Search for Higgs boson decays into a Z boson and a light hadronically decaying resonance using 13 TeV pp collision data from the ATLAS detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.125.221802

Publication date
2020

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Search for Higgs Boson Decays into a Z Boson and a Light Hadronically Decaying Resonance Using 13 TeV pp Collision Data from the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 7 April 2020; accepted 9 October 2020; published 25 November 2020)

A search for Higgs boson decays into a Z boson and a light resonance in two-lepton plus jet events is performed, using a pp collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95% confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a Z boson and the signal resonance, with values in the range 17–340 pb (16.7–320 pb) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 and 100 pb (100 and 100 pb) for the η_c and J/ψ hypotheses, respectively.

DOI: 10.1103/PhysRevLett.125.221802

The structure of the standard model (SM) scalar sector is the subject of intense scrutiny by the ATLAS [1] and CMS [2] Collaborations at the CERN Large Hadron Collider (LHC) [3]. At the current level of precision, all of the measured properties of the Higgs boson (H) [4,5] are found to be consistent with their SM predictions [6–10], and no additional Higgs boson has been observed to date. However, given the small natural decay width of the Higgs boson, even small additional contributions from physics beyond the SM can lead to final states with substantial, and thus possibly detectable, branching fractions (\mathcal{B}) [11]. This Letter presents a search for Higgs boson decays into a Z boson and a hadronically decaying light resonance in events with a same-flavor lepton pair (electrons or muons) and a jet in the ATLAS detector. Hadronic decays of an η_c or of a J/ψ charmonium resonance (Q), or of a light spin-0 boson from an extended Higgs sector with a mass up to 4 GeV, are considered and are reconstructed as a single jet.

The Yukawa sector of the SM [12] does not provide an explanation for the observed fermion mass hierarchy. As a result, a wide range of new physics scenarios have been proposed, including the Froggatt-Nielsen mechanism [13] and the Higgs-dependent Yukawa couplings model [14]; for a recent overview, see Ref. [15]. The couplings of the Higgs boson to the third-generation fermions [16–21] have been observed, and a program to probe its couplings to the first- and second-generation charged leptons has been established [22–25]. For its couplings to first- and second-generation quarks, several approaches are being explored. Focusing on the Higgs boson’s coupling to the charm quark, direct searches have been performed for Higgs boson decays into charm quarks [26,27] and for exclusive decays into a J/ψ and a photon [28,29], with no excess observed. Constraints from differential cross section measurements of Higgs boson production versus transverse momentum (p_T) have also been derived [30,31]. Higgs boson decays into a gauge boson and a charmonium state, including an η_c or a J/ψ, have been proposed as another way to access the coupling of the Higgs boson to the charm quark [32–34] and to probe the nature of the Higgs boson [35]. This search follows the last approach and maximizes the signal acceptance by focusing on inclusive hadronic final states of the mesons in $H \rightarrow Z\eta_c$ and $H \rightarrow ZJ/\psi$ decays, which have SM branching fractions of 1.4×10^{-5} and 2.2×10^{-6} [35], respectively.

while the SM posits a single complex Higgs doublet field [36,37], extended Higgs sectors are motivated [38] and provide a rich phenomenology of additional scalars. Two such models discussed here are the two-Higgs-doublet model (2HDM) [11,39] and the 2HDM with an additional scalar singlet (2HDM $+$ S) [11,40]. These represent two of the simplest extensions of the scalar sector, and with their type-II fermion couplings they are necessary to generate the masses in the minimal supersymmetric SM and the next-to-minimal supersymmetric SM, respectively [41]. Both of these models can include additional light pseudoscalars (a) with significant $\mathcal{B}(H \rightarrow Za)$ or $\mathcal{B}(H \rightarrow aa)$ [11]. In the

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
2HDM(±S), these two B values can be adjusted independently, therefore searches for $H \rightarrow aa$ do not constrain $B(H \rightarrow Za)$, so that searches for the latter decay are required [11]. Despite the Yukawa nature of the a to fermion couplings, there are large regions of parameter space depending on the mass of a and the ratio of the vacuum expectation values of the two Higgs-doublet fields ($\tan \beta$) [11], where these pseudoscalars decay mainly to gluons and light up-type quarks, as the decays into down-type fermions are suppressed. These experimental signatures are also relevant in axion models [42–44], models of electroweak baryogenesis [45], neutrino mass models [46], dark-matter models [46, 47], and models of grand unification [48]. Previous searches for Higgs boson decays into light scalars have been performed at the Tevatron [49] and the LHC [50–59]. However, these were mostly focused on searches for $H \rightarrow aa$, in final states including leptons, photons, or bottom quarks. By targeting the $H \rightarrow Za$, $a \rightarrow$ hadrons decay channel, this search accesses new, previously unexplored regions of the parameter space.

Searches for hadronic decays of light resonances are challenging at the LHC due to the large multijet background. However, substantial progress has been made in the use of jet substructure techniques in boosted final states [60], typically in searches or measurements involving heavy resonances [61, 62]. In this Letter, jet substructure variables enable the reconstruction of a light, boosted, hadronic final state. Information from the individual substructure variables is combined using machine learning techniques. Specifically, for event selection, a multilayer perceptron (MLP) [63] classifier is employed. Given the range of masses considered, the classifier is provided with resonance-mass-related information from a separate range of masses considered, the classifier is provided with

have a masses of 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, and 4 GeV. The Z boson is required to decay into pairs of electrons, muons, or τ leptons.

The background is dominated by $Z +$ jets events, modeled using SHERPA 2.2.1 [72] interfaced to the NNPDF 3.0 (NNLO) PDF set [73]. The inclusive production cross sections are known to NNLO in QCD [74]. The ZZ, ZW, and $t\bar{t}$ processes contribute < 1% of the total background in this search. The diboson backgrounds were modeled using SHERPA 2.2.1 interfaced to the NNPDF 3.0 (NNLO) PDF set, except for gluon-induced ZZ production, which was modeled using SHERPA 2.2.2 [72]. All of the SHERPA samples used a set of tuned parameters developed by the SHERPA authors. The $t\bar{t}$ process was modeled using POWHEG-BOX v2, while the subsequent decay, hadronization, parton shower, and underlying event were modeled using PYTHIA v8.230 and EvtGen v1.6.0. The NNPDF 2.3 (LO) PDF set [75] and the A14 set of tuned parameters [76] were used.

The simulation of the ATLAS detector [77] in GEANT4 [78] was used to model the interaction of particles with the detector in all the MC samples. Data-driven corrections are applied to the event-level trigger efficiencies, the jet vertex tagging efficiency [79], the electron [80] reconstruction, identification, and isolation efficiencies, and the muon [81] reconstruction, isolation, and track-to-vertex association efficiencies.

Events are selected by a combination of single electron or muon triggers for each data-taking period [82–85], and the online lepton reconstructed by the trigger is required to be within $\Delta R = 0.1$ [86] of an off-line reconstructed lepton. Events are required to have at least one reconstructed primary interaction vertex [87]. Electron candidates are reconstructed by matching tracks in the inner detector to topological energy clusters in the electromagnetic calorimeter [80] and must pass a likelihood-based selection, which requires the shower profile to be compatible with that of an electromagnetic shower. Muons are reconstructed using tracks in the muon spectrometer, matched to tracks in the inner detector where available [88]. Electrons and muons are each required to have $p_T > 18$ GeV, and at least one must have $p_T > 27$ GeV. Electrons (muons) are required to be reconstructed within $|\eta| < 2.47$ ($|\eta| < 2.7$), but electrons within $1.37 < |\eta| < 1.52$ are excluded. The transverse energy sum in a cone of size $\Delta R = 0.2$ around the electron [muon] in the calorimeter must be less than 20% (30%) of the lepton’s p_T, and the summed p_T of tracks within a cone of variable size $\Delta R = \min(0.2, 10 \text{ GeV}/p_T)$ ($\Delta R = \min(0.15, 10 \text{ GeV}/p_T)$) around the electron [muon] must be less than 15% of its p_T. Contributions from nearby electrons and muons are removed from these cones. If an inner detector track is present, muons must also have a longitudinal impact parameter $|z_0 \sin \theta| < 0.5$ mm and a transverse impact parameter $|d_0| < 1$ mm relative to the primary interaction vertex. At least two same-flavor
opposite-sign electrons or muons are required to pass this selection and have an invariant mass compatible with the mass of the Z boson: $81 < m_{\ell\ell} < 101$ GeV. If multiple same-flavor opposite-sign lepton pairs fulfill this requirement, the pairing with an invariant mass closest to that of the Z boson is chosen. $Z \to \tau\tau$ decays are reconstructed through the lepton decays of the τ leptons.

The hadronically decaying resonance is reconstructed as a single jet using the anti-k_T jet algorithm [89,90] with a radius parameter of 0.4, formed from topological calorimeter energy clusters [91,92] and calibrated to the electromagnetic energy scale. Jet energies are corrected for contributions from simultaneous inelastic pp interactions (pileup) using a jet-area-based technique [93,94] and calibrated [95,96] using p_T and $|\eta|$-dependent correction factors determined from simulation, with residual corrections from in situ measurements applied to data and internal jet properties. Jets are required to have $p_T > 20$ GeV and $|\eta| < 2.5$ and satisfy a jet cleaning requirement [97]. To reject jets from pileup interactions, jets with $p_T < 60$ GeV and $|\eta| < 2.4$ are required to pass a “jet vertex tagger” [79] requirement. An overlap removal procedure resolves cases in which multiple electrons, muons, or jets are reconstructed from the same detector signature. Higgs boson candidates are reconstructed from the lepton pair and jet system, which is required to have an invariant mass passing a loose preselection requirement: $m_{\ell\ell} < 250$ GeV. If multiple jets satisfy these requirements, the jet with the highest p_T is selected. The acceptance for this preselection, evaluated using generator-level MC samples, varies between 28% and 29% for the different Q/a signal hypotheses.

MLPs [63] are used to select signal events passing this preselection. The MLP input variables are built using tracks matched to the calorimeter jet by ghost association [93], in which the tracks are included in the jet clustering process as with negligible energy and their angles from the jet axis. This allows the MLP to benefit from the high resolution of the tracking detector. These tracks must have $p_T > 500$ MeV and $|\eta| < 2.5$ and pass loose quality and track-to-vertex association requirements [98] to reject fake tracks from the reconstruction and tracks from pileup, respectively. Six dimensionless variables are constructed using these tracks: the ratio of the p_T of the highest p_T track to the p_T of the ghost-associated track system; the angular separation ΔR between the highest-p_T track and the calorimeter jet axis; NSubJettiness 2 [99], using exclusive-k_T subjet axes with radius parameters of 0.2, and a jet axis radius parameter of 0.4; angularity(2) [100]; and $U_1(0.7)$ and $M_2(0.3)$, which are modified energy correlation functions [101] designed for quark-gluon discrimination and to target two-pronged substructure, respectively.

These variables primarily capitalize on the presence of a narrow resonance or two-pronged substructure in the track system. Initially, a regression MLP [63], using four hidden layers of 12 nodes, is trained using the above input variables and the a signal samples to estimate the mass of a, as shown in Fig. 1(a). This estimated mass is then

![Figure 1](https://example.com/figure1.png)

FIG. 1. Output of (a) the regression and (b) the classification MLPs, for data, background, and three signal hypotheses. Events are required to pass the complete event selection, including the $120 < m_{\ell\ell} < 135$ GeV requirement, but not the requirement on the classification MLP output variable. The background normalization is set equal to that of the data, and the signal normalizations assume the SM Higgs boson inclusive production cross section and $B(H \to Za) = 100\%$, and in (a) the signal normalization is scaled up by a factor of 100. The error bars (hatched regions) represent the data (MC) sample statistical uncertainty, in both the histograms and the ratio plots. In (b) the region to the right of the dashed line is the signal region.
provided alongside the six input variables to a classification MLP [63], to inform the classifier about the part of the hadronic resonance mass spectrum where the specific event lies. This classification MLP has two hidden layers of six and five nodes and is trained using the a signal samples and the background samples. The 0.75 GeV a signal sample is excluded from the training of the classification MLP to ensure an even spacing between the a mass hypotheses, so the training is not biased toward lower masses. Both MLPs use sigmoidal response functions with summed inputs and are trained using backpropagation with a mean-square estimator [63], as these resulted in optimal discrimination without overtraining. The addition of the regression MLP was found to result in about a 13% improvement in the S/\sqrt{B} of the classification MLP, where S and B are the expected numbers of signal and background events passing the MLP requirement, respectively. The classification MLP output variable (M) is shown in Fig. 1(b).

The signal region (SR) for this search is defined by the requirements $120 < m_{\ell\ell} < 135$ GeV and $M > 0.0524$, chosen to maximize the expected S/\sqrt{B}, averaged over the various a mass hypotheses. The efficiency of this MLP requirement for events passing the preselection is (0.761 ± 0.020)% for the background, (5.89 ± 0.24)% and (6.66 ± 0.26)% for $H \rightarrow Z\ell\ell$, and $H \rightarrow Z\ell\ell/\gamma$ respectively, and between (1.88 ± 0.15)% and (45.9 ± 0.8)% for $H \rightarrow Z\ell\ell$. The efficiencies for the complete selection are estimated using MC samples and are (0.545 ± 0.022)% and (0.560 ± 0.022)% for $H \rightarrow Z\ell\ell$ and $H \rightarrow Z\ell\ell/\gamma$ respectively, and range between (0.140 ± 0.011)% and (3.27 ± 0.06)% for $H \rightarrow Z\ell\ell$. The efficiencies are highest for the lowest a mass hypotheses, due to higher probabilities to pass the MLP requirement. The efficiency for $H \rightarrow Z\ell\ell$ events to pass the MLP requirement is lower than that of $H \rightarrow Z\ell\ell/\gamma$ events, as $\gamma/\ell\ell$ decays tend to have a lower charged hadron multiplicity. Using the predicted cross section for inclusive SM Higgs boson production of $55.7^{+3.0}_{-3.9}$ pb [102], and $B[H \rightarrow Z(\gamma/\ell)] = 100\%$, gives expected signal yields of 4260 and 4370 for $H \rightarrow Z\ell\ell$, and $H \rightarrow Z\ell\ell/\gamma$ respectively, and between 1090 and 25600 for $H \rightarrow Z\ell\ell$.

A “modified ABCD estimate” of the total background in the SR is derived using four regions: A, defined by $0.0341 < M < 0.0524$, expected to contain about 10% of the total background, and $155 < m_{\ell\ell} < 175$ GeV; B, defined by the $m_{\ell\ell}$ requirement of the SR and the M requirement of region A; C, defined by the M requirement of the SR and the $m_{\ell\ell}$ requirement of A; and D, which is the SR. An initial data-driven background estimate in the SR is calculated as $D = BC/A$, then MC samples, reweighted to match data, are used to correct this estimate for the 13% correlation between the $m_{\ell\ell}$ and M variables. This reweighting is performed in the p_T of the calorimeter jet, the number of ghost-associated tracks and $U_1(0.7)$. This background estimate is 82400 ± 2900 events in the SR, where the uncertainty is due to the limited data and MC sample statistics. The background estimation method is found to be consistent with data within 1.7 times the total statistical and systematic uncertainty in 14 validation regions, defined in regions of the $m_{\ell\ell}$ and M variables.

A measure of $\sigma(pp \rightarrow H)B[H \rightarrow Z(\gamma/\ell)]$ is extracted for a given signal hypothesis using a maximum-likelihood fit [103] to the number of events observed in the SR. The systematic uncertainties are included in the likelihood fit as nuisance parameters, which modify the signal efficiencies or the simulation-based correction used to calculate the expected background yield. These systematic uncertainties include uncertainties in the signal and background modeling and experimental uncertainties. The sources of modeling uncertainty include the limited MC sample statistics, renormalization scale and choice of MC generator for the signal and background, and a signal uncertainty to account for the extrapolation from gluon-gluon fusion signal samples to the inclusive Higgs boson production cross section. The effects of factorization scale and PDF uncertainties are found to be negligible. The experimental uncertainties considered are due to the luminosity [104], pileup [105], triggers, lepton [81,106,107], and jet [96] reconstruction. The total uncertainty on the extracted signal yield is dominated by the background modeling uncertainties, the largest being due to limited MC sample statistics. The total uncertainty on the background in the SR is 3700 events, where the uncertainty due to the limited data and MC sample statistics is 2900 and the modeling uncertainty is 2300. The data statistical uncertainty corresponds to approximately 8% of the total uncertainty on the extracted signal yield.

The SR contains 82,908 data events. This result is compatible with the SM background-only expectation, and the three-body mass distribution is shown in Fig. 2. Upper limits at 95% confidence level (CL) are set on $\sigma(pp \rightarrow H)B[H \rightarrow Z(\gamma/\ell)]$ for the various signal hypotheses, using the profile-likelihood test statistic [103] and the CLs technique [108]. The observed (expected) upper limits for the $H \rightarrow Z\ell\ell$, and $H \rightarrow Z\ell\ell/\gamma$ hypotheses are 110 and 100 pb $(100^{+40}_{-30}$ and 100^{+40}_{-30} pb), respectively, while the upper limits for the $H \rightarrow Z\ell\ell$ signal hypotheses are given in Table I. In the absence of systematic uncertainties, these limits would range between 1.9 and 55 pb for the different signal hypotheses. To simplify the interpretation, the upper limits are quoted for $B(a \rightarrow \gamma g) = 100\%$ and $B(a \rightarrow s\bar{s}) = 100\%$. Because of the Yukawa ordering of the decays of Higgs bosons, only decays into gluon and strange quark pairs are considered. The tighter limits for the $a \rightarrow s\bar{s}$ decays are due to a higher MLP selection efficiency. The systematic uncertainties for $a \rightarrow \gamma g$ and $a \rightarrow s\bar{s}$ decay hypotheses are estimated using the inclusive decays as modeled in PYTHIA 8, which is a good approximation due to the dominance of the background modeling.
In conclusion, a search has been performed for Higgs boson decays into a Z boson and either a η_c or J/ψ charmonium state, or a light spin-0 boson. No excess is found, and 95% CL upper limits are set on $\sigma(pp \rightarrow H)B(H \rightarrow Z(Q/a))$, with values of 110 and 100 pb for the $H \rightarrow Z\eta_c$ and $H \rightarrow ZJ/\psi$ hypotheses, respectively, and with values in the range 17–340 pb for the $H \rightarrow Za$ signal hypotheses. Assuming the SM prediction for inclusive Higgs boson production, the limits on charmonium decay modes correspond to branching fraction limits in excess of 100%. This is the first direct limit on decays of the observed Higgs boson to light scalars, decaying to light quarks or gluons. Because of the large value of $B(a \rightarrow \text{hadrons})$ over the entire 2HDM(+S) parameter space, these limits represent tight, direct constraints for low (high) $\tan\beta$ in the type-II and type-III (type-VI) 2HDM + S \cite{109}.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN, ANID, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; AARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sklodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafsson Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in
particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [110]. Ministry of Education, Science, Research and Sport

[29] CMS Collaboration, Search for a Higgs boson decaying into $\gamma\gamma \rightarrow \ell\ell\gamma$ with low dilepton mass in pp collisions at $\sqrt{s}=8$ TeV, Phys. Lett. B 753, 341 (2016).
[86] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

(ATLAS Collaboration)
PHYSICAL REVIEW LETTERS 125, 221802 (2020)

221802-19
National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia

Novosibirsk State University Novosibirsk, Russia

Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”, Moscow, Russia

Department of Physics, New York University, New York, New York, USA

Ohio State University, Columbus, Ohio, USA

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic

Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratório de Instrumentação e Física Experimental de Partículas—LIP, Lisboa, Portugal

Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade de Coimbra, Coimbra, Portugal

Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade do Minho, Braga, Portugal

Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain

Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

Universidad Andres Bello, Department of Physics, Santiago, Chile

Instituto de Alta Investigación, Universidad de Tarapacá, Chile

Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Department of Physics, University of Washington, Seattle, Washington, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Department Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford, California, USA

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia

High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
159Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
160Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
161Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
162International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
163Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
164Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
165Tomsk State University, Tomsk, Russia
166Department of Physics, University of Toronto, Toronto ON, Canada
167TRIUMF, Vancouver BC, Canada
167aDepartment of Physics and Astronomy, York University, Toronto ON, Canada
168Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
169Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
170Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
171Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
172Department of Physics, University of Illinois, Urbana, Illinois, USA
173Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
174Department of Physics, University of British Columbia, Vancouver BC, Canada
175Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
176Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
177Department of Physics, University of Warwick, Coventry, United Kingdom
178Waseda University, Tokyo, Japan
179Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
180Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
181Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
182Department of Physics, Yale University, New Haven, Connecticut, USA

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain.
dAlso at TRIUMF, Vancouver BC, Canada.
eAlso at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
fAlso at Physics Department, An-Najah National University, Nablus, Palestine.
gAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
hAlso at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
iAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
jAlso at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
kAlso at Universita di Napoli Parthenope, Napoli, Italy.
lAlso at Institute of Particle Physics (IPP), Canada.
mAlso at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy.
nAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
oAlso at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
pAlso at Department of Physics, California State University, Fresno, USA.
qAlso at Department of Physical and Management Engineering, University of the Aegean, Chios, Greece.
rAlso at Centro Studi e Ricerche Enrico Fermi, Italy.
sAlso at Department of Physics, California State University, East Bay, USA.
tAlso at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
uAlso at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France.
vAlso at Graduate School of Science, Osaka University, Osaka, Japan.
wAlso at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
xAlso at University of Chinese Academy of Sciences (UCAS), Beijing, China.
yAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
zAlso at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
aaAlso at CERN, Geneva, Switzerland.
abAlso at Joint Institute for Nuclear Research, Dubna, Russia.
acAlso at Hellenic Open University, Patras, Greece.
adAlso at The City College of New York, New York, New York, USA.
aeAlso at Department of Physics, California State University, Sacramento, USA.
afAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
Also at Louisiana Tech University, Ruston, Louisiana, USA.
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.