; �; �; T ) a measured topological systemif (X; � ) is a Polish topology (i.e.,
separable and completely metrizable),� a measure on its Borel� -algebra, and
T : X ! X a continuous function.

1I.e., T is measurable (ifA 2 A , then T � 1(A) 2 A ) and, for all A 2 A , we have� (T � 1(A)) =
� (A).



4.1. Introduction 111

Example (learning) Ergodic theory supplies many examples of measure-preser-
ving transformations of probability spaces. So, rather than reciting them here,
we refer to, e.g., Petersen (1983) and Walters (1982). However, we mention an
example that motivates generalizing our setting to transformations that maynot
be measure-preserving (and also not bijective). The example comes fromlearning,
as, for instance, in neural networks or, more generally, in stochastic gradient
descend (in optimization).

At each stage of the learning (or training or optimizing) process, the machine
(or neural network or model) that we're optimizing is characterized by a set of
parametersw (e.g., the weights of the neural network). Given adata point d, the
optimization algorithm (e.g., backpropagation or gradient descent) produces a
new set of parametersw0 = L(w; d) (`L ' as in learning). The whole point of the
algorithm is that the machine in statew0 is (or aims to be) a better approximation
to the phenomenon from which the data points are sampled than it was before in
the state w.

Thus, we have a setW of sets of parametersw and a setD of data points d
and a function L : W � D ! W. Usually, the setW is the Rn , so we may, at the
very least, assume that it is a Polish space. And the data setD usually is a �nite
set (�nitely many samples), but, to account for the potential in�nity of sampling,
we'll only assume thatD is countable (in fact, for our purposes here,D could be
any Polish space).

Now, to understand this learning process, we're obviously interested in the
(statistical) long-term behavior of the learning dynamics (as is the general motiva-
tion for ergodic theory). So, for an in�nite sequence of data points� = hd0; d1; : : :i
and an initial state w0, we're interested in the sequence:

w0 ; L(w0; d0) =: w1 ; L(w1; d1) =: w2 ; L(w2; d2) =: w3 ; : : : : (4.1)

Does it converge to somew (i.e., learn)? Does it get stuck in a non-optimal area of
the state space? Is it `all over the place' (e.g., dense inW) and hence doesn't work
at all? However, due to, for example, noise or necessary imprecision in implement-
ing the algorithm on a computer, we can only ask these questions statistically:
Assuming a probability distribution p on W representing the likelihood of our
choice of initial statew0, and a probability distribution q on D representing the
likelihood of a datapoint in d (and hence of� ), we ask what is the probability of a
yes-answer to the above questions?

We can write this setting more conveniently: LetX := W � D ! , which, qua
countable product of Polish spaces, is Polish. And the product measure� := p� q!

is a probability distribution on X . De�ne T : X ! X by

T(w; � ) :=
�

L
�
w; � (0)

�
; S(� )

�
;

where S(� ) := � (1)� (2) : : : is the shift function. Thus, the (�rst entry of the)
iterates Tk(w; � ) correspond to the sequence (4.1). Moreover, ifL is measurable



112 Chapter 4. Systems and domains 1: Model

(resp. continuous), thenT is measurable (resp. continuous).2 Measurability of
L is a very weak demand, and continuity ofL is a very plausible demand if the
optimization algorithm is to be computable (according to the well-known slogan
that `computability implies continuity').

So our learning dynamics is the general dynamical systemX := ( X; B(X ); �; T ).
(Here B(X ) denotes the Borel� -algebra of the spaceX .) And there is, of course,
no reason to expectT to be measure-preserving, i.e.,X to be standard. However,
this poses the question of when (and what) preserved measures exists, and our
general framework provides a good framework to investigate this (we come back
to this in section 4.7 and chapter 7).3

Moreover, if L is continuous, then (X; �; �; T ) is a measured topological system
(where � is the topology onX ). If we, e.g., restrict W = Rn to the irrational
numbers and work with a countable discreteD, this even is a measured zero-
dimensional topological system. These systems, where the topological structure is
reduced to a minimum, become important below as well.4

The construction We outline the construction of the dynamical domain for a
given abstract dynamical systemX = ( X; A ; �; T ) (the details are in section 4.3).

A measurable subsetA of X can be regarded as an observation or measurement
that we can make about the system: if the system is in a statex 2 A, making
measurementA comes out positive. So if we have a �nite setC of measurable
sets that cover the state spaceX (i.e., every state ofX is in some set ofC),
it provides a �nite and non-deterministic dynamical system that `re
ects' the
original system: the states are the elements fromC and there is a connection from

2Note that h : W � D ! ! W � D de�ned by h(w; � ) := ( w; � (0)) is continuous, soT0 := L � h
is measurable (resp. continuous). AndS : D ! ! D ! is continuous (for a subbasic openp� 1

n V,
the preimageS� 1(p� 1

n V) = p� 1
n +1 V is open), soT1 : W � D ! ! D ! de�ned by T1(w; � ) := S(� )

is continuous. SoT = ( T0; T1) is measurable (resp. continuous).
3 To give an idea of how this can be developed further: In this learning setting, there are

various loss (or cost) functions that assign each weight statew a real number that indicates how
`well' the machine approximates the real phenomenon. Thus, we can regard such a cost function
as a measurable functionf : X ! R. The move to such `observables' is in striking analogy with
the situation in physics that has led to the operator approach to ergodic theory (Eisner et al.
2015). So the tools from there|most notably the Koopman operator|can be used to analyze
the learning dynamics. Also see chapter 7. Moreover, this idea of the dataD `acting on' the
weights W may be compared to the notion of a nonautonomous dynamical system (see, e.g.,
Berger and Siegmund 2003).

4A few more remarks on general dynamical systems like the given example not belonging
to the standard structures found in ergodic theory: As just seen, they cannot be regarded as
measure-preserving transformations. SinceX is not compact, they also don't belong to the
usual structures of topological dynamics. Measurable dynamics is somewhat of a middle ground
(Weiss 1984): X is a standard Borel space, but the role of measure zero sets is here taken over
by the sigma algebra generated by the wandering sets, yet this may not be the preferred notion
of negligible sets given by the measure. In addition to this, there also is the issue that the
dynamics is not necessarily bijective.



4.1. Introduction 113

state A to state B if there is x 2 A with T(x) 2 B . For each `observation length'
n � 0, a statex 2 X induces a setOn

C(x) of trajectories in this observed system:
namely thoset = A0; A1; : : : ; An� 1 such that Tk(x) 2 Ak (for k = 0; : : : ; n � 1).
We can callOn

C(x) an observation history, and letHn
C be the set of observation

histories. The dynamicsT naturally induces a multi-valued function f n
C on Hn

C: it
mapsOn

C(x) to the set fO n
C(T(y)) : On

C(y) = On
C(x)g of possible `next' observation

histories. We can turn this into a `usual' function by moving to the setD n
C of

nonempty subsets ofHn
C ordered by reverse inclusion and de�ne the monotone

function f n
C(M ) = fO n

C(T(y)) : On
C(y) 2 M g. In domain-theoretic terminology

(which we introduce in section 4.2.1), we've built the Smyth powerdomainD n
C

(which here is a Scott domain). It is a tool to study the original multi-valued
(i.e., non-deterministic) function by the Scott-continuous functionf n

C : D n
C ! D n

C.
We also can induce a valuationvn

C of the Scott-open sets ofD n
C by assigning each

On
C(x) the value �

�
y 2 X : On

C(y) = On
C(x)

	
.

Thus, for the observation parameteri = ( n; C), we've obtained the structure
D i = ( D i ; vi ; f i ) of a �nite Scott domain with a valuation vi and a Scott-continuous
function f i : D i ! D i . Now, we can also re�ne our observation parameter to
j = ( m; D) wheren � m and D re�nes the coverC(with a slight twist to the usual
de�nition, see de�nition 4.3.2). And we have a functionpij : D j ! D i induced by
mapping the �ner observation history Oj (x) to the coarserOi (x). Let's write B
for the set of measurable subsets ofX that we are prepared to count as `possible
observation', and let I (B) be the set of observation parameters (n; C) that we
can built using this set. Then (D i ; pij )I (B) is a diagram (or inverse system) of
the domain-theoretic structuresD i . We want to take the (inverse) limit of the
diagram, which will then eventually yield the dynamical domain that models the
systemX. However, to do so, we �rst have to specify what the category is in
which we build the diagram (and the limit).

Dynamical domains The category in which we can build the required limit will
be the category of dynamical domains. We motivate it in a purely domain-theoretic
way (with the above construction in the back of our mind). A common way to
de�ne categories of domains (e.g., bi�nite domains) is to �rst specify a collection
of �nite domains (e.g., �nite pointed posets) and de�ne the desired category to
consist of those objects that are obtained as appropriate limits of appropriate
diagrams built with appropriate �nite domains and appropriate morphisms (e.g.,
Scott-continuous projection).5 This idea, of course, is more general: for example,
pro�nite graphs and groups (Ribes 2017) and Stone spaces (Johnstone 1982) are
de�ned similarly; and the reason is that the resulting category usually has very
pleasant properties.

5The morphisms of the desired category are then taken as the morphisms that may occur in
the diagrams, but one drops the requirement of being a projection (i.e., in the case of bi�nite
domains, these then are the Scott-continuous functions).



114 Chapter 4. Systems and domains 1: Model

We proceed similarly here: Our `appropriate �nite domains' are the structures
D = ( D; v; f ) where D is a �nite Scott domain, v is a valuation on it with
v(D) = 1 and all value `sits' in the maximal elements, andf : D ! D is a
Scott-continuous function. Let's call these �nite max-normalized dynamical Scott
domains. Our `appropriate morphisms' are Scott-continuous projections that
additionally satisfy some (not entirely obvious) properties having to do with the
appropriate preservation ofv and f (see de�nition 4.4.2). And our `appropriate
diagrams' are diagrams of these `�nite domains' with some (again not entirely
obvious) constraints on their shape ultimately having to do with constraining the
function f in the limit to model a dynamical system (see de�nition 4.4.7).

If we're given an appropriate diagram (D i ; pij )I of �nite max-normalized
dynamical Scott domainsD i = ( D i ; vi ; f i ), how do we build the appropriate limit
D = ( D; v; f )? We build D =

�
a 2

Q
I D i : pij (a(j )) = a(i )

	
as the usual limit of

an expanding sequence of domain (Abramsky and Jung 1994, sec. 3.3). Fortunately,
there also exist results on building the valuationv on D in a unique way from the
vi 's (Goubault-Larrecq 2018, thm. 4.2). However, the issue is with the function
f . The straightforward thing would be to de�ne f : D ! D elementwise by
f (a) := hf i (a(i )) : i 2 I i . But then f won't, in general, preserve maximality (i.e.,
f (maxD) � maxD), since thef i , in general, don't preserve maximality. However,
if we want that (D; v; f ) models a dynamical system, we, in particular, want that
f induces a transformation onmaxD (i.e., the space modeled byD; more on this
below) and, to do so,f has to be max-preserving. It turns out (theorem 4.4.8) that
there is a canonical way of selecting a (maximal, ifa is maximal) element above
eachf i (a(i )) in a way that builds an element in D: There is a largest function
f : D ! D that is Scott-continuous and max-preserving such that, for alla 2 D
and i 2 I , f (a)( i ) � f i (a(i )). This will be our function f . One can then show that
D is a `restricted' limit in the sense that it has the following universal property:
(D; pi )I is a cone for (D i ; pij )I with a max-preserving functionf , and for any cone
(E; qi )I with a max-preserving function, there is exactly one morphism� : E ! D
such that qi = pi � � .

The system modeled by a dynamical domain We've already hinted at the
well-known idea that a domainD is a computational model for the spacemaxD of
maximal elements (with the relative Scott topology).6 With our dynamical domains
D = ( D; v; f ), we can extend this to dynamical systems: the state space modeled
by D is maxD (which will be a compact zero-dimensional Polish space), the contin-
uous dynamics isf � maxD, and the valuationv uniquely determines a probability
measure� v on maxD (see theorem 4.5.1). So (maxD; B(maxD); � v; f � maxD)
is a general dynamical system which we call the dynamical system modeled byD.

We'll de�ne standard dynamical domains as those dynamical domains that
are obtained as restricted limits of diagrams that satisfy some additional (again

6See e.g. Edalat and Heckmann (1998), Lawson (1997), and Martin (1998).



4.1. Introduction 115

not entirely obvious) conditions detailed in de�nition 4.4.7. These ensure that the
dynamical systems modeled by those standard dynamical domains are standard,
i.e., f � maxD is bijective and preserves the measure� v determined by the
valuation.

Roughly speaking, then, the setup of dynamical domains is general enough
to handle both deterministic and non-deterministic dynamics, and restricting in
a category-theoretic way to the appropriate diagrams and limits corresponds to
restricting to deterministic dynamics which are the object of study in ergodic
theory.

The main result While the main conceptual (and technical) contribution of
this chapter is to de�ne the category of dynamical domains, the mainresult is to
show that:

For every (standard) dynamical systemX, there is a (standard) dynam-
ical domain D such that the (standard) dynamical system modeled by
D is isomorphic toX (corollary 4.6.4 below).

We'll now describe two interpretations of this result that motivate it: the repre-
sentational interpretation and the computational interpretation.

The representational interpretation To understand a given class of dynam-
ical systems, representation results are crucial: Given a classC, �nd a (more
restricted class) classD of dynamical systems such that every system inC is
isomorphic to a system fromD. In other words, D realizes all the isomorphism
types of C.

Here are three examples from the literature. First, the Jewett{Krieger theo-
rem (see, e.g., Petersen 1983, sec. 4.4) states that every ergodic measure-preserving
transformation on a Lebesgue space (forming the classC) is isomorphic to a mini-
mal, uniquely ergodic homeomorphism of a compact metric space (forming the
classD). This is a `topological representation' result: representing (measure-
theoretic) dynamical systems as coming from a topological dynamics. Second,
the Krieger Generator Theorem says that the classD of all �nite subshifts (i.e.,
dynamical systems whose state space is the set of in�nite sequences over a �nite
alphabet and the dynamics is the `shift' operator) is complete for the classC of
ergodic measure-preserving transformation with �nite entropy over a Lebesgue
space. Third, as discussed by Weiss (1989), Rokhlin's theorem states that every
ergodic aperiodic measure-preserving transformation is isomorphic to a shift space
on a countable alphabet. (See Weiss (1989) for similar results for the class of
measurable systems and the class of topological systems.) The theorems of Krieger
and Rokhlin are instances of `symbolic representation': representing dynamical
systems as subshifts over a �nite or countable alphabet.

In our result, C is the class of (standard) dynamical systems andD is the class
of dynamical systems modeled by a (standard) dynamical domain. This shares



116 Chapter 4. Systems and domains 1: Model

with the Jewett{Krieger theorem that the representing systems have compact
metric state spaces with continuous dynamics. Its conclusion is weaker, of course,
but (and since) it also applies to a vastly more general class of dynamical systems|
so this is a very general representation (and `topological realization') result. And
if we restrict us to standard dynamical systems, the conclusion strengthens to the
representing system being a homeomorphism of a compact metric space. This, of
course, also is weaker than the Jewett{Krieger theorem, but (and since) we also
didn't require any additional assumptions like ergodicity.

The computational interpretation The guiding idea behind the mentioned
idea of a domainD being a model for the spacemaxD is this: The domain
consists of `approximate' elements that approximate, when moving up in the order
of the domain, the `maximal' or `ideal' elements ofmaxD. The classic example
is the domainD of closed intervals [x; x] � R ordered by reverse inclusion: the
`approximate reals'|i.e., [ x; x] with x < x|approximate the `maximal reals'|i.e.,
[x; x] with x = x|, whence D is a model formaxD �= R (Scott 1970, p. 16).
Moreover, a manipulation of the ideal elements (e.g., a functionf : R ! R) is
`computational' if it can be approximated by a manipulation of the `approximate'
elements. Formally, this is described by Scott-continuity of the extensionf : D !
D of f . (For more on the idea of domain theory as a mathematical theory of
computation, see section 4.2.1.)

Thus, a dynamical domain D = ( D; v; f )|obtained as a limit of some
D i = ( D i ; vi ; f i )|is a computational model for the dynamical system X =
(maxD; B(maxD); � v; f � maxD) in the following sense: First, the elements
of maxD can be approximated by `�nitary' or `compact' elements ofD which in
turn are determined by the elements of the �niteD i . In fact, D is a Scott domain
and hence a particularly well-behaved domain (especially as a domain model for a
space). Second, the measure� v is entirely determined by the valuationv, which in
turn is determined by the �nite vi . Third, the dynamics f � maxD is modeled by
(i.e., extended by) the Scott-continuousf : D ! D, so the dynamicsf � maxD
can be approximated in a computable way by its action on the �nitary elements.
A general theme will be that the concepts that we de�ne for dynamical domains
will be �nitary in the sense that they can be expressed purely as a condition on
the �nitary diagrams from which the dynamical domains are constructed.

In that sense, our result says that every (standard) dynamical system has
(up to isomorphism) a computational model. The general motivation for domain-
theoretic computational models for classical mathematical structures is to provide
e�ective models to make these structures constructive and to provide new proofs
and algorithms using domain-theoretic tools (Edalat 1995a).

Finally, dynamical systems themselves may be seen as computing systems (see
chapter 1). However, they are `non-symbolic' in the sense that they (usually) act
on a continuous state space (where a state is an in�nite object) rather than a



4.1. Introduction 117

discrete one (as, e.g., in a Turing machine). Thus, our computational models for
dynamical systems may be regarded as providing asymboliccomputational model
for the non-symboliccomputation performed by the dynamical system. After all,
the domains are described by the discrete (i.e., countably many) compact elements
which approximate the dynamical system to arbitrary precision|more on this
in chapter 7. Note that the `symbolic representation' of a dynamical system
is|contrary to what the name may suggest| not a symbolic computational model
of the dynamical system in this sense: its states are, qua in�nite sequences of
symbols, still in�nite (and not discrete) objects.

Related work Concerning the construction of (D i ; pij )I (B) from a systemX,
some of its aspects are found in the following references. Polish spaces with a
distinguished basis play an important role for Danos and Garnier (2015) and
Dahlqvist, Danos, and Garnier (2016) in the �nitary analysis of natural transfor-
mations between functors on the category of Polish spaces.7 Building the index set
using �nite partitions of a space �gures prominently in the proof that a topological
space is pro�nite (i.e., the projective limit of �nite discrete spaces) i� it is a
compact Hausdor� totally disconnected space (i.e., a Stone space): see Borceux
and Janelidze (2001, thm. 3.4.7) and, in the (second-) countable case, Danos and
Garnier (2015); for more context, see Johnstone (1982, especially sec. VI 2.3).
Some smaller di�erences are: We work, in general, with measurable bases over
probability spaces and not just with open bases over Polish spaces, and we consider
covers and not just partition. But the two main di�erences are: The objects of
our diagrams are �nite Scott domains with additional structure and not just �nite
spaces (whence we are in a di�erent ambient category), and, most importantly,
we additionally consider dynamics on the spaces; this is, as we'll see in the proof
of the theorem 4.4.8, the lion's share of the work.

Concerning the representational interpretation, there are results in topological
dynamics on obtaining certain topological dynamical systems (X; T ) as an inverse
limit of �nite graphs: see Gambaudo and Martens (2006), Kucharski (2020),
Shimomura (2014), and Shimomura (2020). There also is the well-known result
that a topological system is zero-dimensional i� it is (topologically conjugate
to) an inverse limit of subshifts (Downarowicz and Karpel 2016, thm. 2.21).
However, as with the `symbolic representation' of measure-theoretic dynamical
systems, the elements of these subshifts are not discrete but in�nite objects, so
the representation as limits of �nite graphs has the advantage, as our result, of
being symbolic in the sense of approximating the system by �nite means. There
also is a natural graph structure on the maximal elements of our approximating
domainsD i given by aEi b i� b � f i (a). But, especially on the level of morphisms,

7 This has interesting applications to the Dirichlet distribution (as demonstrated in the
just cited papers) and to Bayesian learning (Clerc et al. 2017; Gagn�e and Panangaden 2018).
This suggests exploring whether there is a fruitful fusion of these and our ideas in the learning
example mentioned above. We leave this as an open question (mentioned in section 4.7).



118 Chapter 4. Systems and domains 1: Model

the constructions seem to be di�erent.8 Moreover, our construction also takes
measures into account (which are absent in topological dynamics) and hence also
works for measure-theoretic dynamical systems, and, by using limits of domains
rather than limits of graphs, it connects more directly to a theory of computation
(i.e., domain theory).

Concerning the computational interpretation, the �rst paper that probably
comes to mind is Edalat (1995b) introducing domain theory to dynamical systems.9

It investigates topological systems (X; f ) by looking at the induced hyperspaces
(X is not required to be compact). There are several hyperspace constructions
that one could choose. (Also see Edalat and Heckmann (1998) for a construction
using open balls.) The upper space is particularly suited for computational
models: The upper spaceUX consists of all nonempty compact subsets ofX
with the topology given by the basic opensf C 2 UX : C � Ag for A � X
open. If X is locally compact, second countable, and Hausdor�, thenUX under
reversed inclusion is an! -continuous dcpo and its topology coincides with the
Scott topology, whence the functionUf : UX ! UX de�ned by Uf (A) := f (A)
is Scott-continuous. (Moreover, ifX is zero-dimensional compact, thenUX is a
Scott domain.) Meaningful dynamic behavior of (X; f ) like attractors then are,
in the interesting cases, �xed points of the domainUf (and �xed points are a
central concept in domain theory).

SinceUf is max-preserving, the! -continuous dcpoUX and Scott-continuous
function Uf model the topological system (maxUX; Uf � maxUX ), and it is
readily seen that this system is isomorphic to the original (X; f ) via the conjugate
homeomorphism' : X ! maxUX de�ned by ' (x) = f xg.10 Thus, this very
elegantly provides a computational model for topological systems (X; f ) with X
locally compact, second-countable, Hausdor� andf continuous.

Our construction is, as outlined above, rather di�erent, so let's compare the two.
Our construction is more general in the sense that it works for arbitrary probability
spaces (rather than the above topological spaces) and measurable functions (rather
than continuous functions), and that, with the valuations, it has built in a domain-
theoretic representation of measures. Moreover, the constructed modeling domain
always is a Scott domain (rather than, generally, just! -continuous). It models a
compact topological system with a continuous dynamics, but, due to the greater
generality, we can only ask the isomorphism to the original system to be a measure-

8For example, in our construction, there is no direct analogue of the `+ directionality'
condition of Shimomura (2014, p. 184), which would say, for the above relation, ifaEj b and
aEj b0, then pij (b) = pij (b0).

9This is part of a broader research programme, an overview of which is provided by Edalat
(1997).

10The maximal elements ofUX are precisely the singletons ofX , so ' is well-de�ned and
bijective. For an open A � X , we have' (A) = ff xg : x 2 Ag = f C 2 UX : C � Ag \ maxUX ,
so ' is open. Also, the preimage of the basic openf C 2 UX : C � Ag \ maxUX hence is
' � 1 ' (A) = A, whence open, so' is continuous. Finally, to see that ' is conjugate, we have, for
x 2 X , that ' (f (x)) = f f (x)g = f (f xg) = Uf (f xg) = Uf (' (x)).



4.2. Background 119

theoretic one (rather than a topological one). In section 4.6.2, we see that the
price for the `emergent' topological structure on the modeled system is that, if we
restrict our setting to that of (zero-dimensional) topological systems, we, roughly,
only have a dense embedding of the original system into the modeled system (so
the modeled system acts as a `compacti�cation'). But we do have a topological
isomorphism if the original system was zero-dimensional compact (which is the
case where the upper space model yields a Scott domain).

Outline of the chapter In section 4.2, we provide the relevant background
from domain theory and dynamical systems theory. In section 4.3, we detail the
above construction of observing an (abstract) dynamical system. In section 4.4,
we build the category of dynamical domains. In section 4.5, we show that every
dynamical domain models a dynamical system. In section 4.6, we show the main
result that every system is modeled (up to isomorphism) by some dynamical
domain. In section 4.7, we conclude with some open questions.

4.2 Background

We provide the relevant background in domain theory (section 4.2.1) and in
dynamical systems theory (section 4.2.2).

4.2.1 Domain theory

We provide a brief|but self-contained|introduction to domain theory by recalling
the basic notions that we'll need. We follow the standard reference on domain
theory: Abramsky and Jung (1994). Only the last notion (that of a valuation) is
not covered there, for which we provide separate references below.

Dcpo. Let (D; � ) be a partial order (abbreviated to poset).11 ( A subset
A � D is directed if it is nonempty and for any two a; b2 A, there is c 2 A such
that a; b� c. If every directed subsetA of D has a least upper bound

W
A, then

(D; � ) is directed complete. A dcpo is a directed complete partial order.
Scott domain. An element c of a dcpo (D; � ) is compact if for all directed

subsetsA of D, if
W

A � c, then there is a 2 A such that a � c. The set of
compact elements is denotedK (D). A dcpo (D; � ) is ! -algebraic if K (D) is
countable and, for alla 2 D, the set f b 2 K (D) : b � ag is directed and has
supremuma. Finally, a dcpo (D; � ) is bounded completeif any subsetB � D that
has an upper bound also has a least upper bound. AScott domain is a non-empty
! -algebraic and bounded-complete dcpo (D; � ). Note that Scott domains have
a least element: since the empty set has an upper bound, it hence has a least

11I.e., D is a set and�� D � D is re
exive (for all a 2 D , a � a), transitive (for all a; b; c2 D ,
if a � b and b � c, then a � c), and antisymmetric (for all a; b 2 D, if a � b and b � a, then
a = b). If we don't demand antisymmetry, ( D; � ) is a preorder.



120 Chapter 4. Systems and domains 1: Model

upper bound, which must be the least element. (In di�erent contexts, one works
with di�erent classes of dcpos and calls the dcpos under consideration simply
`domains'.)

Order-theoretic notation. Let (D; � ) be a poset. A subsetA � D is anupset if,
for all a; b2 D, a � b and a 2 D implies b2 D. We call a 2 D maximal if, for all
b2 D, if b � a, then b= a. The set of maximal elements ofD is denotedmaxD.
More generally, ifA � D is a subset,maxA := f a 2 A : 8b2 A:b � a ) b = ag.12

Also, for a subsetA � D, we de�ne " A := f b 2 D : 9a 2 A:b � ag and
#A := f b2 D : 9a 2 A:b � ag. If A = f ag is a singleton, we write" a := " A and
#a := #A. By Zorn's lemma, any element of a dcpo has a maximal element above
it. 13

Intuition . The guiding intuition is to think of the maximal elements of a dcpo
as the `ideal' elements that are approximated by the `real' non-maximal elements.
This intuition is made more precise by the way-below relation and continuous
domains. We don't need to de�ne them here, since, in our setting of Scott domains,
these more general concept can be described using compact elements only. Thus,
the compact elements are the `real', `�nitary', or `directly accessible' elements of
the Scott domain, and the maximal elements (or, more generally, the non-compact
elements) are the `ideal' elements that are obtained as limits of approximating
them with the `real' compact elements. As an example, consider the setD := 2 � !

of binary sequences of length� ! (the �rst in�nite ordinal) ordered by extension.
This forms a Scott domain: the compact elements are the �nite sequences 2<!

and the maximal elements are the in�nite sequences 2! .
The more general intuition, and the reason why domain theory is motivated

as a `mathematical theory of computation' (Scott 1970), is that domains can
be regarded as providingdenotational semanticsto computational processes: In
the above example,D can be regarded as the `data type' of binary sequences
which contains the output (or denotations) of computational processes that specify
certain binary sequence (e.g., the process \print 0, print 1, repeat"). More
importantly, we could also consider a computational process that takes binary
sequencesa as input and produces another onef (a) as output. For this mapping
to indeed be `computable', we would expect that, if we want to approximate the
output f (a) to some �nite degreeb0 � f (a), we only need to know the inputa
up to some �nite degreea0 � a such that f (a0) � b0 (or rather f (" a0) � " b0).
The denotation of that process would then be an element of the domain [D ! D]
of `computable' functions onD. Domain constructions like this function domain
are central to domain theory, but will only implicitly play a role here (e.g., limits
and powerdomains), but we'll come back to this in the conclusion. What is
important now is that specifying this kind of `(qualitative) computability' is done

12If A � D is an upset, then maxA := f a 2 A : 8b 2 D:b � a ) b = ag.
13I.e., if D is a dcpo, then8x 2 D9y 2 maxD : x � y. Proof: SinceD is directed complete,

any chain in the poset P := " x (with the order inherited from D) has a (least) upper bound, so,
by Zorn's lemma, P has a maximal elementy. Then y 2 maxD with y � x, as needed.



4.2. Background 121

by continuity in an appropriate topology.
Topology. The most important topology on a dcpo (D; � ) is the Scott topology.

The open sets are thoseU � D that are upsets and, wheneverA � D is directed
and

W
A 2 U, there isa 2 A such that a 2 U. The intuition is that the Scott-open

sets are the (�nitely) observable properties of elements ofD: If the limit
W

A of
an approximation has propertyU, then this will already be seen at a �nite stage
a 2 A. The Scott topology has an important re�nement: theLawson topology
which is the join of the Scott topology and the lower topology onD (generated by
the sets of the formD n "a for a 2 D). The Scott topology is denoted �(D) and
the Lawson topology is denoted �(D); we drop D̀ ' if it is clear from context. The
Scott-continuous functionsf : D ! D are those that are continuous with respect
to the Scott topology. Equivalently, they are the� -monotone functions that
preserve the supremum of directed subsets. (For continuous, and hence algebraic,
domains, this is equivalent to the `�nite approximation' property sketched above.)

Projections. The most concise de�nition of aprojection is as a surjective
monotone functionp : Q ! P between posets such that preimages of principal
upsets are again principal upsets (i.e., for alla 2 P, p� 1(" a) = " b for someb2 Q).
This understanding should su�ce for the chapter, however, the conceptually
apt de�nition is that projections are one half of a pair of monotone functions
p : Q � P : e that form an adjunction: so we'll now explain that here as well.

Abstractly, a partial order (P; � ) can be considered as a category (the objects
of P are the elements ofP and there is a single morphism froma to b i� a � b).
A category-theoretic adjunctionl : P � Q : u between two partial orders then
is, concretely, a pair of monotone functionsl : P ! Q (called the left or lower
adjoint ) and u : Q ! P (called the right or upper adjoint) such that, for all a 2 P
and b2 Q, l(a) � b i� a � u(b). The category-theoretic fact that the right adjoint
determines the left adjoint then becomes: For alla 2 P, l(a) is the least element
of u� 1(" a) (dually for the left adjoint determining the right adjoint). And the
category theoretic fact that right adjoint functors preserve limits then becomes:u
preserves existing in�ma (dually,l preserves existing suprema). Moreover,u is
surjective i� u � l = idP i� l is injective (whereidX denotes the identity function
on the set X ). Now it's not hard to see that a surjective monotone function
p : Q ! P between posets is a projection (in the above sense) i� it is an upper
adjoint, i.e., there is a (uniquely determined) monotone functione : P ! Q
such that e : P � Q : p form an adjunction|then e is injective and is called
an embedding. (Dually, we can de�ne an embeddinge : P ! Q as an injective
monotone function that is a lower adjoint.)

Powerdomains. Powerdomains have been developed to describe non-determin-
istic processes: While a deterministic computational process over a data typeD
maps an input a 2 D to a unique output f (a) 2 D, a non-deterministic process
maps an input a 2 D to a set of possible outputsF (a) � D. Intuitively, a
powerdomainP(D) of D is a collection of subsets ofD that can sensibly occur
as non-deterministic outputs. Moreover,P(D) is ordered in a way that provides



122 Chapter 4. Systems and domains 1: Model

domain-theoretic (or computable) structure. And the non-deterministic processf
extends to a deterministic function onP(D): sending a setM � D to

S
a2 M f (a).

There are several powerdomain constructions that make this precise (Abramsky
and Jung 1994, sec. 6.2). Here we're using one of the common ones: theSmyth
powerdomainP. In fact, we'll only build it for �nite and discrete nonempty dcpos
(D; � ), i.e., whereD is �nite nonempty, and a � b i� a = b. (But, conceptually,
it is worth knowing that there is a more general construction behind it.) In
this case,P(D) is de�ned as the �nite partial order

�
P(D) n f;g ; �

�
, i.e., the

powerset ofD ordered by reverse inclusion with the top element; removed.14

This is a �nite Scott domain, and a multi-function F : D ! D (mapping each
a 2 D to a nonempty subsetF (a) � D) becomes a Scott-continuous function
f : P(D) ! P(D) mapping M to f (M ) =

S
a2 M F (a).

Valuations. In domain theory, the notion of a valuation plays a crucial role
in the theory of probabilistic powerdomains (see e.g. Edalat 1995a; Jones and
Plotkin 1989; Lawson 1982). But it also is treated in a more general topological
setting (see e.g. Alvarez-Manilla, Edalat, and Saheb-Djahromi 2000; Keimel and
Lawson 2005).15

If ( D; � ) is a dcpo, then a functionv : �( D) ! [0; 1 ] is a valuation on (D; � )
if, for all U; V 2 �( D),

1. Strictness:v(; ) = 0,

2. Monotonicity: if U � V , then v(U) � v(V), and

3. Modularity: v(U [ V) + v(U \ V) = v(U) + v(V).

The valuation v is continuous if, whenever (Uj ) j 2 J is a directed family in �( D),
then v(

S
J Uj ) = supJ v(Uj ). And v is normalized if v(D) = 1.

Intuitively, (normalized) continuous valuations are the domain-theoretic ana-
logues of (probability) measures.16 In the `computable' spirit of domain theory,
the Scott-open sets of a domain are the observable properties of the data type
represented by the domain. A valuation then assigns probabilities to making the
observations represented by the open sets. Thus, the open sets are the events
to which we can assign probabilities, but, unlike the case of probability theory,
we shouldn't expect to be able to this for all the Borel sets generated by the

14Here is how this is a special case of the Smyth powerdomain: SinceD is �nite nonempty,
this is a continuous dcpo (the only directed subsets are singletons). The Smyth powerdomain of
a continuous domain is (isomorphic to) the collection of non-empty Scott-compact saturated
subsets ordered by reverse inclusion (Abramsky and Jung 1994, thm. 6.2.14). SinceD is �nite
and discrete, these are precisely the non-empty subsets ofHi .

15As mentioned by Alvarez-Manilla, Edalat, and Saheb-Djahromi (2000, p. 629), the term
`valuation' goes back to the notion of a valuation on a lattice (Birkho� 1973, ch. X).

16It is important to keep in mind that the analogy is not perfect (Keimel and Lawson 2005):
Borel measures restrict to valuations, but not every valuation can be extended to a measure.
However, as we'll see below, for the more well-behaved domains this is true.



4.2. Background 123

Scott-open sets, since the complement of an observable property need not be
observable anymore.17

4.2.2 Dynamical and topological systems

Dynamical systems. Before de�ning dynamical systems (in the sense of ergodic
theory), we �rst recap their underlying spaces. There are three kinds: (1) prob-
ability spaces, which include both (2) standard Borel spaces with a probability
measure and (3) Lebesgue spaces. These are de�ned as follows.

(1) As usual, aprobability spaceis a triple (X; A ; � ) where X is a set,A is
a � -algebra, and� : A ! [0; 1] is measure with� (X ) = 1. A probability space
(X; A ; � ) is complete if, for all A � B 2 A , if � (B ) = 0, then A 2 A . The
completion of (X; A ; � ) is denoted (X; A � ; � ).18

(2) A standard Borel spaceis a pair (X; A ) such that there is a Polish (i.e.,
separable and completely metrizable) topology� on X with A = B(� ), where
B(� ) denotes the Borel� -algebra of the topology� (Kechris 1995, def. 12.5). A
probability measure� on (X; A ) is then often called a Borel probability measure
and (X; A ; � ) a Borel probability space.

(3) Lebesgue spaces(or standard probability spaces) can be de�ned in two
equivalent ways.19 First, a Lebesgue spaceis a complete probability space (X; A ; � )
such that there is a second-countable topology� on X with � � A , B(� )� = A,
and � inner regular, i.e., forA 2 A , � (A) = sup� (K ) where the supremum is
taken over all � -compact subsetsK of A (de la Rue 1993, def. 1-1). Second, a
Lebesgue space is a complete probability space that is isomorphic mod 0 to the
ordinary Lebesgue space of an interval [0; a] � R together with countably many
point masses (Petersen 1983, def. 4.5, Walters 1982, def. 2.3). (For a proof of the
equivalence, see de la Rue (1993, thm. 4-3).) The latter de�nition probably is more
common and its intuition is that the unit interval with the Lebesgue measure (plus
countably many point masses) serves as the canonical probability space. The �rst
de�nition is, in a sense, conceptually more pure and its intuition is|analogous to
standard Borel spaces|to consider probability spaces arising from well-behaved
topological spaces. As a simple consequence of these de�nitions, any completion
of a standard Borel space with a probability measure is a Lebesgue space.20 And

17Similar motivation is given by, e.g., Jones and Plotkin (1989) and Keimel and Lawson
(2005).

18Here A � is the � -algebra of sets of the formA [ N for A 2 A and N � M for someM 2 A
with � (M ) = 0, and � (A [ N ) is taken to mean � (A).

19Regarding references: As noted by Petersen (1983, p. 17) and Eisner et al. (2015, re-
mark 7.22), an early systematic treatment of Lebesgue spaces is provided by Rokhlin and
by Halmos and von Neumnann (see references therein). For a concise more modern treat-
ment, see de la Rue (1993) or the entry \Standard probability space" of theEncyclopedia of
Mathematics: http://encyclopediaofmath.org/index.php?title=Standard_probability_
space&oldid=24675 (accessed 31 January 2021).

20Proof: If ( X; A � ; � ) is the completion of the standard Borel space (X; A ) with a probability

http://encyclopediaofmath.org/index.php?title=Standard_probability_space&oldid=24675
http://encyclopediaofmath.org/index.php?title=Standard_probability_space&oldid=24675


124 Chapter 4. Systems and domains 1: Model

any Lebesgue space is isomorphic mod 0 to the completion of a standard Borel
space with a Borel probability measure.21

A major reason for restricting attention to the subclasses (2) and (3) of proba-
bility spaces is that then di�erent natural notions of isomorphism of probability
spaces|and hence dynamical systems built over them|coincide (Walters 1982,
ch. 2).

Now we can de�ne dynamical systems in the sense of ergodic theory. (For
general references on ergodic theory, see, e.g., Petersen (1983) and Walters (1982).)
In the most abstract sense, these are structures (X; A ; �; T ) where (X; A ; � ) is a
probability space andT : X ! X a measurable function.22 The standard setting
of ergodic theory, however is more concrete in that it additionally assumes that
the probability space is a Lebesgue space and that the transformation is measure-
preserving and bijective (i.e., invertible). As motivated in the introduction, we
aim for a treatment of dynamical systems that is general enough to not assume
measure-preservation and bijectiveness from the start (and rather leave it as an
option to obtain these as theorems). But it should also be reasonably concrete
(to, e.g., allow for a uni�ed theory of isomorphisms) and in line with other strands
of dynamical systems theory, like measurable dynamics or descriptive dynamics.
Thus, our `general' setting is that of a Borel probability space with a Borel-
measurable dynamics. As a result, a dynamical system in the standard sense is not
verbatim a dynamical system in the general sense but only `modulo isomorphism
and completion'. (Implicitly, this distinction between abstract, standard, and
general is also found in Walters (1982, esp. ch. 2).) The formal de�nition reads as
follows.

4.2.1. Definition . An abstract dynamical systemis a structureX = ( X; A ; �; T )
where (X; A ; � ) is a probability space andT : X ! X is measurable (i.e., for
A 2 A , T � 1(A) 2 A ). A (general) dynamical systemis an abstract dynamical
system X = ( X; A ; �; T ) where (X; A) is a standard Borel space. Astandard
dynamical systemis an abstract dynamical systemX = ( X; A ; �; T ) where (X; A ; � )
is a Lebesgue space andT : X ! X is bijective and measure-preserving (i.e.,
measurable and forA 2 A , � (T � 1(A)) = � (A)). We often omit the term `general'.

measure� on it, then there is a Polish topology � on X such that A = B(� ). So (X; A � ; � )
is a complete probability space with a second-countable topology� on X such that � � A � ,
B(� ) � = A � , and to show inner regularity one uses that Borel measures on Polish spaces are
inner regular.

21If ( X; A; � ) is a Lebesgue space it is, as shown in the proof of the equivalence by de
la Rue (1993, thm. 4-3), isomorphic mod 0 to the space (Y;B ; � ) where Y is of the form
[0; a] [ f a1; a2; : : :g � R, � is the Lebesgue measure on [0; a] and the point mass on thean , and
B = B(Y ) � . Note that Y is a G� subset (countable intersection of open sets) of the Polish space
R and hence Polish. So (X; A ; � ) is isomorphic mod 0 to the completion of (Y;B(Y ); � ) which is
a standard Borel space with a Borel probability measure.

22The only further generalization is to move from the iterations of one dynamicsT to more
general group actions.



4.2. Background 125

The usual notion of isomorphism between dynamical systems is the follow-
ing (Walters 1982, ch. 2).

4.2.2. Definition . Two abstract dynamical systemsX = ( X; A ; �; T ) and Y =
(Y;B; �; S ) are (metrically) isomorphic if there is a partial function ' : X ! Y
with domain M � X and codomainN � Y such that

1. ' : M ! N is a bijective function,

2. M and N are invariant sets of full measure: i.e.,M 2 A , � (M ) = 1,
T(M ) � M , and N 2 B, � (N ) = 1, S(N ) � N ,

3. ' is measure-preserving: i.e., forB 2 B, we have ' � 1(B ) 2 A and
�

�
' � 1(B )

�
= �

�
B

�
, and

4. ' is equivariant: i.e., forx 2 M , '
�
T(x)

�
= S

�
' (x)

�
.23

For a discussion of when this coincides with the generally weaker conjugacy
(equivariant isomorphism of measure algebras), see Walters (1982, ch. 2). For a
discussion of the (history of) spatial vs. spectral approaches to the de�nition of
isomorphisms, see R�edei and Werndl (2012).

Topological systems. We can look at a dynamical system (X; A ; �; T ) with a
greater level of detail if we also consider topological information about the state
spaceX and not just the measure-theoretic information. The resulting notion
then is the following.

4.2.3. Definition . A (general) measured topological systemis a structure X =
(X; �; �; T ) where (X; � ) is a Polish space,� is a probability measure onB(� ), and
T : X ! X is continuous. It is standard if, additionally, T is a homeomorphism
and measure-preserving. It is zero-dimensional (resp. compact) if (X; � ) is. We
usually omit the term `general'.

Comments: First, in topological dynamics, one usually doesn't consider mea-
sures, whence we add the term `measured' to stress the presence of a measure.
The standard setting in topological dynamics is thatX is a compact metric space
(hence Polish) andT is a homeomorphism. Here, however, we'll also discuss
non-compact state spaces and non-bijective dynamics.

Second, a paradigm example of a zero-dimensional compact Polish space is
the Cantor space. A paradigm example of a zero-dimensional (non-compact)
Polish space is the space of irrational numbers considered as a subspace of the real
numbers, which is homeomorphic to the Baire space. (See, e.g., Kechris (1995,
ch. 7) for a discussion of these spaces and their `paradigmness'.)

Third, there are two perspectives on zero-dimensionality: From a topological
perspective, as described by Hjorth and Molberg (2006, p. 1117), this means

23Note that ' (T(x)) is de�ned becausex 2 M implies ' (x) 2 M .



126 Chapter 4. Systems and domains 1: Model

minimizing the topological in
uence of the state space on the dynamical system
(e.g., trivializing homotopy and homology), whence the complexity of the system
comes from the dynamics. From a logical or computational perspective, the clopen
(closed and open) sets of the state space act as `(�nitely) decidable' properties of
states: Under the well-known computational interpretation of topology (Smyth
1983; Vickers 1989), the open sets of a topology are the `semi-decidable properties'
of the points of the space. Thus, the sets that not only are open but also have
an open complement|i.e., the clopen sets|are the `decidable properties' of the
space. So, from this logico-computational perspective, the assumption that the
clopen sets form a basis (i.e., zero-dimensionality) means that we can describe
the states with these decidable properties. Moreover, from this perspective, zero-
dimensionality can be seen as a `without loss of generality assumption': If we
start with a countable basis of our space (e.g., the intervals ofR with rational
endpoints), then the points that lie exactly on the boundary of the basic opens
(i.e., the rational numbers) are very much `non-typical' points, whence they may
be ignored, yielding a zero-dimensional space (the irrational numbers). This is a
common idea, for example, in algorithmic randomness (Downey and Hirschfeldt
2010).

Fourth, note that, if the state spaceX is compact, it is enough to check that
T is bijective and continuous to conclude that it is a homeomorphism.

Unlike the case of (measure-theoretic) dynamical systems, the notion of (iso-)
morphisms between topological systems is straightforward.

4.2.4. Definition . If X = ( X; �; �; T ) and Y = ( Y; �; �; S ) are measured topo-
logical systems, amorphism ' : X ! Y of measured topological systems is a
function ' : X ! Y that is continuous (i.e., if V 2 � , then ' � 1(V) 2 � ), measure-
preserving (i.e., ifB 2 B(� ), then � (' � 1(B )) = � (B))24, and equivariant (i.e.,
' � T = S � ' ). If ' additionally is a homeomorphism, then' is an isomorphism
of measured topological systems.

Every topological system induces a dynamical system: IfX = ( X; �; �; T ) is a
measured topological system, then

J(X) := ( X; B(� ); �; T )

is a general dynamical system.25 And if X additionally is standard, then

J(X) := ( X; B(� )� ; �; T )

is a standard dynamical system.26

24Note that continuity implies ' � 1(B ) 2 B(� ) so � (' � 1(B )) is de�ned.
25Proof: Since� is a Polish topology onX , (X; B(� )) is a standard Borel space with probability

measure� and T : X ! X is measurable since it is continuous.
26Proof: As above, (X; B(� ); � ) is a Borel probability space, so its completion (X; B(� ) � ; � ) is

a Lebesgue space. SinceT is continuous, it is measurable. And, by assumption,T is bijective
and measure-preserving.



4.3. Observing dynamical systems 127

A �nal word on notation: As a rule of thumb (i.e., when feasible), elements
of sets are denoted by lower-case letters (likex), sets are denoted by upper-case
letters (like Y), sets of sets are denoted by calligraphic letters (likeA), and
structures are denoted by Fraktur letters (likeX).

4.3 Observing dynamical systems

In this section, we describe the structure of possible ways of observing an abstract
dynamical systemX = ( X; A ; �; T ).

4.3.1 Basis or `set of possible observations'

Intuitively, possible observations (or measurements or experiments) that we can
make about the systemX correspond to subsetsU of the state spaceX : to
make observationU is to realize that the system's current state is in the setU.
The following describes some minimal properties that a setB|which we'll call a
basis|of all possible observations (under consideration) should satisfy.

4.3.1. Definition . If X is a set, abasis for X is a collectionB of subsets ofX
closed under �nite intersection.27 (The empty intersection equalsX , soX 2 B.)
If ( X; � ) is a topological space, atopological basisfor (X; � ) is a basisB for X
consisting of open sets (i.e.,B � � ) such that the topology generated byB is �
(i.e., every U 2 � can be written as unions of elements ofB).28 If ( X; A ) is a
measurable space (i.e.,X a set andA a � -algebra onX ), a measurable basisfor
(X; A ) is a basisB for X consisting of measurable sets (i.e.,B � A ).

If X is a set,B a basis forX , and T : X ! X a function, we callB:

ˆ forward T-closedif TB � B (i.e., if U 2 B, then T(U) 2 B).

ˆ backwardT-closedif T � 1B � B (i.e., if U 2 B, then T � 1(U) 2 B).

ˆ countableif B is a countable set.

ˆ separating if, for all x 6= y in X , there is U 2 B such that x 2 U but y 62U.

This terminology naturally extends to systems: For example, ifX = ( X; A ; �; T )
is an abstract dynamical system, then a backward (T-) closed measurable basis
B for X is a measurable basis for (X; A ) that is backward T-closed. Or if
X = ( X; �; �; T ) is standard measured topological system, then a countable
topological basisB for X is a topological basis for (X; � ) that is countable.

27I.e., if B1; : : : ; Bn 2 B for n � 0, then
T n

k=1 Bk 2 B. If n = 0, the convention is thatS n
k=1 Bk := X .
28Note that the usual de�nition of a basis for a topology (e.g. Munkres 2000, p. 78) is a bit

more general and doesn't require closure under intersection. But, for our purposes, the chosen
notion will be more convenient.



128 Chapter 4. Systems and domains 1: Model

Comments: First, eventually we'll either use topological or measurable bases,
but for much of this section we can work with the general (set-theoretic) concept
of a basis.

Second, it is tempting to demand (some of) the above additional properties
of bases from the start, together with furtherlogical closure conditions thatB is
not only closed under �nite intersection (conjunction), but also under �nite union
(disjunction) and under complement (negation). We often can build bases with
(some of) these properties, but, at this general level, we'll keep our assumptions
minimal. In particular, on the `possible observations' interpretation of a basis, clo-
sure under �nite intersection means that we can form conjunctions of observations,
which is rather uncontroversial. However, other logical combinations, like classical
negation or disjunction, may be more controversial, which is why we won't require
them (but allow them).

Third, it may also be tempting to additionally demand, in analogy with
topological bases, that a measurable basisB for (X; A ) generates the� -algebraA
(in the sense thatA is the smallest� -algebra containingB). However, there are
two reasons not to: First, we don't have to, and second, in complete probability
spaces, a countableB may fail to generate the� -algebra, but only do soafter
completion. Moreover, in standard Borel spaces, countable separating measurable
bases automatically generate (Mackey 1957, thm. 3.3), and, in Lebesgue spaces,
countable separating measurable bases generate after completion (de la Rue 1993,
thm. 3-4).

Fourth, de la Rue (1993, def. 3-3) uses the term `basis' for a countable subset
of the � -algebra of a Lebesgue space that separates points. And, as mentioned,
Polish spaces with a distinguished basis play an important role for Danos and
Garnier (2015) and Dahlqvist, Danos, and Garnier (2016).

Fifth, in the extreme cases, the powersetP(X ) of a setX is always a basis for
X , and the only basis forX = ; is B = f;g .

4.3.2 The index set or `set of observation parameters'

Given a basis (or set of possible observations) for systemX, we de�ne the index
set I (B) to consist of tuples (n; C) describing the observation parameters:n is the
observation length (i.e., the number of update steps that we observe) andC is
the granularity of our observation (i.e., the areas of the state space that we can
observe the system to be in).

4.3.2. Definition . Let X be a set andB a basis forX . A (�nite) B-cover C of
X is a (�nite) set of elements ofB whose union isX . A B-cover D accurately
re�nes a B-coverC, written C � D , if

1. Re�nement: for all D 2 D , there is C 2 C such that D � C, and

2. Accuracy: for all x 2 C 2 C, there is D 2 D such that x 2 D � C.



4.3. Observing dynamical systems 129

We de�ne the index set I (B) := N � FCov(B) where N is the set of non-negative
integers with the usual order� and FCov(B) is the set of �nite B-covers ofX
ordered by� . We often just write I if B is clear from context. We orderI by the
product order � � � which we'll also denote� .

Comments: First, clause 1 is the usual de�nition of re�nements of (open)
covers. However, it will turn out that the additional clause 2 will be crucial for our
purposes. To stress its presence we'll speak ofaccurate re�nement, but since this
is the only notion of re�nement that we use, we'll usually omit the term `accurate'.

Second, in words, clause 1 says that every set ofD is contained in a set ofC,
while clause 2 says (in a sense conversely) that every set ofC can be written as a
union of sets fromD.

Third, as mentioned, considering �nite partitions of a space plays an important
role in the characterization of pro�nite spaces. However, since we're also consid-
ering dynamics, we not only need to take into account whichareas of the state
space we can observe (C), but also for how long we're observing the dynamics (n).

4.3.3. Lemma. In the notation of de�nition 4.3.2, (I (B); � ) is a nonempty di-
rected preorder.

Proof. We �rst show that ( I; � ) is a preorder. For that we need to show that�
and � is a preorder (since the product is again a preorder). For� this is clear, so
we need to show that� is re
exive and transitive. That conditions (1) and (2)
are re
exive is clear. So assumeC � D � E and showC � E . Ad (1). Let E 2 E.
Then there is D 2 D such that E � D. So there isC 2 C such that D � C.
WhenceE � C 2 C, as needed. Ad (2). Letx 2 C 2 C. Then there isD 2 D
such that x 2 D � C. So there isE 2 E such that x 2 E � D. Sox 2 E � C for
E 2 E, as needed.

Nonempty: sinceX 2 B, f X g is a �nite B-cover, whence (0; f X g) 2 I .
Directed: If (n; C); (m; D) 2 I , consider (max(n; m); C _ D) where C _ D :=

f C \ D : C 2 C; D 2 Dg. To show that (max(n; m); C _D) is in I , we need to show
that C _ D is a �nite B-cover: SinceB is closed under intersection, the elements of
C _ D are in B. Clearly, it is �nite. And the union of C _ D is X since: forx 2 X ,
there is, sinceC and D are covers, someC 2 C with x 2 C and someD 2 D
with x 2 D, so x 2 C \ D 2 C _ D. To show (n; C); (m; D) v (max(n; m); C _ D),
we need to show, sincen; m � max(n; m), that C; D � C _ D . We show it for
C since for D is similar. Ad (1). Let C \ D be in C _ D with C 2 C and
D 2 D . Then C \ D � C for C 2 C, as needed. Ad (2). Letx 2 C 2 C. Since
D is a cover, there isD 2 D with x 2 D. Then x 2 C\ D � C for C\ D 2 C_D. 2

4.3.3 Observed system

Given an observation parameter (n; C), the following captures the possible se-
quences of observations that we can make (realized by a single state).



130 Chapter 4. Systems and domains 1: Model

4.3.4. Definition . Let X be a set with basisB and T : X ! X a function. Let
i = ( n; C) 2 I (B). For x 2 X and t = ( U0; U1; : : : ; Un� 1) 2 Cn , we sayx follows t
if Tk(x) 2 t(k) for all 0 � k < n . We de�ne

Oi (x) := On
C(x) :=

�
t 2 Cn : x follows t

	
:

We call Oi (x) the observation historythat x gives rise to (so eacht 2 O i (x) is an
instantiation of that history). De�ne

Hi := Hn
C :=

�
Oi (x) : x 2 X

	

We call Hi the set of observation historiesof (X; B; T).

Comments: First, we can think oft as a trajectory in the transition system
(C; ! ) where U ! V i� there is x 2 U such that T(x) 2 V. This is the system
that we observe when observing the underlying dynamical systemX through `the
lens of' parameter (n; C).

Second, note that the empty trajectory� is the only trajectory of length 0 and
any x 2 X follows � (qua vacuous quanti�cation), so for anyx 2 X , O0

C(x) = f � g.
Also note that Hi is �nite: Since Cn is �nite, also Hi = fO i (x) : x 2 X g � P (Cn )
is �nite. Also, Hi is nonempty if X is nonempty.

Third, we could also consider a `cumulative' de�nition ofHn
C as

�
Ok

C(x) :
x 2 X; 0 � k � n

	
and partially order Hn

C by Ok
C(x) � O l

C(y) i� k � l and
Ok

C(x) = Ok
C(y). It would have a least elementO0

C(x) (for any x 2 X ), and its
maximal elements arefO n

C(x) : x 2 X g. Much of our representation result could
also be developed with this idea, but the chosen one is simpler.

Fourth, note that the transition system dynamics extends from (C; ! ) to
Hi . Given observation historyOi (x) at the current time step, the observation
histories that are possible in the next time step are precisely theOi (T(y)) with
Oi (y) = Oi (x). We think of this `observation dynamics' as a non-deterministic
computational process that assigns each `input' stateOi (x) the set of possible
`output' states

�
Oi (T(y)) : Oi (y) = Oi (x)

	
. Thus, we're in the setting of pow-

erdomain theory, as described in section 4.2.1. As mentioned there, we can use
the Smyth powerdomainP applied to the special case of a �nite discrete order.
Concretely, this is described as follows.

4.3.5. Lemma. Let X be a nonempty set with basisB and T : X ! X a function.
Then P(Hi ) is the �nite partial order

�
P(Hi ) n f;g ; �

�
which is a Scott domain

and

f i : P(Hi ) ! P(Hi )

M 7!
�

Oi (T(y)) : Oi (y) 2 M
	

is a well-de�ned Scott-continuous function.



4.3. Observing dynamical systems 131

Proof. We considerHi as a nonempty �nite and discrete dcpo. Then, as shown
in section 4.2.1, the Smyth powerdomainP(Hi ) is a Scott domain andf i is induced
by the multi-valued function Oi (x) 7! fO i (T(y)) : Oi (y) = Oi (x)g and hence
well-de�ned and continuous. 2

4.3.4 Re�ning observations

If we increase observation parameters, (n; C) � (m; D), then we can compare the
observationsOm

D (x) from the �ner level to those from the coarser levelOn
C(x).

The following lemma states that we can do this in a functional way:

4.3.6. Lemma. Let X be a set with basisB and T : X ! X a function. Let
i = ( n; C) � (m; D) = j in I (B). Then, for all x; y 2 X , if Oj (x) = Oj (y), then
Oi (x) = Oi (y).

Proof. Let t 2 O i (x) and showt 2 O i (y) (the other direction is analogous). So
t = ( C0; : : : ; Cn� 1) 2 Cn with Tk(x) 2 Ck 2 C for k = 0; : : : ; n� 1. SinceC � D we
have, by the `accuracy' clause (2), that, fork = 0; : : : ; n� 1, there areDk 2 D with
Tk(x) 2 Dk � Ck . Moreover, sinceD is a cover, there are, fork = n; : : : ; m � 1,
someDk 2 D with Tk(x) 2 Dk . Let t0 := ( D0; : : : ; Dn� 1; Dn ; : : : Dm� 1). So x
follows t0, whencet0 2 O m

D (x) = Om
D (y), so y also followst0. SoTk(y) 2 Dk � Ck

for k = 0; : : : ; n � 1. Soy follows t, i.e., t 2 O i (y). 2

Note that here we made crucial use of the `accuracy' clause in our notion of
cover re�nement (de�nition 4.3.2).

Due to this lemma, we can de�ne the surjective functionhij : Hj ! Hi by
mapping Oj (x) to Oi (x).29 Conveniently, the move to powerdomains to capture
the non-deterministic dynamics on the `observation system' also ensures that this
function hij lifts to a projection on the powerdomains:

4.3.7. Lemma. Let X be a nonempty set with basisB and T : X ! X a function.
Let i � j in I (B). Then

pij : P(Hj ) ! P(Hi )

M 7! hij (M ) := fO i (x) : Oj (x) 2 M g;

is a Scott-continuous projection.

Proof. Write p := pij ; h := hij and de�ne e : P(Hi ) ! P(Hj ) by e(M ) := h� 1(M );
sinceh is surjective, this is indeed a nonempty subset ofHj . Qua image and
preimage, we have, for; 6= M � N � Hj , that p(M ) � p(N ), and for ; 6= M �

29Surjective: Given Oi (x) 2 Hi we haveOj (x) 2 Hj , and h(Oj (x)) = Oi (x).



132 Chapter 4. Systems and domains 1: Model

N � Hi , that e(M ) � e(N ). Hence,p and e are monotone and thus, sinceP(Hi )
and P(Hj ) are �nite, also Scott-continuous.

To show that (e; p) is an embedding-projection pair, we showp � e = idHi and
e � p � idHj . (This is an equivalent way of saying that (e; p) is an embedding-
projection pair, see Abramsky and Jung (1994, sec. 3.1.3{4).) We have, for
M 2 P(Hi ), that p � e(M ) = h

�
h� 1(M )

�
= M sinceh is surjective.30 And, for

M 2 P(Hj ), we havee� p(M ) = h� 1
�
h(M )

�
� M ,31 soe� p(M ) � M in P(Hj ). 2

In fact, there is a more general statement of this lemma: Ifh : Q ! P is a
surjective on monotone function between two posets with least elements, then
p : P(Q) ! P(P) given by p(M ) := " h(M ) is a projection with the embedding
e(M ) := h� 1(M ). But for our purposes the above is enough.

4.3.5 Observation probabilities

We show how we can assign probabilities to the possible observations in a domain-
theoretic manner using valuations.

We start by de�ning observational equivalence.

4.3.8. Definition . Let X be a set with basisB and T : X ! X a function. For
i = ( n; C) 2 I (B), we de�ne the i -observational equivalencerelation on X by

x � i y :i� Oi (x) = Oi (y)

i� 8U 2 C 8k 2 f 0; : : : ; n � 1g : Tkx 2 U , Tky 2 U:32

We denote the equivalence classes [x]i := f y 2 X : x � i yg.

These equivalence classes are well-behaved in the measurable and topological
setting, respectively:

4.3.9. Lemma. 1. Let (X; A ) be a measurable space,B a measurable basis,
and T : X ! X a measurable function. Then, fori 2 I (B), [x]i 2 A .

30If b 2 M � Hi , let, by surjectivity, a 2 Hj with h(a) = b. Then a 2 h� 1(M ), so
b 2 h(h� 1(M )). The other direction is trivial: If b 2 h(h� 1(M )), then b = h(a) for a 2 h� 1(M ),
so b = h(a) 2 M .

31If b 2 M , then h(b) 2 h(M ), so b 2 h� 1(h(M )).
32Proof: () ) Assume Oi (x) = Oi (y). Let U 2 C and k 2 f 0; : : : ; n � 1g. Assume T k x 2

U and show T k y 2 U (the other direction is analogous). SinceC is a cover, there ist =
(U0; : : : ; Uk � 1; U; Uk+1 ; : : : ; Un � 1) 2 Cn with T l (x) 2 Ul for l 2 f 0; : : : ; n � 1g n fkg. So x follows
t, whencet 2 O i (x) = Oi (y), so y follows t, so T k (y) 2 U.

(( ) Let t 2 O i (x) and show t 2 O i (y) (the other direction is analogous). Write t =
(U0; : : : ; Un � 1) 2 Cn . Sincex follows t, we have, fork = 0 ; : : : ; n � 1, that T k (x) 2 Uk , so, by
the assumption, T k (y) 2 Uk . So alsoy follows t, whencet 2 O i (y).



4.3. Observing dynamical systems 133

2. Let (X; � ) be a zero-dimensional topological space,B a topological basis of
clopen sets, andT : X ! X a continuous function. Then, fori = ( n; C) 2
I (B), [x]i can be written as Boolean combination of sets from

S n� 1
k=0 T � kC

and hence is, in particular, a clopen subset ofX .

Proof. Let's �rst only assume what is common to both claim (1) and (2): thatX
is a set with basisB and T : X ! X a function. We �rst describe [x]i in this general
setting with i = ( n; C): For x 2 X , de�ne JxK+ :=

�
t 2 Cn : x 2

T n� 1
k=0 T � k(t(k))

	

and JxK� := ( JxK+ )c. We claim that

[x]i =
\

t2 JxK+

n� 1\

k=0

T � k(t(k)) \
\

t2 JxK�

� n� 1\

k=0

T � k(t(k))
� c

:

Indeed, �rst note that, by de�nition of � i , we have forx; y 2 X :

x � (n;C) y , 8 t 2 Cn : x 2
n� 1\

k=0

T � k(t(k)) i� y 2
n� 1\

k=0

T � k(t(k)) : (4.2)

This is readily seen to imply the claimed identity.33 Now, the two claims follow:
Concerning claim (1), sincet(k) 2 C � B � A and T is measurable (and hence

also its compositions),T � k(t(k)) � X is in A . Hence, qua �nite intersection,T n� 1
k=0 T � k(t(k)) is in A , and, qua complement,

� T n� 1
k=0 T � k(t(k))

� c
is in A . Since

C is �nite, also Cn is �nite, so JxK+ and JxK� are �nite. Hence, [x]i is a �nite
intersection of sets inA and hence inA , as needed.

Concerning claim (2), sincet(k) 2 C, eachT � k(t(k)) is in
S n� 1

k=0 T � kC, so [x]i
is a Boolean combination of sets from

S n� 1
k=0 T � kC. SinceC � B is a set of clopen

sets andT continuous, each set in
S n� 1

k=0 T � kC is clopen, whence, qua Boolean
combination of such sets, [x]i is clopen. 2

Given the measurability of the equivalence classes, we can de�ne the following
valuation.

33(� ). Assume y 2 [x]i . To show y 2
T

t 2 Jx K+

T n � 1
k=0 T � k (t(k)), let t 2 JxK+ be given. Then

t 2 Cn and x 2
T n � 1

k=0 T � k (t(k)). Since x � i y, we have, by (4.2), that y 2
T n � 1

k=0 T � k (t(k)).
To show y 2

T
t 2 Jx K�

� T n � 1
k=0 T � k (t(k))

� c
, let t 2 JxK� be given. Then t 2 Cn and

x 62
T n � 1

k=0 T � k (t(k)). Since x � i y, we have, by (4.2), that y 62
T n � 1

k=0 T � k (t(k)). So
y 2

� T n � 1
k=0 T � k (t(k))

� c
.

(� ). Assume y 2
T

t 2 Jx K+

T n � 1
k=0 T � k (t(k)) and y 2

T
t 2 Jx K�

� T n � 1
k=0 T � k (t(k))

� c
. To show

x � i y via (4.2), let t 2 Cn and show x 2
T n � 1

k=0 T � k (t(k)) i� y 2
T n � 1

k=0 T � k (t(k)). ( ) ) If
x 2

T n � 1
k=0 T � k (t(k)), then t 2 JxK+ , so y 2

T n � 1
k=0 T � k (t(k)). ( ( ) If x 62

T n � 1
k=0 T � k (t(k)), then

t 2 JxK� , so y 2
� T n � 1

k=0 T � k (t(k))
� c

, whencey 62
T n � 1

k=0 T � k (t(k)).



134 Chapter 4. Systems and domains 1: Model

4.3.10. Lemma. Let X = ( X; A ; �; T ) be an abstract dynamical system. LetB
be a measurable basis forX. Then, for i 2 I (B) and D i := P(Hi ), the following
de�nes a function vi : �( D i ) ! [0; 1]:

vi (U) :=
mX

k=1

�
�
[xk ]i

�
if 9m � 0 9x1; : : : ; xm 2 X :

maxU =
�

fO i (x1)g; : : : ; fO i (xm )g
	

and Oi (xk) 6= Oi (x l ) for k 6= l

This is a normalized continuous valuation withvi (max D i ) = 1 .

Proof. We �rst show that vi is a well-de�ned function. First, note that X 6= ;
(since� (X ) = 1), so D i is a Scott domain, and, by lemma 4.3.9, [xk ]i is in A , so
�

�
[xk ]i

�
is de�ned. Moreover, sinceOi (xk) 6= Oi (x l ) for k 6= l, the equivalence

classes [xk ]i and [x l ]i are disjoint, so
P m

k=1 �
�
[xk ]i

�
= �

� S m
k=1 [xk ]i

�
2 [0; 1].

Second, note that, ifU 2 �( D i ), then we can �nd suchm; x1; : : : ; xm : If U = ; ,
then choosem := 0. So let U 6= ; . Then maxU is, qua upset, a �nite nonempty
subset ofmaxD i =

�
fO i (x)g : x 2 X

	
. So maxU =

�
fO i (x1)g; : : : ; fO i (xm )g

	

for somem � 1 and x1; : : : ; xm 2 X with fO i (xk)g 6= fO i (x l )g for k 6= l.
Third, to show that the function is independent of the choice ofm; x1; : : : ; xm ,

let m; m0 � 0 and x1; : : : ; xm ; x0
1; : : : x0

m0 2 X with Oi (xk) 6= Oi (x l ) for k 6= l in
f 1; : : : ; mg and Oi (x0

k0) 6= Oi (x0
l0) for k0 6= l0 in f 1; : : : ; m0g and

�
fO i (x1)g; : : : ; fO i (xm )g

	
= max U =

�
fO i (x0

1)g; : : : ; fO i (x0
m0)g

	
:

Then m = m0and there is a bijectionb : f 1; : : : ; mg ! f 1; : : : ; mg with fO i (xk)g =
fO i (x0

b(k))g. Hence [xk ]i = [ x0
b(k) ]i . So

mX

k=1

�
�
[xk ]i

�
=

mX

k=1

�
�
[x0

b(k) ]i
�

=
m0X

k=1

�
�
[x0

k ]i
�
;

as needed.
Next we show that vi is a valuation. Concerning (i), we havevi (; ) =P 0

k=1 �
�
[xk ]i

�
= 0.

Concerning (ii), let U � V and show v(U) � v(V). Let m; m0 � 0 and
x1; : : : ; xm ; y1; : : : ; ym0 2 X with maxU =

�
fO i (x1)g; : : : ; fO i (xm )g

	
(pairwise

distinct) and max V =
�

fO i (y1)g; : : : ; fO i (ym0)g
	

(pairwise distinct). SinceU �
V are upsets,maxU � maxV. So m = j maxUj � j maxVj = m0 and we can
write

maxV =
�

fO i (x0
1)g; : : : ; fO i (x0

m0)g
	

with ( x0
1; : : : ; x0

m ) = ( x1; : : : ; xm ) and f x0
m+1 ; : : : ; x0

m0g are the yk with Oi (yk) 2
maxV n maxU. Hence

vi (U) =
mX

k=1

�
�
[xk ]i

�
�

m0X

k=1

�
�
[x0

k ]i
�

= vi (V):



4.3. Observing dynamical systems 135

Concerning (iii), let U; V 2 �( D i ) and showvi (U [ V) + vi (U \ V) = vi (U) +
vi (V). Let m; m0 � 0 and x1; : : : ; xm ; y1; : : : ; ym0 2 X with

maxU =
�

fO i (x1)g; : : : ; fO i (xm )g
	

(pairwise distinct)

maxV =
�

fO i (y1)g; : : : ; fO i (ym0)g
	

(pairwise distinct):

Let K + :=
�

k 2 f 1; : : : ; m0g : fO i (yk)
	

2 maxUg and K � :=
�

k 2 f 1; : : : ; m0g :
fO i (yk)

	
62maxUg. Then

max(U [ V) = max U [ maxV =
�

fO i (x l )g; fO i (yk)g : l 2 f 1; : : : ; mg; k 2 K �
	

max(U \ V) = max U \ maxV =
�

fO i (yk)g : k 2 K +
	

:

So, sinceK + [ K � = f 1; : : : ; m0g, we have

vi (U [ V) + vi (U \ V) =
� mX

k=1

� [xk ]i +
X

k2 K �

� [yk ]i
�

+
� X

k2 K +

� [yk ]i
�

=
mX

k=1

� [xk ]i +
m0X

k=1

� [yk ]i = vi (U) + vi (V):

Finally, we observe that vi automatically is continuous since �(D i ) is �-
nite. To see vi (D i ) = 1 = vi (maxD i ), note that maxD i 2 �( D i ) (qua up-
set of D i ) and write maxD i =

�
fO i (x1)g; : : : ; fO i (xm )g

	
(pairwise distinct).

Note that X =
S m

k=1 [xk ]i since each [xk ]i is a subset ofX and if x 2 X , then
fO i (x)g 2 maxD i , so fO i (x)g = fO i (xk)g for somek 2 f 1; : : : ; mg, so x 2 [xk ]i .
Sincemax(maxD i ) = maxD i , we havevi (D i ) = vi (maxD i ) =

P m
k=1 � [xk ]i =

�
� S m

k=1 [xk ]i
�

= � (X ) = 1. 2

4.3.6 Summary

We summarize the preceding results in the following theorem. We also add further
properties that will play an important role in section 4.4 below.

4.3.11. Theorem . Let X = ( X; A ; �; T ) be an abstract dynamical system. LetB
be a measurable basis forX. For i 2 I = I (B), we have

1. D i := P(Hi ) is a �nite Scott domain.

2. vi : �( D i ) ! [0; 1] de�ned by

vi (U) :=
mX

k=1

�
�
[xk ]i

�
where maxU =

�
fO i (x1)g; : : : ; fO i (xm )g

	

is a normalized continuous valuation withvi (max D i ) = 1 .



136 Chapter 4. Systems and domains 1: Model

3. f i : D i ! D i with f i (M ) :=
�

Oi (T(x)) : Oi (x) 2 M
	

is Scott-continuous.

For i � j in I , de�ne pij : D j ! D i by pij (M ) :=
�

Oi (x) : Oj (x) 2 M
	

. Then

4. pij is a Scott-continuous projection.

5. pii : D i ! D i is the identity function.

6. pik = pij � pjk if i � j � k.

7. If a 2 maxD j , then pij (a) 2 maxD i .

8. If a 2 D j and pij (a) � e 2 maxD i , then there is a � d 2 maxD with
pij (d) = e.

9. For all V 2 �( D i ), vi (V) = vj (p� 1
ij (V)).

10. For a 2 maxD j , pij (f j (a)) � f i (pij (a)).

11. For all i 2 I , if 9ai ; bi 6= b0
i 2 maxD i : bi ; b0

i � f i (ai ), then there isj � i in
I such that8aj ; bj ; b0

j 2 maxD j : if pij (aj ) = ai ; pij (bj ) = bi ; pij (b0
j ) = b0

i ,
34

then bj 6� f j (aj ) or b0
j 6� f j (aj ).

If, additionally, T is bijective and� -preserving, andB is forward T-closed, then

12. for all i 2 I , if b2 maxD i , then there isa 2 maxD i such thatb � f i (a).

13. For all i 2 I , if 9ai 6= a0
i ; bi 2 maxD i : bi � f i (ai ); f i (a0

i ), then there isj � i
in I such that8aj ; a0

j ; bj 2 maxD j : if pij (aj ) = ai ; pij (a0
j ) = a0

i ; pij (bj ) = bi ,
then bj 6� f j (aj ) or bj 6� f j (a0

j ).

14. (a) For all i 2 I and Ui 2 �( D i ), there is j 0 � i such that, for all j � j 0,
we havevj

�
f � 1

j (p� 1
ij (#maxUi )) \ maxD j

�
= vj

�
p� 1

ij (#maxUi ) \ maxD j
�

(= vi (Ui )).35 (b) For all i � j in I , if ai ; bi 2 maxD i with f i (ai ) � bi ,
then there isaj ; bj 2 maxD j such that pij (aj ) = ai and pij (bj ) = bi and
f j (aj ) � bj .

Proof. Items (1){(4) are summaries of the preceding results (again,X 6= ; since
� (X ) = 1).

Ad (5). We have pii (M ) = fO i (x) : Oi (x) 2 M g = M .
Ad (6). If a 2 pik (M ), then a = Oi (x) with Ok(x) 2 M . SoOj (x) 2 pjk (M ),

whencea = Oi (x) 2 pij
�
pjk (M )

�
, so a 2 pij � pjk (M ). Conversely, if a 2

pij � pjk (M ), then a = Oi (x) for b := Oj (x) 2 pjk (M ). So there isOk(y) 2 M with
b= Oj (y). So Oj (x) = Oj (y), whence alsoa = Oi (x) = Oi (y). So a 2 pik (M ).

34Note that this implies bj 6= b0
j since otherwisebi = pij (bj ) = pij (b0

j ) = b0
i .

35Note that, qua sets of maximal elements of �nite domains, both sets are Scott-open.



4.3. Observing dynamical systems 137

Ad (7). If a 2 maxD j , then a = fO j (x)g for somex 2 X , and pij (a) =
pij

�
fO j (x)g

�
= fO i (x)g 2 maxD i .

Ad (8). Let a 2 D j and pij (a) � e 2 maxD i . So e = fO i (x)g � fO i (y) :
Oj (y) 2 ag. So Oi (x) = Oi (y) for someOj (y) 2 a. Set d := fO j (y)g. Then
a � d 2 maxD j and pij (d) = fO i (y)g = fO i (x)g = e.

Ad (9). Let V 2 �( D i ). Let

maxV =
�

fO i (x1)g; : : : ; fO i (xm )g
	

(pairwise distinct)

maxp� 1
ij (V) =

�
fO j (y1)g; : : : ; fO j (ym0)g

	
(pairwise distinct).

We claim that

m[

k=1

[xk ]i =
m0[

l=1

[yl ]j

(� ) Let z 2 [xk ]i . Then fO j (z)g 2 maxD j and pij
�
fO j (z)g

�
= fO i (z)g =

fO i (xk)g 2 V. So fO j (z)g 2 maxp� 1
ij (V), whencefO j (z)g = fO j (yl )g for some

l 2 f 1; : : : ; m0g, so z 2 [yl ]j .
(� ) Let z 2 [yl ]j . Then fO j (z)g = fO j (yl )g, so

fO i (z)g = pij
�
fO j (z)g

�
= pij

�
fO j (yl )g

�
2 V:

SincefO i (z)g 2 maxD i , it is in maxV. So fO i (z)g = fO i (xk)g for somek 2
f 1; : : : ; mg. Soz 2 [xk ]i .

Then

vi (V) =
mX

k=1

� [xk ]i = �
m[

k=1

[xk ]i = �
m0[

l=1

[yl ]j =
m0X

l=1

� [yl ]j = vj
�
p� 1

ij (V)
�
:

Ad (10). We actually prove the claim for anya 2 D j . We have

pij (f j (a)) =
n

Oi (y) : Oj (y) 2 f j (a)
o

=
n

Oi (y) : Oj (y) 2
�

Oj (Tx) : Oj (x) 2 a
	 o

=: A

f i (pij (a)) =
n

Oi (Tx) : Oi (x) 2 pij (a)
o

=: B

So we need to show thatA � B (then A � B). If u 2 A, then u = Oi (y) for
Oj (y) 2

�
Oj (Tx) : Oj (x) 2 a

	
. So there isOj (x) 2 a such that Oj (y) = Oj (Tx).

SoOi (x) 2 pij (a) and u = Oi (y) = Oi (Tx) 2 B.36

36 Here is why the straightforward proof for the other direction (A � B ) doesn't go through:
If u 2 B , then u = Oi (Tx) for some Oi (x) 2 pij (a). So Oi (x) = Oi (z) for some Oj (z) 2 a. So
Oj (Tz) 2

�
Oj (Tx) : Oj (x) 2 a

	
, whenceOi (Tz) 2 A. However, even ifOi (x) = Oi (z), it is not

clear that we haveOi (Tx) = Oi (Tz).



138 Chapter 4. Systems and domains 1: Model

Ad (11). Let i = ( n; C) 2 I and ai = fO i (x i )g; bi = fO i (yi )g; b0
i = fO i (y0

i )g
(for x i ; yi ; y0

i 2 X ) be in maxD i with bi 6= b0
i � f i (ai ). So Oi (yi ); Oi (y0

i ) 2
fO i (Tzi ) : Oi (zi ) 2 ai g. So there iszi ; z0

i 2 X with Oi (zi ) = Oi (x i ) = Oi (z0
i ) and

Oi (yi ) = Oi (Tzi ) and Oi (y0
i ) = Oi (Tz0

i ).
We have i = ( n; C) � (n + 1; C) =: j 2 I . To see that j has the required

properties, let aj = fO j (x j )g; bj = fO j (yj )g; b0
j = fO j (y0

j )g (for x j ; yj ; y0
j 2 X ) be

in maxD i with pij (aj ) = ai ; pij (bj ) = bi ; pij (b0
j ) = b0

i . Assume for contradiction
that bj ; b0

j � f j (aj ).
First, note that Oi (yj ) = Oi (Tzi ) and Oi (y0

j ) = Oi (Tz0
i ): Indeed, we have

fO i (Tzi )g = fO i (yi )g = bi = pij (bj ) = pij (fO j (yj )g) = fO i (yj )g;

and similarly for y0
j .

Second, sincebj ; b0
j � f j (aj ), we have, as above,zj ; z0

j 2 X with Oj (zj ) =
Oj (x j ) = Oj (z0

j ) and Oj (yj ) = Oj (Tzj ) and Oj (y0
j ) = Oj (Tz0

j ). The latter two
identities imply, together with the �rst observation, Oi (Tzi ) = Oi (yj ) = Oi (Tzj )
and Oi (Tz0

i ) = Oi (y0
j ) = Oi (Tz0

j ).
Third, we claim Oi (Tzj ) = Oi (Tz0

j ). Indeed, let t = ( C0; : : : ; Cn� 1) 2 C with
Tzj following t, i.e., Tk(Tzj ) 2 Ck for k = 0; : : : ; n � 1. Let C 2 C with zj 2 C.
Then zj follows t0 = ( C; C0; : : : ; Cn� 1) 2 Cn+1 . SinceOj (zj ) = Oj (z0

j ), also z0
j

follows t0. In particular, for k = 0; : : : ; n � 1, we haveTk(Tz0
j ) 2 Ck . SoTz0

j also
follows t. Similarly for the other direction.

Finally, putting everything together, we obtain

Oi (Tzi ) = Oi (Tzj ) = Oi (Tz0
j ) = Oi (Tz0

i )

which contradicts fO i (Tzi )g = bi 6= b0
i = fO i (Tz0

i )g.
For the last three items, we now assumeT to be bijective and measure-

preserving, andB to be forward T-closed.
Ad (12). Let b = fO i (y)g be in maxD i (for some y 2 X ). Since T is

surjective, let x 2 X with T(x) = y. Let a := fO i (x)g 2 maxD i . We have
b = fO i (y)g = fO i (Tx)g � fO i (Tx) : Oi (x) 2 ag = f i (a), so b � f i (a), as
needed.

Ad (13). Let i = ( n; C) 2 I and ai = fO i (x i )g; a0
i = fO i (x0

i )g; bi = fO i (yi )g
(for x i ; x0

i ; yi 2 X ) be in maxD i with ai 6= a0
i and bi � f i (ai ); f i (a0

i ).
Sinceai 6= a0

i , we havex i 6�i x0
i , so there is, without loss of generality (the

other case is analogous),U 2 C and k 2 f 0; : : : ; n � 1g (so n � 1) such that
Tk(x i ) 2 U but Tk(x0

i ) 62U. SinceU 2 C � B and B is T-closed,T(U) 2 B , so
j 0 := ( n; f T(U); X g) 2 I . By directedness, letj � i; j 0 be in I .

To see that j has the required properties, assume for contradiction that there
are aj = fO j (x j )g; a0

j = fO j (x0
j )g; bj = fO j (yj )g (for x j ; x0

j ; yj 2 X ) in maxD j

with pij (aj ) = ai , pij (a0
j ) = a0

i , pij (bj ) = bi but bj � f j (aj ); f j (a0
j ).

The former impliesOi (x j ) = Oi (x i ), Oi (x0
j ) = Oi (x0

i ), Oi (yj ) = Oi (yi ). The
latter implies Oj (yj ) = Oj (Tzj ) for someOj (zj ) = Oj (x j ) and Oj (yj ) = Oj (Tz0

j )



4.3. Observing dynamical systems 139

for someOj (z0
j ) = Oj (x0

j ). Sincei � j we, in particular, haveOi (zj ) = Oi (x j ) =
Oi (x i ) and Oi (z0

j ) = Oi (x0
j ) = Oi (x0

i ).
SinceU 2 C, k 2 f 0; : : : ; n � 1g, and x i � i zj , the fact that Tkx i 2 U hence

implies Tkzj 2 U. Similarly, Tkx0
i 62U implies Tkz0

j 62U. Thus, TkTzj 2 T(U).
And we cannot haveTkTz0

j 2 T(U) since otherwiseTkTz0
j = Tu for someu 2 U,

so, by injectivity of T, Tkz0
j = u 2 U. HenceTzj and Tz0

j can be separated inj 0,
so Oj 0 (Tzj ) 6= Oj 0 (Tz0

j ), so, sincej 0 � j ,

Oj (yj ) = Oj (Tzj ) 6= Oj (Tz0
j ) = Oj (yj );

which is a contradiction.
Ad (14). (a). Let (n; C) = i 2 I and Ui 2 �( D i ). Without loss of generality,

Ui 6= ; (otherwise both evaluated sets are empty, and hence both have the value
0). Write maxUi =

�
fO i (y1)g; : : : ; fO i (yr )g

	
for y1; : : : ; yr 2 X (r � 1). Let

j 0 := ( n + 1; C) � i . To show that this has the required property, letj � j 0, and
showvi

�
f � 1

j (p� 1
ij (#maxUi )) \ maxD j

�
= vj

�
p� 1

ij (#maxUi ) \ maxD j
�

= vi (Ui ).
We �rst show the second equality: Since, by (7),pij preserves maximal-

ity, we have vj
�
p� 1

ij (#maxUi ) \ maxD j
�

= vj
�
p� 1

ij (maxUi ) \ maxD j
�
. Since,

by (2), vj (maxD j ) = 1 and vj is a normalized valuation, this further equals
vj

�
p� 1

ij (maxUi )
�
.37 By (9), this equalsvi (maxUi ). Again, sincevi is normalized,

vi (max Ui ) = vi (Ui \ maxD i ) = vi (Ui ).
Concerning the �rst equality, write maxD j =

�
fO j (x1)g; : : : ; fO j (xm )g

	
(for

somem � 1), and let

K :=
�

k 2 f 1; : : : ; mg : 9s 2 f 1; : : : ; rg 9z 2 [xk ]j :T(z) 2 [ys]i
	

:

We claim that T � 1
� S r

s=1 [ys]i
�

=
S

k2 K [xk ]j . Indeed, if x 2 T � 1(
S r

s=1 [ys]i ),
then, since the [xk ]j 's partition X , there is k 2 f 1; : : : ; mg with x 2 [xk ]j , so
it remains to show k 2 K : we havez := x 2 [xk ]j with T(z) = T(x) 2 [ys]i
for somes 2 f 1; : : : ; rg. Conversely, ifx 2 [xk ]j for somek 2 K , then there is
s 2 f 1; : : : ; rg and z 2 [xk ]j with T(z) 2 [ys]i . In particular, z � j x. Sincej � j 0

this implies z � j 0 x. Sincej 0 = ( n + 1; C), we have

8C 2 C8k = 0; : : : ; n : Tkx 2 C , Tkz 2 C:

SinceT(z) � i ys and i = ( n; C), we have

8C 2 C8k = 0; : : : ; n � 1 : Tk(Tx) 2 C , Tk(Tz) 2 C , Tk(ys) 2 C:

HenceT(x) 2 [ys]i , so x 2 T � 1
S r

s=1 [ys]i .

37 If v : �( D ) ! [0; 1] is a normalized valuation and A; B 2 �( D ) with v(B ) = 1, then
v(A) = v(A \ B ). Proof: By modularity, v(A [ B ) + v(A \ B ) = v(A) + v(B ). Since v is
normalized and monotone, 1� v(A [ B ) � v(B ) = 1, so v(A [ B ) = 1. Since alsov(B ) = 1, the
modularity yields v(A \ B ) = v(A).



140 Chapter 4. Systems and domains 1: Model

Next, we write Uj := f � 1
j (p� 1

ij (#maxUi )) \ maxD j . We claim that Uj =�
fO j (xk)g : k 2 K

	
. Indeed, for anyfO j (xk)g = a 2 maxD j we have: a 2 Uj

i� 9s 2 f 1; : : : ; rg : pij (f j (a)) � fO i (ys)g i� 9s 2 f 1; : : : ; rg :
�

Oi (Tz) : Oj (z) =
Oj (xk)

	
� fO i (ys)g i� 9s 2 f 1; : : : ; rg 9z 2 [xk ]j : T(z) 2 [ys]i i� k 2 K i�

a 2
�

fO j (xk)g : k 2 K
	

.
Hence, sinceT is � -preserving, we have

vj
�
f � 1

j (p� 1
ij (#maxUi )) \ maxD j

�
= vj (Uj ) =

X

k2 K

� ([xk ]j ) = �
� [

k2 K

[xk ]j
�

= �
�
T � 1

r[

s=1

[y]i
�

= �
� r[

s=1

[y]i
�

=
rX

s=1

� ([y]i ) = vi (Ui );

which, by the already established second equality, equalsvj
�
p� 1

ij (#maxUi ) \
maxD j

�
, as needed.

(b). Let i � j in I and let ai = fO i (x)g and bi = fO i (y)g be in maxD i with
f i (ai ) � bi . Then fO i (y)g � fO i (Tz) : Oi (z) = Oi (x)g. So there isz 2 X with
Oi (y) = Oi (Tz) and Oi (z) = Oi (x). Chooseaj := fO j (z)g and bj = fO j (Tz)g
in maxD j . Then pij (aj ) = fO i (z)g = fO i (x)g = ai and pij (bj ) = fO i (Tz)g =
fO i (y)g = bi and bj = fO j (Tz)g � fO j (Tw) : Oj (w) = Oj (z)g = f j (aj ), so
f j (aj ) � bj , as needed. 2

Note that, in the proofs of the last three items, we've only assumedT to be
surjective for (12), we've only assumedT to be injective and B to be forward
T-closed for (13), and we've only assumedT to be measure-preserving for (14). So
we could be more precise and specify more classes of dynamical systems between
general and standard (injective, surjective, measure-preserving) and link them
to the respective properties above. However, to avoid introducing even more
distinctions, we won't do this explicitly.

4.4 Dynamical domains

This section is written from a purely domain-theoretic perspective: motivating a
certain category of domains in a domain-theoretic way. However, given the last
section, many de�nitions should be natural (additionally highlighted by using the
same notation). So the domain-theoretic de�nitions could also be motivated by
dynamical systems.

4.4.1 Dynamical dcpo's

We �rst �x some terminology. Given a dcpo D, recall that maxD is the set
of maximal elements ofD. We call a function f : D ! E between dcpos
max-preservingif f (maxD) � maxE (i.e., if a 2 maxD, then f (a) 2 maxE).










































































































































































































































































































































































































































































































































	Contents
	Acknowledgments
	Introduction
	Motivation
	Outline

	Part One: Symbolic computation
	Trajectory domains 1: Construction
	Introduction

	Trajectory domains 2: Category
	Introduction


	Part Two: Non-symbolic computation
	Systems and domains 1: Model
	Introduction
	Background

	Systems and domains 2: Category
	Introduction

	Systems and domains 3: Application
	Introduction
	Background


	Part Three: Stability
	Interlude: symbolic vs. non-symbolic
	Non-symbolic computation as limit of symbolic computation
	Non-symbolic realization of symbolic computation
	Symbolic approximation
	Ergodicity
	Randomness
	Stability


	Stability: Fitch's paradox and AI-safety
	Introduction
	Examples of stability

	Conclusion
	Systems as a category of fractions


