Performance of algorithms that reconstruct missing transverse momentum in \(\sqrt{s} = 8\) TeV proton-proton collisions in the ATLAS detector

ATLAS Collaboration

DOI
10.1140/epjc/s10052-017-4780-2

Publication date
2017

Document Version
Final published version

Published in
European Physical Journal C

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 08 Sep 2022
Performance of algorithms that reconstruct missing transverse momentum in $\sqrt{s} = 8$ TeV proton–proton collisions in the ATLAS detector

ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Abstract

The reconstruction and calibration algorithms used to calculate missing transverse momentum ($E_{\text{T}}^{\text{miss}}$) with the ATLAS detector exploit energy deposits in the calorimeter and tracks reconstructed in the inner detector as well as the muon spectrometer. Various strategies are used to suppress effects arising from additional proton–proton interactions, called pileup, concurrent with the hard-scatter processes. Tracking information is used to distinguish contributions from the pileup interactions using their vertex separation along the beam axis. The performance of the $E_{\text{T}}^{\text{miss}}$ reconstruction algorithms, especially with respect to the amount of pileup, is evaluated using data collected in proton–proton collisions at a centre-of-mass energy of 8 TeV during 2012, and results are shown for a data sample corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The simulation and modelling of $E_{\text{T}}^{\text{miss}}$ in events containing a Z boson decaying to two charged leptons (electrons or muons) or a W boson decaying to a charged lepton and a neutrino are compared to data. The acceptance for different event topologies, with and without high transverse momentum neutrinos, is shown for a range of threshold criteria for $E_{\text{T}}^{\text{miss}}$, and estimates of the systematic uncertainties in the $E_{\text{T}}^{\text{miss}}$ measurements are presented.

Contents

1 Introduction ... 2
2 ATLAS detector .. 2
3 Data samples and event selection 3
 3.1 Track and vertex selection 3
 3.2 Event selection for $Z \rightarrow \ell\ell$ events 4
 3.3 Event selection for $W \rightarrow \ell\nu$ events 4
 3.4 Monte Carlo simulation samples 5
4 Reconstruction and calibration of the $E_{\text{T}}^{\text{miss}}$ 6
 4.1 Reconstruction of the $E_{\text{T}}^{\text{miss}}$ 6
4.1.1 Reconstruction and calibration of the $E_{\text{T}}^{\text{miss}}$
 hard terms ... 6
4.1.2 Reconstruction and calibration of the $E_{\text{T}}^{\text{miss}}$
 soft term ... 7
4.1.3 Jet p_{T} threshold and JVF selection 10
4.2 Track $E_{\text{T}}^{\text{miss}}$ 11
5 Comparison of $E_{\text{T}}^{\text{miss}}$ distributions in data and MC
 simulation .. 11
 5.1 Modelling of $Z \rightarrow \ell\ell$ events 11
 5.2 Modelling of $W \rightarrow \ell\nu$ events 14
6 Performance of the $E_{\text{T}}^{\text{miss}}$ in data and MC simulation.. 14
 6.1 Resolution of $E_{\text{T}}^{\text{miss}}$ 14
 6.1.1 Resolution of the $E_{\text{T}}^{\text{miss}}$ as a function of
 the number of reconstructed vertices 15
 6.1.2 Resolution of the $E_{\text{T}}^{\text{miss}}$ as a function of ΣE_{T} 16
 6.2 The $E_{\text{T}}^{\text{miss}}$ response 17
 6.2.1 Measuring $E_{\text{T}}^{\text{miss}}$ recoil versus p_{T} 17
 6.2.2 Measuring $E_{\text{T}}^{\text{miss}}$ response in simulated
 $W \rightarrow \ell\nu$ events 18
 6.3 The $E_{\text{T}}^{\text{miss}}$ angular resolution 19
 6.4 Transverse mass in $W \rightarrow \ell\nu$ events 19
 6.5 Proxy for $E_{\text{T}}^{\text{miss}}$ significance 20
 6.6 Tails of $E_{\text{T}}^{\text{miss}}$ distributions 21
 6.7 Correlation of fake $E_{\text{T}}^{\text{miss}}$ between algorithms 23
7 Jet-p_{T} threshold and vertex association selection 24
8 Systematic uncertainties of the soft term 25
 8.1 Methodology for CST 25
 8.1.1 Evaluation of balance between the soft
 term and the hard term 25
 8.1.2 Cross-check method for the CST system-
 atic uncertainties 26
 8.2 Methodology for TST and Track $E_{\text{T}}^{\text{miss}}$ 26
 8.2.1 Propagation of systematic uncertainties 28
 8.2.2 Closure of systematic uncertainties 29
 8.2.3 Systematic uncertainties from tracks inside
 jets ... 30
9 Conclusions ... 31

*e-mail: atlas.publications@cern.ch
1 Introduction

The Large Hadron Collider (LHC) provided proton–proton (pp) collisions at a centre-of-mass energy of 8 TeV during 2012. Momentum conservation transverse to the beam axis implies that the transverse momenta of all particles in the final state should sum to zero. Any imbalance may indicate the presence of undetectable particles such as neutrinos or new, stable particles escaping detection.

The missing transverse momentum (\(E_T^{\text{miss}}\)) is reconstructed as the negative vector sum of the transverse momenta (\(\vec{p}_T\)) of all detected particles, and its magnitude is represented by the symbol \(E_T^{\text{miss}}\). The measurement of \(E_T^{\text{miss}}\) strongly depends on the energy scale and resolution of the reconstructed “physics objects”. The physics objects considered in the \(E_T^{\text{miss}}\) calculation are electrons, photons, muons, \(\tau\)-leptons, and jets. Momentum contributions not attributed to any of the physics objects mentioned above are reconstructed as the \(E_T^{\text{miss}}\) “soft term”. Several algorithms for reconstructing the \(E_T^{\text{miss}}\) soft term utilizing a combination of calorimeter signals and tracks in the inner detector are considered.

The \(E_T^{\text{miss}}\) reconstruction algorithms and calibrations developed by ATLAS for 7 TeV data from 2010 are summarized in Ref. [1]. The 2011 and 2012 datasets are more affected by contributions from additional pp collisions, referred to as “pileup”, concurrent with the hard-scatter process. Various techniques have been developed to suppress such contributions. This paper describes the pileup dependence, calibration, and resolution of the \(E_T^{\text{miss}}\) reconstructed with different algorithms and pileup-mitigation techniques.

The performance of \(E_T^{\text{miss}}\) reconstruction algorithms, or “\(E_T^{\text{miss}}\) performance”, refers to the use of derived quantities like the mean, width, or tail of the \(E_T^{\text{miss}}\) distribution to study pileup dependence and calibration. The \(E_T^{\text{miss}}\) reconstructed with different algorithms is studied in both data and Monte Carlo (MC) simulation, and the level of agreement between the two is compared using datasets in which events with a leptonically decaying \(W\) or \(Z\) boson dominate. The \(W\) boson sample provides events with intrinsic \(E_T^{\text{miss}}\) from non-interacting particles (e.g. neutrinos). Contributions to the \(E_T^{\text{miss}}\) due to mismeasurement are referred to as fake \(E_T^{\text{miss}}\).

Sources of fake \(E_T^{\text{miss}}\) may include \(p_T\) mismeasurement, miscalibration, and particles going through un-instrumented regions of the detector. In MC simulations, the \(E_T^{\text{miss}}\) from each algorithm is compared to the true \(E_T^{\text{miss}}\) \((E_T^{\text{miss},\text{Trug}})\), which is defined as the magnitude of the vector sum of \(\vec{p}_T\) of stable weakly interacting particles from the hard-scatter collision. Then the selection efficiency after a \(E_T^{\text{miss}}\)-threshold requirement is studied in simulated events with high-\(p_T\) neutrinos (such as top-quark pair production and vector-boson fusion \(H \rightarrow \tau\tau\)) or possible new weakly interacting particles that escape detection (such as the lightest supersymmetric particles).

This paper is organized as follows. Section 2 gives a brief introduction to the ATLAS detector. Section 3 describes the data and MC simulation used as well as the event selections applied. Section 4 outlines how the \(E_T^{\text{miss}}\) is reconstructed and calibrated while Sect. 5 presents the level of agreement between data and MC simulation in \(W\) and \(Z\) boson production events. Performance studies of the \(E_T^{\text{miss}}\) algorithms on data and MC simulation are shown for samples with different event topologies in Sect. 6. The choice of jet selection criteria used in the \(E_T^{\text{miss}}\) reconstruction is discussed in Sect. 7. Finally, the systematic uncertainty in the absolute scale and resolution of the \(E_T^{\text{miss}}\) is discussed in Sect. 8. To provide a reference, Table 1 summarizes the different \(E_T^{\text{miss}}\) terms discussed in this paper.

2 ATLAS detector

The ATLAS detector [2] is a multi-purpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and nearly 4\(\pi\) coverage in solid angle. For tracking, the inner detector (ID) covers the pseudorapidity range of \(|\eta| < 2.5\), and consists of a silicon-based pixel detector, a semiconductor tracker (SCT) based on microstrip technology, and, for \(|\eta| < 2.0\), a transition radiation tracker (TRT). The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, which allows the measurement of the momenta of charged particles. A high-granularity electromagnetic sampling calorimeter based on lead and liquid argon (LAr) technology covers the region of \(|\eta| < 3.2\). A hadronic calorimeter based on steel absorbers and plastic-scintillator tiles provides coverage for hadrons, jets, and \(\tau\)-leptons in the range of \(|\eta| < 1.7\). LAr technology using a copper absorber is also used for the hadronic calorimeters in the end-cap region of \(1.5 < |\eta| < 3.2\) and for electromagnetic and hadronic measurements with copper and tungsten absorbing materials in the forward region of \(3.1 < |\eta| < 4.9\). The muon spectrometer (MS) surrounds the calorimeters. It

\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z\)-axis along the beam pipe. The \(x\)-axis points from the IP to the centre of the LHC ring, and the \(y\)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln \tan(\theta/2)\).}

\footnote{ATLAS defines stable particles as those having a mean lifetime > 0.3 \(\times 10^{-10}\) s.}
consists of three air-core superconducting toroid magnet systems, precision tracking chambers to provide accurate muon tracking out to $|\eta| = 2.7$, and additional detectors for triggering in the region of $|\eta| < 2.4$. A precision measurement of the track coordinates is provided by layers of drift tubes at three radial positions within $|\eta| < 2.0$. For $2.0 < |\eta| < 2.7$, cathode-strip chambers with high granularity are instead used in the innermost plane. The muon trigger system consists of resistive-plate chambers in the barrel ($|\eta| < 1.05$) and thin-gap chambers in the end-cap regions ($1.05 < |\eta| < 2.4$).

3 Data samples and event selection

ATLAS recorded pp collisions at a centre-of-mass energy of 8 TeV with a bunch crossing interval (bunch spacing) of 50 ns in 2012. The resulting integrated luminosity is 20.3 fb$^{-1}$ [3]. Multiple inelastic pp interactions occurred in each bunch crossing, and the mean number of inelastic collisions per bunch crossing ($\langle \mu \rangle$) over the full dataset is 21 [4], exceptionally reaching as high as about 70.

Data are analysed only if they satisfy the standard ATLAS data-quality assessment criteria [5]. Jet-cleaning cuts [5] are applied to minimize the impact of instrumental noise and out-of-time energy deposits in the calorimeter from cosmic rays or beam-induced backgrounds. This ensures that the residual sources of E_T^{miss} mismeasurement due to those instrumental effects are suppressed.

3.1 Track and vertex selection

The ATLAS detector measures the momenta of charged particles using the ID [6]. Hits from charged particles are recorded and are used to reconstruct tracks; these are used to reconstruct vertices [7,8].

Each vertex must have at least two tracks with $p_T > 0.4$ GeV; for the primary hard-scatter vertex (PV), the requirement on the number of tracks is raised to three. The PV in each event is selected as the vertex with the largest value of $\Sigma (p_T)^2$, where the scalar sum is taken over all the tracks matched to the vertex. The following track selection criteria3 [7] are used throughout this paper, including the vertex reconstruction:

- $p_T > 0.5$ GeV (0.4 GeV for vertex reconstruction and the calorimeter soft term),
- $|\eta| < 2.5$,
- Number of hits in the pixel detector ≥ 1,
- Number of hits in the SCT ≥ 6.

These tracks are then matched to the PV by applying the following selections:

- $|d_0| < 1.5$ mm,
- $|z_0 \sin(\theta)| < 1.5$ mm.

The transverse (longitudinal) impact parameter d_0 (z$_0$) is the transverse (longitudinal) distance of the track from the PV and is computed at the point of closest approach to the PV in the plane transverse to the beam axis. The requirements on the number of hits ensures that the track has an

3 The track reconstruction for electrons and for muons does not strictly follow these definitions. For example, a Gaussian Sum Filter [9] algorithm is used for electrons to improve the measurements of its track parameters, which can be degraded due to Bremsstrahlung losses.
accurate p_T measurement. The $|\eta|$ requirement keeps only the tracks within the ID acceptance, and the requirement of $p_T > 0.4$ GeV ensures that the track reaches the outer layers of the ID. Tracks with low p_T have large curvature and are more susceptible to multiple scattering.

The average spread along the beamline direction for pp collisions in ATLAS during 2012 data taking is around 50 mm, and the typical track z_0 resolution for those with $|\eta| < 0.2$ and $0.5 < p_T < 0.6$ GeV is 0.34 mm. The typical track d_0 resolution is around 0.19 mm for the same η and p_T ranges, and both the z_0 and d_0 resolutions improve with higher track p_T.

Pileup effects come from two sources: in-time and out-of-time. In-time pileup is the result of multiple pp interactions in the same LHC bunch crossing. It is possible to distinguish the in-time pileup interactions by using their vertex positions, which are spread along the beam axis. At $\langle \mu \rangle = 21$, the efficiency to reconstruct and select the correct vertex for $Z \rightarrow \mu\mu$ simulated events is around 93.5% and rises to more than 98% when requiring two generated muons with $p_T > 10$ GeV inside the ID acceptance [10]. When vertices are separated along the beam axis by a distance smaller than the resolution, they can be reconstructed as a single vertex. Each track in the reconstructed vertex is assigned a weight based upon its compatibility with the fitted vertex, which depends on the χ^2 of the fit. The fraction of $Z \rightarrow \mu\mu$ reconstructed vertices with more than 50% of the sum of track weights coming from pileup interactions is around 3% at $\langle \mu \rangle = 21$ [7,10]. Out-of-time pileup comes from pp collisions in earlier and later bunch crossings, which leave signals in the calorimeters that can take up to 450 ns for the charge collection time. This is longer than the 50 ns between subsequent collisions and occurs because the integration time of the calorimeters is significantly larger than the time between the bunch crossings. By contrast the charge collection time of the silicon tracker is less than 25 ns.

3.2 Event selection for $Z \rightarrow \ell\ell$

The “standard candle” for evaluation of the E_T^{miss} performance is $Z \rightarrow \ell\ell$ events ($\ell = e$ or μ). They are produced without neutrinos, apart from a very small number originating from heavy-flavour decays in jets produced in association with the Z boson. The intrinsic E_T^{miss} is therefore expected to be close to zero, and the E_T^{miss} distributions are used to evaluate the modelling of the effects that give rise to fake E_T^{miss}.

Candidate $Z \rightarrow \ell\ell$ events are required to pass an electron or muon trigger [11,12]. The lowest p_T threshold for the unprescaled single-electron (single-muon) trigger is $p_T > 25$ (24) GeV, and both triggers apply a track-based isolation as well as quality selection criteria for the particle identification. Triggers with higher p_T thresholds, without the isolation requirements, are used to improve acceptance at high p_T. These triggers require $p_T > 60$ (36) GeV for electrons (muons). Events are accepted if they pass any of the above trigger criteria. Each event must contain at least one primary vertex with a z displacement from the nominal pp interaction point of less than 200 mm and with at least three associated tracks.

The offline selection of $Z \rightarrow \mu\mu$ events requires the presence of exactly two identified muons [13]. An identified muon is reconstructed in the MS and is matched to a track in the ID. The combined ID+MS track must have $p_T > 25$ GeV and $|\eta| < 2.5$. The z displacement of the muon track from the primary vertex is required to be less than 10 mm. An isolation criterion is applied to the muon track, where the scalar sum of the p_T of additional tracks within a cone of size $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ around the muon is required to be less than 10% of the muon p_T. In addition, the two leptons are required to have opposite charge, and the reconstructed dilepton invariant mass, $m_{\ell\ell}$, is required to be consistent with the Z boson mass: $66 < m_{\ell\ell} < 116$ GeV.

The E_T^{miss} modelling and performance results obtained in $Z \rightarrow \mu\mu$ and $Z \rightarrow \ell\ell$ events are very similar. For the sake of brevity, only the $Z \rightarrow \mu\mu$ distributions are shown in all sections except for Sect. 6.6.

3.3 Event selection for $W \rightarrow \ell\nu$

Leptonically decaying W bosons ($W \rightarrow \ell\nu$) provide an important event topology with intrinsic E_T^{miss}, the E_T^{miss} distribution for such events is presented in Sect. 5.2. Similar to $Z \rightarrow \ell\ell$ events, a sample dominated by leptonically decaying W bosons is used to study the E_T^{miss} scale in Sect. 6.2.2, the resolution of the E_T^{miss} direction in Sect. 6.3, and the impact on a reconstructed kinematic observable in Sect. 6.4.

The E_T^{miss} distributions for W boson events in Sect. 5.2 use the electron final state. These electrons are selected with $|\eta| < 2.47$, are required to meet the “medium” identification criteria [14] and satisfy $p_T > 25$ GeV. Electron candidates in the region $1.37 < |\eta| < 1.52$ suffer from degraded momentum resolution and particle identification due to the transition from the barrel to the end-cap detector and are therefore discarded in these studies. The electrons are required to be isolated, such that the sum of the energy in the calorimeter within a cone of size $\Delta R = 0.3$ around the electron is less than 14% of the electron p_T. The summed p_T of other tracks within the same cone is required to be less than 7% of the electron p_T. The calorimeter isolation variable [14] is corrected by subtracting estimated contributions from the electron itself, the underlying event [15], and pileup. The
electron tracks are then matched to the PV by applying the following selections:

- $|d_0| < 5.0$ mm,
- $|z_0 \sin(\theta)| < 0.5$ mm.

The W boson selection is based on the single-lepton triggers and the same lepton selection criteria as those used in the $Z \rightarrow \ell\ell$ selection. Events are rejected if they contain more than one reconstructed lepton. Selections on the E_T^{miss} and transverse mass (m_T) are applied to reduce the multi-jet background with one jet misidentified as an isolated lepton. The transverse mass is calculated from the lepton and the E_T^{miss},

$$m_T = \sqrt{2p_T^L E_T^{\text{miss}} (1 - \cos \Delta \phi)}, \quad (1)$$

where p_T^L is the transverse momentum of the lepton and $\Delta \phi$ is the azimuthal angle between the lepton and E_T^{miss} directions. Both the m_T and E_T^{miss} are required to be greater than 50 GeV. These selections can bias the event topology and its phase space, so they are only used when comparing simulation to data in Sect. 5.2, as they substantially improve the purity of W bosons in data events.

The E_T^{miss} modelling and performance results obtained in $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ events are very similar. For the sake of brevity, only one of the two is considered in following two sections: E_T^{miss} distributions in $W \rightarrow e\nu$ events are presented in Sect. 5.2 and the performance studies show $W \rightarrow \mu\nu$ events in Sect. 6. When studying the E_T^{miss} tails, both final states are considered in Sect. 6.6, because the η-coverage and reconstruction performance between muons and electrons differ.

3.4 Monte Carlo simulation samples

Table 2 summarizes the MC simulation samples used in this paper. The $Z \rightarrow \ell\ell$ and $W \rightarrow \ell\nu$ samples are generated with ALPGEN [16] interfaced with PYTHIA [17] (denoted by ALPGEN+PYTHIA) to model the parton shower and hadronization, and underlying event using the PERUGIA2011C set [18] of tunable parameters. One exception is the $Z \rightarrow \tau\tau$ sample with leptonically decaying τ-leptons, which is generated with ALPGEN interfaced with HERWIG [19] with the underlying event modelled using JIMMY [20] and the AUET2 tunes [21]. ALPGEN is a multi-leg generator that provides tree-level calculations for diagrams with up to five additional partons. The matrix-element MC calculations are matched to a model of the parton shower, underlying event and hadronization. The main processes that are backgrounds to $Z \rightarrow \ell\ell$ processes are generated with POWHEG [22] interfaced with PYTHIA [17] for hadronization and parton showering, and PERUGIA2011C for the underlying event modelling. All the diboson processes are generated with SHERPA [23]. POWHEG is a leading-order generator with corrections at next-to-leading order in α_S, whereas SHERPA is a multi-leg generator at tree level.

To study event topologies with high jet multiplicities and to investigate the tails of the E_T^{miss} distributions, $t\bar{t}$ events

<table>
<thead>
<tr>
<th>Sample</th>
<th>Generator</th>
<th>Use</th>
<th>Cross-section</th>
<th>PDF set</th>
<th>Tune</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>ALPGEN+PYTHIA</td>
<td>Signal</td>
<td>NNLO [26]</td>
<td>CTEQ6L1 [27]</td>
<td>PERUGIA2011C [18]</td>
</tr>
<tr>
<td>$Z \rightarrow ee$</td>
<td>ALPGEN+PYTHIA</td>
<td>Signal</td>
<td>NNLO [26]</td>
<td>CTEQ6L1</td>
<td>PERUGIA2011C</td>
</tr>
<tr>
<td>$Z \rightarrow \tau\tau$</td>
<td>ALPGEN+HERWIG</td>
<td>Signal</td>
<td>NNLO [26]</td>
<td>CTEQ6L1</td>
<td>PERUGIA2011C</td>
</tr>
<tr>
<td>$W \rightarrow \mu\nu$</td>
<td>ALPGEN+PYTHIA</td>
<td>Signal</td>
<td>NNLO [26]</td>
<td>CTEQ6L1</td>
<td>PERUGIA2011C</td>
</tr>
<tr>
<td>$W \rightarrow ev$</td>
<td>ALPGEN+PYTHIA</td>
<td>Signal</td>
<td>NNLO [26]</td>
<td>CTEQ6L1</td>
<td>PERUGIA2011C</td>
</tr>
<tr>
<td>$W \rightarrow \tau\nu$</td>
<td>ALPGEN+PYTHIA</td>
<td>Signal</td>
<td>NNLO [26]</td>
<td>CTEQ6L1</td>
<td>PERUGIA2011C</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>POWHEG+PYTHIA</td>
<td>Signal/background</td>
<td>NNLO+NNLL [28,29]</td>
<td>CTEQ6L1</td>
<td>PERUGIA2011C</td>
</tr>
<tr>
<td>VBF $H \rightarrow \tau\tau$</td>
<td>POWHEG+PYTHIA8</td>
<td>Signal</td>
<td>–</td>
<td>NLO CT10 [30]</td>
<td>AU2 [31]</td>
</tr>
<tr>
<td>SUSY 500</td>
<td>HERWIG++</td>
<td>Signal</td>
<td>–</td>
<td>CTEQ6L1</td>
<td>UE EE3 [32]</td>
</tr>
<tr>
<td>$W^+Z \rightarrow \ell^+\nu\ell^+\ell^-$</td>
<td>SHERPA</td>
<td>Background</td>
<td>NLO [33,34]</td>
<td>NLO CT10</td>
<td>SHERPA default</td>
</tr>
<tr>
<td>$ZZ \rightarrow \ell^+\ell^-\nu\nu$</td>
<td>SHERPA</td>
<td>Background</td>
<td>NLO [33,34]</td>
<td>NLO CT10</td>
<td>SHERPA default</td>
</tr>
<tr>
<td>$W^+W^- \rightarrow \ell^+\ell^-\nu\nu$</td>
<td>SHERPA</td>
<td>Background</td>
<td>NLO [33,34]</td>
<td>NLO CT10</td>
<td>SHERPA default</td>
</tr>
<tr>
<td>tW</td>
<td>POWHEG+PYTHIA</td>
<td>Background</td>
<td>NNLO+NNLL [35]</td>
<td>CTEQ6L1</td>
<td>PERUGIA2011C</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>POWHEG+PYTHIA8</td>
<td>Systematic effects</td>
<td>NNLO [36,37]</td>
<td>NLO CT10</td>
<td>AU2</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>ALPGEN+HERWIG</td>
<td>Systematic effects</td>
<td>NNLO [36,37]</td>
<td>CTEQ6L1</td>
<td>AUET2</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>SHERPA</td>
<td>Systematic effects</td>
<td>NNLO [36,37]</td>
<td>NLO CT10</td>
<td>SHERPA default</td>
</tr>
</tbody>
</table>
with at least one leptonically decaying W boson are considered in Sect. 6.6. The single top quark (tW) production is considered with at least one leptonically decaying W boson. Both the t¯t and tW processes contribute to the W and Z boson distributions shown in Sect. 5 as well as Z boson distributions in Sects. 4, 6, and 8 that compare data and simulation. A supersymmetric (SUSY) model comprising pair-produced 500 GeV gluinos each decaying to a t¯t pair and a neutralino is simulated with HERWIG++ [24]. Finally, to study events with forward jets, the vector-boson fusion (VBF) production of H → ττ, generated with POWHEG+PYTHIA8 [25], is considered. Both τ-leptons are forced to decay leptonically in this sample.

To estimate the systematic uncertainties in the data/MC ratio arising from the modelling of the soft hadronic recoil, EmissT distributions simulated with different MC generators, parton shower and underlying event models are compared. The estimation of systematic uncertainties is performed using a comparison of data and MC simulation, as shown in Sect. 8.2. The following combinations of generators and parton shower models are considered: SHERPA, ALPGEN+HERWIG, ALPGEN+PYTHIA, and POWHEG+PYTHIA8. The corresponding underlying event tunes are mentioned in Table 2. Parton distribution functions are taken from CTEQ10 [30] for POWHEG and SHERPA samples and CTEQ6L1 [38] for ALPGEN samples.

Generated events are propagated through a GEANT4 simulation [39,40] of the ATLAS detector. Pileup collisions are generated with PYTHIA8 for all samples, and are overlaid on top of simulated hard-scatter events before event reconstruction. Each simulation sample is weighted by its corresponding cross-section and normalized to the integrated luminosity of the data.

4 Reconstruction and calibration of the EmissT

Several algorithms have been developed to reconstruct the EmissT in ATLAS. They differ in the information used to reconstruct the pT of the particles, using either energy deposits in the calorimeters, tracks reconstructed in the ID, or both. This section describes these various reconstruction algorithms, and the remaining sections discuss the agreement between data and MC simulation as well as performance studies.

4.1 Reconstruction of the EmissT

The EmissT reconstruction uses calibrated physics objects to estimate the amount of missing transverse momentum in the detector. The EmissT is calculated using the components along the x and y axes:

\[E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\gamma} + E_{x(y)}^{\text{miss},\tau} + E_{x(y)}^{\text{miss,jets}} + E_{x(y)}^{\text{miss,\mu}} + E_{x(y)}^{\text{miss,soft}} , \]

where each term is calculated as the negative vectorial sum of transverse momenta of energy deposits and/or tracks. To avoid double counting, energy deposits in the calorimeters and tracks are matched to reconstructed physics objects in the following order: electrons (e), photons (γ), the visible parts of hadronically decaying τ-leptons (τhad-vis; labelled as τ), jets and muons (μ). Each type of physics object is represented by a separate term in Eq. (2). The signals not associated with physics objects form the “soft term”, whereas those associated with the physics objects are collectively referred to as the “hard term”.

The magnitude and azimuthal angle4 (φmiss) of EmissT are calculated as:

\[E_{\text{miss}}^{x} = \sqrt{(E_{x}^{\text{miss}})^2 + (E_{y}^{\text{miss}})^2}, \]

\[\phi^{\text{miss}} = \arctan(E_{y}^{\text{miss}} / E_{x}^{\text{miss}}) . \]

The total transverse energy in the detector, labelled as ΣE_T, quantifies the total event activity and is an important observable for understanding the resolution of the EmissT, especially with increasing pileup contributions. It is defined as:

\[\sum E_{T} = \sum p_{T}^{e} + \sum p_{T}^{\gamma} + \sum p_{T}^{\tau} + \sum p_{T}^{\text{jets}} + \sum p_{T}^{\mu} + \sum p_{T}^{\text{soft}} , \]

which is the scalar sum of the transverse momenta of reconstructed physics objects and soft-term signals that contribute to the EmissT reconstruction. The physics objects included in ΣpT depend on the EmissT definition, so both calorimeter objects and track-based objects may be included in the sum, despite differences in pT resolution.

4.1.1 Reconstruction and calibration of the EmissT hard terms

The hard term of the EmissT, which is computed from the reconstructed electrons, photons, muons, τ-leptons, and jets, is described in more detail in this section.

Electrons are reconstructed from clusters in the electromagnetic (EM) calorimeter which are associated with an ID track [14]. Electron identification is restricted to the range of |\eta| < 2.47, excluding the transition region between the barrel and end-cap EM calorimeters, 1.37 < |\eta| < 1.52. They are calibrated at the EM scale5 with the default electron calibra-

4 The arctan function returns values from [−π, +π] and uses the sign of both coordinates to determine the quadrant.
5 The EM scale is the basic signal scale for the ATLAS calorimeters. It accounts correctly for the energy deposited by EM showers in the calorimeter, but it does not consider energy losses in the uninstrumented material.
tion, and those satisfying the “medium” selection criteria [14] with \(p_T > 10 \text{ GeV} \) are included in the \(E_T^\text{miss} \) reconstruction.

The photon reconstruction is also seeded from clusters of energy deposited in the EM calorimeter and is designed to separate electrons from photons. Photons are calibrated at the EM scale and are required to satisfy the “tight” photon selection criteria with \(p_T > 10 \text{ GeV} \) [14].

Muon candidates are identified by matching an ID track with an MS track or segment [13]. MS tracks are used for \(2.5 < |\eta| < 2.7 \) to extend the \(\eta \) coverage. Muons are required to satisfy \(p_T > 5 \text{ GeV} \) to be included in the \(E_T^\text{miss} \) reconstruction. The contribution of muon energy deposited in the calorimeter is taken into account using either parameterized estimates or direct measurements, to avoid double counting a small fraction of their momenta.

Jets are reconstructed from three-dimensional topological clusters (topoclusters) [41] of energy deposits in the calorimeter using the anti-\(k_t \) algorithm [42] with a distance parameter \(R = 0.4 \). The topological clustering algorithm suppresses noise by forming contiguous clusters of calorimeter cells with significant energy deposits. The local cluster weighting (LCW) [43,44] calibration is used to account for different calorimeter responses to electrons, photons and hadrons. Each cluster is classified as coming from an EM or hadronic shower, using information from its shape and energy density, and calibrated accordingly. The jets are reconstructed from calibrated topoclusters and then corrected for in-time and out-of-time pileup as well as the position of the PV [4]. Finally, the jet energy scale (JES) corrects for jet-level effects by restoring, on average, the energy of reconstructed jets to that of the MC generator-level jets. The complete procedure is referred to as the LCW+JES scheme [43,44]. Without changing the average calibration, additional corrections are made based upon the internal properties of the jet (global sequential calibration) to reduce the flavour dependence and energy leakage effects [44]. Only jets with calibrated \(p_T \) greater than 20 GeV are used to calculate the jet term \(E_{x(v)}^\text{miss,jets} \) in Eq. (2), and the optimization of the 20 GeV threshold is discussed in Sect. 7.

To suppress contributions from jets originating from pileup interactions, a requirement on the jet vertex-fraction (JVF) [4] may be applied to selected jet candidates. Tracks matched to jets are extrapolated back to the beamline to ascertain whether they originate from the hard scatter or from a pileup collision. The JVF is then computed as the ratio shown below:

\[
\text{JVF} = \sum_{\text{track, PV, jet}} \frac{p_T}{\sum_{\text{track, jet}} p_T}. \tag{5}
\]

This is the ratio of the scalar sum of transverse momentum of all tracks matched to the jet and the primary vertex to the \(p_T \) sum of all tracks matched to the jet, where the sum is performed over all tracks with \(p_T > 0.5 \text{ GeV} \) and \(|\eta| < 2.5 \) and the matching is performed using the “ghost-association” procedure [45,46].

The JVF distribution is peaked toward 1 for hard-scatter jets and toward 0 for pileup jets. No JVF selection requirement is applied to jets that have no associated tracks. Requirements on the JVF are made in the STVF, EJAF, and TST \(E_T^\text{miss} \) algorithms as described in Table 3 and Sect. 4.1.3.

Hadronically decaying \(\tau \)-leptons are seeded by calorimeter jets with \(|\eta| < 2.5 \) and \(p_T > 10 \text{ GeV} \). As described for jets, the LCW calibration is applied, corrections are made to subtract the energy due to pileup interactions, and the energy of the hadronically decaying \(\tau \) candidates is calibrated at the \(\tau \)-lepton energy scale (TES) [47]. The TES is independent of the JES and is determined using an MC-based procedure. Hadronically decaying \(\tau \)-leptons passing the “medium” requirements [47] and having \(p_T > 20 \text{ GeV} \) after TES corrections are considered for the \(E_T^\text{miss} \) reconstruction.

4.1.2 Reconstruction and calibration of the \(E_T^\text{miss} \) soft term

The soft term is a necessary but challenging ingredient of the \(E_T^\text{miss} \) reconstruction. It comprises all the detector signals not matched to the physics objects defined above and can contain contributions from the hard scatter as well as the underlying event and pileup interactions. Several algorithms designed to reconstruct and calibrate the soft term have been developed, as well as methods to suppress the pileup contributions. A summary of the \(E_T^\text{miss} \) and soft-term reconstruction algorithms is given in Table 3.

Four soft-term reconstruction algorithms are considered in this paper. Below the first two are defined, and then some motivation is given for the remaining two prior to their definition.

- **Calorimeter Soft Term (CST)**
 This reconstruction algorithm [1] uses information mainly from the calorimeter and is widely used by ATLAS. The algorithm also includes corrections based on tracks but does not attempt to resolve the various \(pp \) interactions based on the track \(z_0 \) measurement. The soft term is referred to as the CST, whereas the entire \(E_T^\text{miss} \) is written as CST \(E_T^\text{miss} \). Corresponding naming schemes are used for the other reconstruction algorithms. The CST is reconstructed using energy deposits in the calorimeter which are not matched to the high-\(p_T \) physics objects used in the \(E_T^\text{miss} \). To avoid fake signals in the calorimeter, noise suppression is important. This is achieved by calculating the soft term using only cells belonging to topoclusters, which are calibrated at the LCW scale [43,44]. The tracker and calorimeter provide redundant \(p_T \) measurements for charged particles, so an energy-flow algorithm is used to determine which measurement to use. Tracks
Table 3 Summary of E_T^{miss} and soft-term reconstruction algorithms used in this paper

<table>
<thead>
<tr>
<th>Term</th>
<th>Brief description</th>
<th>Section list</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST E_T^{miss}</td>
<td>The Calorimeter Soft Term (CST) E_T^{miss} takes its soft term from energy deposits in the calorimeter which are not matched to high-p_T physics objects. Although noise suppression is applied to reduce fake signals, no additional pileup suppression techniques are used</td>
<td>Section 4.1.2 (definition)</td>
</tr>
<tr>
<td>TST E_T^{miss}</td>
<td>The Track Soft Term (TST) E_T^{miss} algorithm uses a soft term that is calculated using tracks within the inner detector that are not associated with high-p_T physics objects. The JVF selection requirement is applied to jets</td>
<td>Section 5.1 ($Z \rightarrow \mu\mu$ modelling) Section 6 (perf. studies)</td>
</tr>
<tr>
<td>EJAF E_T^{miss}</td>
<td>The Extrapolated Jet Area with Filter E_T^{miss} algorithm applies pileup subtraction to the CST based on the idea of jet-area corrections. The JVF selection requirement is applied to jets</td>
<td>Section 4.1.2 (definition)</td>
</tr>
<tr>
<td>STVF E_T^{miss}</td>
<td>The Soft-Term Vertex-Fraction (STVF) E_T^{miss} algorithm suppresses pileup effects in the CST by scaling the soft term by a multiplicative factor calculated based on the fraction of scalar-summed track p_T not associated with high-p_T physics objects that can be matched to the primary vertex. The JVF selection requirement is applied to jets</td>
<td>Section 5.1 ($Z \rightarrow \mu\mu$ modelling) Section 6 (perf. studies)</td>
</tr>
<tr>
<td>Track E_T^{miss}</td>
<td>The Track E_T^{miss} is reconstructed entirely from tracks to avoid pileup contamination that affects the other algorithms</td>
<td>Section 4.2 (definition)</td>
</tr>
</tbody>
</table>

with $p_T > 0.4$ GeV that are not matched to a high-p_T physics objects are used instead of the calorimeter p_T measurement, if their p_T resolution is better than the expected calorimeter p_T resolution. The calorimeter resolution is estimated as $0.4 \cdot \sqrt{p_T}$ GeV, in which the p_T is the transverse momentum of the reconstructed track. Geometrical matching between tracks and topoclusters (or high-p_T physics objects) is performed using the ΔR significance defined as $\Delta R/\sigma_{\Delta R}$, where $\sigma_{\Delta R}$ is the ΔR resolution, parameterized as a function of the track p_T. A track is considered to be associated to a topocluster in the soft term when its minimum $\Delta R/\sigma_{\Delta R}$ is less than 4. To veto tracks matched to high-p_T physics objects, tracks are required to have $\Delta R/\sigma_{\Delta R} > 8$. The E_T^{miss} calculated using the CST algorithm is documented in previous publications such as Ref. [1] and is the standard algorithm in most ATLAS 8 TeV analyses.

- Track Soft Term (TST)

 The TST is reconstructed purely from tracks that pass the selections outlined in Sect. 3.1 and are not associated with the high-p_T physics objects defined in Sect. 4.1.1. The detector coverage of the TST is the ID tracking volume ($|\eta| < 2.5$), and no calorimeter topoclusters inside or beyond this region are included. This algorithm allows excellent vertex matching for the soft term, which almost completely removes the in-time pileup dependence, but misses contributions from soft neutral particles. The track-based reconstruction also entirely removes the out-of-time pileup contributions that affect the CST.

 To avoid double counting the p_T of particles, the tracks matched to the high-p_T physics objects need to be removed from the soft term. All of the following classes of tracks are excluded from the soft term:

 - tracks within a cone of size $\Delta R = 0.05$ around electrons and photons
 - tracks within a cone of size $\Delta R = 0.2$ around $t_{\text{had-vis}}$
 - ID tracks associated with identified muons
 - tracks matched to jets using the ghost-association technique described in Sect. 4.1.1
 - isolated tracks with $p_T \geq 120$ GeV (≥ 200 GeV for $|\eta| < 1.5$) having transverse momentum uncertainties larger than 40% or having no associated calorimeter energy deposit with p_T larger than 65% of the track p_T. The p_T thresholds are chosen to ensure that muons not in the coverage of the MS are still included in the soft term. This is a cleaning cut to remove mis-measured tracks.

A deterioration of the CST E_T^{miss} resolution is observed as the average number of pileup interactions increases [1]. All E_T^{miss} terms in Eq. (2) are affected by pileup, but the terms which are most affected are the jet term and CST, because their constituents are spread over larger regions in the calorimeters than those of the E_T^{miss} hard terms. Methods to suppress pileup are therefore needed, which can restore the E_T^{miss} resolution to values similar to those observed in the absence of pileup.
The TST algorithm is very stable with respect to pileup but does not include neutral particles. Two other pileup-suppressing algorithms were developed, which consider contributions from neutral particles. One uses an \(\eta \)-dependent event-by-event estimator for the transverse momentum density from pileup, using calorimeter information, while the other applies an event-by-event global correction based on the amount of charged-particle \(p_T \) from the hard-scatter vertex, relative to all other \(pp \) collisions. The definitions of these two soft-term algorithms are described in the following:

- Extrapolated Jet Area with Filter (EJAF)
 The jet-area method for the pileup subtraction uses a soft term based on the idea of jet-area corrections \([45]\). This technique uses direct event-by-event measurements of the energy flow throughout the entire ATLAS detector to estimate the \(p_T \) density of pileup energy deposits and was developed from the strategy applied to jets as described in Ref. \([4]\).

 The topoclusters belonging to the soft term are used for jet finding with the \(k_T \) algorithm \([48,49]\) with distance parameter \(R = 0.6 \) and jet \(p_T > 0 \). The catchment areas \([45,46]\) for these reconstructed jets are labelled \(A_{jet} \); this provides a measure of the jet’s susceptibility to contamination from pileup. Jets with \(p_T \) < 20 GeV are referred to as soft-term jets, and the \(p_T \)-density of each soft-term jet \(i \) is then measured by computing:

 \[
 \rho_{jet,i} = \frac{p_{T,i}^{jet}}{A_{jet,i}}.
 \]

 In a given event, the median \(p_T \)-density \(\rho^{med}_{p_T} \) for all soft-term \(k_T \) jets in the event \(N_{jets} \) found within a given range \(-\eta_{max} < \eta_{jet} < \eta_{max} \) can be calculated as

 \[
 \rho^{med}_{p_T} = \text{median} \{ \rho_{jet,i} \} \quad \text{for } i = 1 \ldots N_{jets} \text{ in } |\eta_{jet}| < \eta_{max}.
 \]

 This median \(p_T \)-density \(\rho^{med}_{p_T} \) gives a good estimate of the in-time pileup activity in each detector region. If determined with \(\eta_{max} = 2 \), it is found to also be an appropriate indicator of out-of-time pileup contributions \([45]\). A lower value for \(\rho^{med}_{p_T} \) is computed by using jets with \(|\eta_{jet}| \) larger than 2, which is mostly due to the particular geometry of the ATLAS calorimeters and their cluster reconstruction algorithms.\(^6\)

 In order to extrapolate \(\rho^{med}_{p_T} \) into the forward regions of the detector, the average topocluster \(p_T \) in slices of \(\eta, N_{PV} \), and \(\langle \mu \rangle \) is converted to an average \(p_T \) density \(\langle \rho \rangle(\eta, N_{PV}, \mu) \) for the soft term. As described for the \(\rho^{med}_{p_T}, \langle \rho \rangle(\eta, N_{PV}, \mu) \) is found to be uniform in the central region of the detector with \(|\eta| < \eta_{\text{plateau}} = 1.8 \).

 The transverse momentum density profile is then computed as

 \[
 p_\rho(\eta, N_{PV}, \langle \mu \rangle) = \frac{\langle \rho \rangle(\eta, N_{PV}, \mu)}{\langle \rho \rangle_{\text{central}}(N_{PV}, \mu)}
 \]

 where \(\langle \rho \rangle_{\text{central}}(N_{PV}, \mu) \) is the average \(\langle \rho \rangle(\eta, N_{PV}, \mu) \) for \(|\eta| < \eta_{\text{plateau}} \). The \(p_\rho(\eta, N_{PV}, \langle \mu \rangle) \) is therefore 1, by definition, for \(|\eta| < \eta_{\text{plateau}} \) and decreases for larger \(|\eta| \).

 A functional form of \(p_\rho(\eta, N_{PV}, \langle \mu \rangle) \) is used to parameterize its dependence on \(\eta, N_{PV} \), and \(\langle \mu \rangle \) and is defined as

 \[
 p_\rho(\eta, N_{PV}, \langle \mu \rangle) = \frac{1}{1 - G_{\text{base}}(\eta_{\text{plateau}}) \cdot G_{\text{core}}(|\eta| - \eta_{\text{plateau}}) + G_{\text{base}}(|\eta|) \text{ for } |\eta| \geq \eta_{\text{plateau}}}
 \]

where the central region \(|\eta| < \eta_{\text{plateau}} = 1.8 \) is plateaued at 1, and then a pair of Gaussian functions \(G_{\text{core}}(|\eta| - \eta_{\text{plateau}}) \) and \(G_{\text{base}}(|\eta|) \) are added for the fit in the forward regions of the calorimeter. The value of \(G_{\text{core}}(0) = 1 \) so that Eq. (9) is continuous at \(\eta = \eta_{\text{plateau}} \). Two example fits are shown in Fig. 1 for \(N_{PV} = 3 \) and 8 with \(\langle \mu \rangle = 7.5-9.5 \) interactions per bunch crossing. For both distributions the value is defined to be unity in the central region \(|\eta| < \eta_{\text{plateau}} \), and the sum of two Gaussian functions provides a good description of the change in the amount of in-time pileup beyond \(\eta_{\text{plateau}} \). The baseline Gaussian function \(G_{\text{base}}(|\eta|) \) has a larger width and is used to describe the larger amount of in-time pileup in the forward region as seen in Fig. 1. Fitting with Eq. (9) provides a parameterized function for in-time and out-of-time pileup which is valid for the whole 2012 dataset.

 The soft term for the EJAF \(E^{\text{miss}}_T \) algorithm is calculated as

 \[
 E^{\text{miss,soft}}_{x(y)} = - \sum_{i=0}^{N_{\text{later-jet}}} p_{x(y),i}^{\text{jet,corr}},
 \]

which sums the transverse momenta, labelled \(p_{x(y),i}^{\text{jet,corr}} \), of the corrected soft-term jets matched to the primary vertex. The number of these filtered jets, which are selected

\(^6\) The forward ATLAS calorimeters are less granular than those in the central region, which leads to fewer clusters being reconstructed.
after the pileup correction based on their JVF and \(p_T \), is labelled \(N_{\text{filter-jet}} \). More details of the jet selection and the application of the pileup correction to the jets are given in Appendix A.

- **Soft-Term Vertex-Fraction (STVF)**

The algorithm, called the soft-term vertex-fraction, utilizes an event-level parameter computed from the ID track information, which can be reliably matched to the hard-scatter collision, to suppress pileup effects in the CST. This correction is applied as a multiplicative factor \(\alpha_{\text{STVF}} \) to the CST, event by event, and the resulting STVF-corrected CST is simply referred to as STVF. The \(\alpha_{\text{STVF}} \) is calculated as

\[
\alpha_{\text{STVF}} = \frac{\sum_{\text{tracks, PV}} p_T}{\sum_{\text{tracks}} p_T},
\]

which is the scalar sum of \(p_T \) of tracks matched to the PV divided by the total scalar sum of track \(p_T \) in the event, including pileup. The sums are taken over the tracks that do not match high-\(p_T \) physics objects belonging to the hard term. The mean \(\alpha_{\text{STVF}} \) value is shown versus the number of reconstructed vertices \((N_{PV}) \) in Fig. 2. Data and simulation (including Z, diboson, \(t\bar{t} \), and \(tW \) samples) are shown with only statistical uncertainties and agree within 4–7% across the full range of \(N_{PV} \) in the 8 TeV dataset. The differences mostly arise from the modelling of the amount of the underlying event and \(p_{ZT} \). The 0-jet and inclusive samples have similar values of \(\alpha_{\text{STVF}} \), with that for the inclusive sample being around 2% larger.

4.1.3 Jet \(p_T \) threshold and JVF selection

The TST, STVF, and EJAF \(E_T^{\text{miss}} \) algorithms complement the pileup reduction in the soft term with additional requirements on the jets entering the \(E_T^{\text{miss}} \) hard term, which are also aimed at reducing pileup dependence. These \(E_T^{\text{miss}} \) reconstruction algorithms apply a requirement of JVF > 0.25 to jets with \(p_T < 50 \text{ GeV} \) and \(|\eta| < 2.4 \) in order to suppress those originating from pileup interactions. The maximum \(|\eta| \) value is lowered to 2.4 to ensure that the core of each jet is within the tracking volume \((|\eta| < 2.5) \) [4]. Charged parti-

Fig. 1 The average transverse momentum density shape \(P^\rho(\eta, N_{PV}, \langle \mu \rangle) \) for jets in data is compared to the model in Eq. (9) with \(\langle \mu \rangle = 7.5–9.5 \) and with a three reconstructed vertices and b eight reconstructed vertices. The increase of jet activity in the forward regions coming from more in-time pileup with \(N_{PV} = 8 \) in b can be seen by the flatter shape of the Gaussian fit of the forward activity \(G_{\text{base}}(N_{PV}, \langle \mu \rangle) \) (blue dashed line).

Fig. 2 The mean \(\alpha_{\text{STVF}} \) weight is shown versus the number of reconstructed vertices \((N_{PV}) \) for 0-jet and inclusive events in \(Z \rightarrow \mu\mu \) data. The inset at the bottom of the figure shows the ratio of the data to the MC predictions with only the statistical uncertainties on the data and MC simulation. The bin boundary always includes the lower edge and not the upper edge.
cles from jets below the p_T threshold are considered in the soft terms for the STVF, TST, and EJAF (see Sect. 4.1.2 for details).

The same JVF requirements are not applied to the CST E_T^{miss} because its soft term includes the soft recoil from all interactions, so removing jets not associated with the hard-scatter interaction could create an imbalance. The procedure for choosing the jet p_T and JVF criteria is summarized in Sect. 7.

Throughout most of this paper the number of jets is computed without a JVF requirement so that the E_T^{miss} algorithms are compared on the same subset of events. However, the JVF > 0.25 requirement is applied in jet counting when 1-jet and \geq 2-jet samples are studied using the TST E_T^{miss} reconstruction, which includes Figs. 8 and 22. The JVF removes pileup jets that obscure trends in samples with different jet multiplicities.

4.2 Track E_T^{miss}

Extending the philosophy of the TST definition to the full event, the E_T^{miss} is reconstructed from tracks alone, reducing the pileup contamination that afflicts the other object-based algorithms. While a purely track-based E_T^{miss}, designated Track E_T^{miss}, has almost no pileup dependence, it is insensitive to neutral particles, which do not form tracks in the ID. This can degrade the E_T^{miss} calibration, especially in event topologies with numerous or highly energetic jets. The η coverage of the Track E_T^{miss} is also limited to the ID acceptance of $|\eta| < 2.5$, which is substantially smaller than the calorimeter coverage, which extends to $|\eta| = 4.9$.

Track E_T^{miss} is calculated by taking the negative vectorial sum of p_T of tracks satisfying the same quality criteria as the TST tracks. Similar to the TST, tracks with poor momentum resolution or without corresponding calorimeter deposits are removed. Because of Bremsstrahlung within the ID, the electron p_T is determined more precisely by the calorimeter than by the ID. Therefore, the Track E_T^{miss} algorithm uses the electron p_T measurement in the calorimeter and removes tracks overlapping its shower. Calorimeter deposits from photons are not added because they cannot be reliably associated to particular $p\bar{p}$ interactions. For muons, the ID track p_T is used and not the fits combining the ID and MS p_T. For events without any reconstructed jets, the Track and TST E_T^{miss} would have similar values, but differences could still originate from muon track measurements as well as reconstructed photons or calorimeter deposits from $\tau_{had-vis}$, which are only included in the TST.

The soft term for the Track E_T^{miss} is defined to be identical to the TST by excluding tracks associated with the high-p_T physics objects used in Eq. (2).

5 Comparison of E_T^{miss} distributions in data and MC simulation

In this section, basic E_T^{miss} distributions before and after pileup suppression in $Z \rightarrow \ell\ell$ and $W \rightarrow \ell\nu$ data events are compared to the distributions from the MC signal plus relevant background samples. All distributions in this section include the dominant systematic uncertainties on the high-p_T objects, the $E_T^{miss,soft}$ (described in Sect. 8) and pileup modelling [7]. The systematics listed above are the largest systematic uncertainties in the E_T^{miss} for Z and W samples.

5.1 Modelling of $Z \rightarrow \ell\ell$ events

The CST, EJAF, TST, STVF, and Track E_T^{miss} distributions for $Z \rightarrow \mu\mu$ data and simulation are shown in Fig. 3. The Z boson signal region, which is defined in Sect. 3.2, has better than 99% signal purity. The MC simulation agrees with data for all E_T^{miss} reconstruction algorithms within the assigned systematic uncertainties. The mean and the standard deviation of the E_T^{miss} distribution is shown for all of the E_T^{miss} algorithms in $Z \rightarrow \mu\mu$ inclusive simulation in Table 4. The CST E_T^{miss} has the highest mean E_T^{miss} and thus the broadest E_T^{miss} distribution. All of the E_T^{miss} algorithms with pileup suppression have narrower E_T^{miss} distributions as shown by their smaller mean E_T^{miss} values. However, those algorithms also have non-Gaussian tails in the E_T^{miss} and E_T^{miss} distributions, which contribute to the region with $E_T^{miss} \gtrsim 50$ GeV. The Track E_T^{miss} has the largest tail because it does not include contributions from the neutral particles, and this results in it having the largest standard deviation.

The tails of the E_T^{miss} distributions in Fig. 3 for $Z \rightarrow \mu\mu$ data are observed to be compatible with the sum of expected signal and background contributions, namely $t\bar{t}$ and the summed diboson (VV) processes including WW, WZ, and ZZ, which all have high-p_T neutrinos in their final states. Instrumental effects can show up in the tails of the E_T^{miss}, but such effects are small.

The E_T^{miss} ϕ distribution is not shown in this paper but is very uniform, having less than 4 parts in a thousand difference from positive and negative ϕ. Thus the ϕ-asymmetry is greatly reduced from that observed in Ref. [1].

The increase in systematic uncertainties in the range 50–120 GeV in Fig. 3 comes from the tail of the E_T^{miss} distribution for the simulated $Z \rightarrow \mu\mu$ events. The increased width in the uncertainty band is asymmetric because many systematic uncertainties increase the E_T^{miss} tail in $Z \rightarrow \mu\mu$ events by creating an imbalance in the transverse momentum. The largest of these systematic uncertainties are those associated with the jet energy resolution, the jet energy scale, and pileup. The pileup systematic uncertainties affect mostly the CST and EJAF E_T^{miss}, while the jet energy scale uncertainty
Fig. 3 Distributions of the E_T^{miss} with the a CST, b EJAF, c TST, d STVF, and e Track E_T^{miss} are shown in data and MC simulation events satisfying the $Z \rightarrow \mu\mu$ selection. The lower panel of the figures shows the ratio of data to MC simulation, and the bands correspond to the combined systematic and MC statistical uncertainties. The far right bin includes the integral of all events with E_T^{miss} above 300 GeV.
Table 4. The mean and standard deviation of the E_T^{miss} distributions in Z → $\mu\mu$ inclusive simulation.

<table>
<thead>
<tr>
<th>$E_T^{\text{miss alg.}}$</th>
<th>Mean ± SD [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST E_T^{miss}</td>
<td>20.4 ± 12.5</td>
</tr>
<tr>
<td>EJAF E_T^{miss}</td>
<td>16.8 ± 11.5</td>
</tr>
<tr>
<td>TST E_T^{miss}</td>
<td>13.2 ± 10.3</td>
</tr>
<tr>
<td>STVF E_T^{miss}</td>
<td>13.8 ± 10.8</td>
</tr>
<tr>
<td>Track E_T^{miss}</td>
<td>13.9 ± 14.4</td>
</tr>
</tbody>
</table>

causes the larger systematic uncertainty for the TST and STVF E_T^{miss}. The Track E_T^{miss} does not have the same increase in systematic uncertainties because it does not make use of reconstructed jets. Above 120 GeV, most events have a large intrinsic E_T^{miss}, and the systematic uncertainties on the E_T^{miss}, especially the soft term, are smaller.

Figure 4 shows the soft-term distributions. The pileup-suppressed E_T^{miss} algorithms generally have a smaller mean soft term as well as a sharper peak near zero compared to the CST. Among the E_T^{miss} algorithms, the soft term from the EJAF algorithm shows the smallest change relative to the CST. The TST has a sharp peak near zero similar to the STVF but with a longer tail, which mostly comes from individual tracks. These tracks are possibly mismeasured and further studies are planned. The simulation under-predicts the TST relative to the observed data between 60–85 GeV, and the differences exceed the assigned systematic uncertainties. This

Fig. 4 Distributions of the soft term for the a CST, b EJAF, c TST, and d STVF are shown in data and MC simulation events satisfying the Z → $\mu\mu$ selection. The lower panel of the figures show the ratio of data to MC simulation, and the bands correspond to the combined systematic and MC statistical uncertainties. The far right bin includes the integral of all events with $E_T^{\text{miss,soft}}$ above 160 GeV.

\textbf{Fig. 4} Distributions of the soft term for the a CST, b EJAF, c TST, and d STVF are shown in data and MC simulation events satisfying the Z → $\mu\mu$ selection. The lower panel of the figures show the ratio of data to MC simulation, and the bands correspond to the combined systematic and MC statistical uncertainties. The far right bin includes the integral of all events with $E_T^{\text{miss,soft}}$ above 160 GeV.
Fig. 5 Distributions of a ΣE_T (CST) and b ΣE_T (TST) are shown in data and MC simulation events satisfying the $Z\rightarrow\mu\mu$ selection. The lower panel of the figures show the ratio of data to MC simulation, and the bands correspond to the combined systematic and MC statistical uncertainties. The far right bin includes the integral of all events with ΣE_T above 2000 GeV.

The E_T^{miss} resolution is expected to be proportional to $\sqrt{\Sigma E_T}$ when both quantities are measured with the calorimeter alone [1]. While this proportionality does not hold for tracks, it is nevertheless interesting to understand the modelling of ΣE_T and the dependence of E_T^{miss} resolution on it. Figure 5 shows the ΣE_T distribution for $Z\rightarrow\mu\mu$ data and MC simulation both for the TST and the CST algorithms. The ΣE_T is typically larger for the CST algorithm than for the TST because the former includes energy deposits from pileup as well as neutral particles and forward contributions beyond the ID volume. The reduction of pileup contributions in the soft and jet terms leads to the ΣE_T (TST) having a sharper peak at around 100 GeV followed by a large tail, due to high-p_T muons and large $\sum p_{T}^{\text{jets}}$. The data and simulation agree within the uncertainties for the ΣE_T (CST) and ΣE_T (TST) distributions.

5.2 Modelling of $W\rightarrow\ell\nu$ events

In this section, the selection requirements for the m_T and E_T^{miss} distributions are defined using the same E_T^{miss} algorithm as that labelling the distribution (e.g. selection criteria are applied to the CST E_T^{miss} for distributions showing the CST E_T^{miss}). The intrinsic E_T^{miss} in $W\rightarrow\ell\nu$ events allows a comparison of the E_T^{miss} scale between data and simulation. The level of agreement between data and MC simulation for the E_T^{miss} reconstruction algorithms is studied using $W\rightarrow e\nu$ events with the selection defined in Sect. 3.3.

The CST and TST E_T^{miss} distributions in $W\rightarrow e\nu$ events are shown in Fig. 6. The $W\rightarrow\tau\nu$ contributions are combined with $W\rightarrow e\nu$ events in the figure. The data and MC simulation agree within the assigned systematic uncertainties for both the CST and TST E_T^{miss} algorithms. The other E_T^{miss} algorithms show similar levels of agreement between data and MC simulation.

6 Performance of the E_T^{miss} in data and MC simulation

6.1 Resolution of E_T^{miss}

The E_x^{miss} and E_y^{miss} are expected to be approximately Gaussian distributed for $Z\rightarrow\ell\ell$ events as discussed in Ref. [1]. However, because of the non-Gaussian tails in these distributions, especially for the pileup-suppressing E_T^{miss} algorithms, the root-mean-square (RMS) is used to estimate the resolution. This includes important information about the tails, which would be lost if the result of a Gaussian fit over only the core of the distribution were used instead. The resolution of the E_T^{miss} distribution is extracted using the RMS from the combined distribution of E_x^{miss} and E_y^{miss}, which are determined to be independent from correlation studies.
The previous ATLAS E_T^{miss} performance paper [1] studied the resolution defined by the width of Gaussian fits in a narrow range of ±2RMS around the mean and used a separate study to investigate the tails. Therefore, the results of this paper are not directly comparable to those of the previous study. The resolutions presented in this paper are expected to be larger than the width of the Gaussian fitted in this manner because the RMS takes into account the tails.

In this section, the resolution for the E_T^{miss} is presented for $Z \rightarrow \mu\mu$ events using both data and MC simulation. Unless it is a simulation-only figure (labelled with “Simulation” under the ATLAS label), the MC distribution includes the signal sample (e.g. $Z \rightarrow \mu\mu$) as well as diboson, $t\bar{t}$, and tW samples.

6.1.1 Resolution of the E_T^{miss} as a function of the number of reconstructed vertices

The stability of the E_T^{miss} performance as a function of the amount of pileup is estimated by studying the E_T^{miss} resolution as a function of the number of reconstructed vertices (N_{PV}) for $Z \rightarrow \mu\mu$ events as shown in Fig. 7. The bin edge is always including the lower edge and not the upper. For example, the events with N_{PV} in the inclusive range 30–39 are combined because of small sample size. In addition, very few events were collected below N_{PV} of 2 during 2012 data taking. Events in which there are no reconstructed jets with $p_T > 20$ GeV are referred to collectively as the 0-jet sample. Distributions are shown here for both the 0-jet and inclusive samples. For both samples, the data and MC simulation agree within 2% up to around $N_{PV} = 15$ but the deviation grows to around 5–10% for $N_{PV} > 25$, which might be attributed to the decreasing sample size. All of the E_T^{miss} distributions show a similar level of agreement between data and simulation across the full range of N_{PV}.

For the 0-jet sample in Fig. 7a, the STVF, TST, and Track E_T^{miss} resolutions all have a small slope with respect to N_{PV}, which implies stability of the resolution against pileup. In addition, their resolutions agree within 1 GeV throughout the N_{PV} range. In the 0-jet sample, the TST and Track E_T^{miss} are both primarily reconstructed from tracks; however, small differences arise mostly from accounting for photons in the TST E_T^{miss} reconstruction algorithm. The CST E_T^{miss} is directly affected by the pileup as its reconstruction does not apply any pileup suppression techniques. Therefore, the CST E_T^{miss} has the largest dependence on N_{PV}, with a resolution ranging from 7 GeV at $N_{PV} = 2$ to around 23 GeV at $N_{PV} = 25$. The E_T^{miss} resolution of the EJAF distribution, while better than that of the CST E_T^{miss}, is not as good as that of the other pileup-suppressing algorithms.

For the inclusive sample in Fig. 7b, the Track E_T^{miss} is the most stable with respect to pileup with almost no dependence on N_{PV}. For $N_{PV} > 20$, the Track E_T^{miss} has the best resolution showing that pileup creates a larger degradation in the resolution of the other E_T^{miss} distributions than excluding neutral particles, as the Track E_T^{miss} algorithm does. The EJAF E_T^{miss} algorithm does not reduce the pileup dependence as much as the TST and STVF E_T^{miss} algorithms, and the CST E_T^{miss} again has the largest dependence on N_{PV}.

Figure 7 also shows that the pileup dependence of the TST, CST, EJAF and STVF E_T^{miss} is smaller in the 0-jet sample than in the inclusive sample. Hence, the evolution
6.1.2 Resolution of the $E_\text{T}\text{miss}$ as a function of ΣE_T

The resolutions of $E_\text{T}\text{miss}$, resulting from the different reconstruction algorithms, are compared as a function of the scalar sum of transverse momentum in the event, as calculated using Eq. (4). The CST $E_\text{T}\text{miss}$ resolution is observed to depend linearly on the square root of the ΣE_T computed with the CST $E_\text{T}\text{miss}$ components in Ref. [1]. However, the ΣE_T used in this subsection is calculated with the TST $E_\text{T}\text{miss}$ algorithm. This allows studies of the resolution as a function of the amount of pileup activity in the event. Figure 9 shows the resolution as a function of ΣE_T (TST) for $Z \rightarrow \mu\mu$ data and MC simulation in the 0-jet and inclusive samples.

In the 0-jet sample shown in Fig. 9a, the use of tracking information in the soft term, especially for the STVF, TST, and Track $E_\text{T}\text{miss}$, greatly improves the resolution relative to the CST $E_\text{T}\text{miss}$. The EJAF $E_\text{T}\text{miss}$ has a better resolution than that of the CST $E_\text{T}\text{miss}$ but does not perform as well as the other reconstruction algorithms. All of the resolution curves have an approximately linear increase with ΣE_T (TST); however, the Track $E_\text{T}\text{miss}$ resolution increases sharply starting at ΣE_T (TST) = 200 GeV due to missed neutral contributions like photons. The resolution predicted by the simulation is about 5% larger than in data for all $E_\text{T}\text{miss}$ algorithms at ΣE_T (TST) = 50 GeV, but agreement improves as ΣE_T (TST) increases until around ΣE_T (TST) = 200 GeV. Events with jets can end up in the 0-jet event selection, for example, if a jet is misidentified as a hadronically decaying τ-lepton. The Σp_T increases with ΣE_T (TST), and the rate of jets mis-reconstructed as hadronically decaying τ-leptons is not well modelled by the simulation, which leads to larger $E_\text{T}\text{miss}$ resolution at high ΣE_T (TST) than that observed in the data. The Track $E_\text{T}\text{miss}$ can be more strongly affected by misidentified jets because neutral particles from the high-p_T jets are not included.

For the inclusive sample in Fig. 9b, the pileup-suppressed $E_\text{T}\text{miss}$ distributions have better resolution than the CST $E_\text{T}\text{miss}$ for ΣE_T (TST) < 200 GeV, but these events are mostly those with no associated jets. For higher ΣE_T (TST), the...
impact from the ΣE_T^{jets} term starts to dominate the resolution as well as the ΣE_T (TST). Since the vector sum of jet momenta is mostly common\(^7\) to all E_T^{miss} algorithms except for the Track E_T^{miss}, those algorithms show similar performance in terms of the resolution. At larger ΣE_T (TST), the Track E_T^{miss} resolution begins to degrade relative to the other algorithms because it does not include the high-p_T neutral particles coming from jets. The ratio of data to MC simulation for the Track E_T^{miss} distribution is close to one, while for other algorithms the MC simulation is below the data by about 5% at large ΣE_T (TST). While the Track E_T^{miss} appears well modelled for the ALCGEN+PYTHIA simulation used in this figure, the modelling depends strongly on the parton shower model.

6.2 The E_T^{miss} response

The balance of E_T^{miss} against the vector boson \vec{p}_T in $W/Z+jets$ events is used to evaluate the E_T^{miss} response. A lack of balance is a global indicator of biases in E_T^{miss} reconstruction and implies a systematic misestimation of at least one of the E_T^{miss} terms, possibly coming from an imperfect selection or calibration of the reconstructed physics objects. The procedure to evaluate the response differs between $Z+jets$ events (Sect. 6.2.1) and $W+jets$ events (Sect. 6.2.2) because of the high-p_T neutrino in the leptonic decay of the W boson.

6.2.1 Measuring E_T^{miss} recoil versus p_T^{ℓ}

In events with $Z \rightarrow \mu \mu$ decays, the \vec{p}_T of the Z boson defines an axis in the transverse plane of the ATLAS detector, and

\(E_T^{\text{miss}} = \sum p_T^{\text{miss}} \) as a function of ΣE_T (TST) in $Z \rightarrow \mu \mu$ events in data for the a 0-jet and b inclusive samples. The insets at the bottom of the figures show the ratios of the data to the MC predictions.

\[\frac{\text{Data}}{\text{MC}} \]

\(p_T^{\ell} \)

\[\frac{\text{Data}}{\text{MC}} \]

\(p_T^{\ell} \)
the relative recoil estimates how well the soft term balances
the p_T of muons from the Z decay, which are better measured
than the soft term. The relative recoil below one indicates that
the soft term is underestimated. The CST E_T^{miss} has a relative recoil measurement of $\langle \vec{R} \cdot \vec{A}_Z/p_T^Z \rangle \sim 0.5$ throughout
the p_T^Z range, giving it the best recoil performance among
the E_T^{miss} algorithms. The TST and Track E_T^{miss} have slightly
larger biases than the CST E_T^{miss} because neutral particles
are not considered in the soft term. The TST E_T^{miss} recoil
improves relative to that of the Track E_T^{miss} for $p_T^Z > 40$
GeV because of the inclusion of photons in its reconstruction.

The relative recoil distribution for the STVF E_T^{miss} shows the
largest bias for $p_T^Z < 60$ GeV. The STVF algorithm scales the recoil down globally by the factor α_{STVF} as defined in
Eq. (11), and this correction decreases the already underestimated soft term. The α_{STVF} does increase with p_T^Z going
from 0.06 at $p_T^Z = 0$ GeV to around 0.15 at $p_T^Z = 50$ GeV,
and this results in a rise in the recoil, which approaches the
TST E_T^{miss} near $p_T^Z \sim 70$ GeV.

In Fig. 10b, the inclusive $Z \rightarrow \mu\mu$ events have a significantly underestimated relative recoil for $p_T^Z < 40$ GeV. The
balance between the \vec{R} and \vec{p}_T^Z improves with p_T^Z because
of an increase in events having high-p_T calibrated jets recoiling
against the Z boson. The presence of jets included in the
hard term also reduces the sensitivity to the soft term, which
is difficult to measure accurately. The difficulty in isolating
effects from soft-term contributions from high-p_T physics
objects is one reason why the soft term is not corrected.
As with the 0-jet sample, the CST E_T^{miss} has a significantly
under-calibrated relative recoil in the low-p_T^Z region, and all
of the other E_T^{miss} algorithms have a lower relative recoil
than the CST E_T^{miss}. Of the pileup-suppressing E_T^{miss} algo-
rithms, the TST E_T^{miss} is closest to the relative recoil of the
CST E_T^{miss}. The relative recoil of the Track E_T^{miss} is signifi-
cantly lower than unity because the neutral particles recoiling
from the Z boson are not included in its reconstruction.
Finally, the STVF E_T^{miss} shows the lowest relative recoil
among the object-based E_T^{miss} algorithms as discussed above
for Fig. 10a, even lower than the Track E_T^{miss} for $p_T^Z < 16$
GeV.

6.2.2 Measuring E_T^{miss} response in simulated $W \rightarrow \ell\nu$ events

For simulated events with intrinsic E_T^{miss}, the response is studied by looking at the relative mismeasurement of the
reconstructed E_T^{miss}. This is referred to here as the “linearity”,
and is a measure of how consistent the reconstructed E_T^{miss} is
with the $E_T^{\text{miss, True}}$. The linearity is defined as the mean value of
the ratio, $(E_T^{\text{miss}} - E_T^{\text{miss, True}})/E_T^{\text{miss, True}}$ and is expected
to be zero if the E_T^{miss} is reconstructed at the correct scale.

For the linearity studies, no selection on the E_T^{miss} or
m_T is applied, in order to avoid biases as these are purely
simulation-based studies. In Fig. 11, the linearity for $W \rightarrow \mu\nu$
simulated events is presented as a function of the
$E_T^{\text{miss, True}}$. Despite the relaxed selection, a positive linearity is evident for $E_T^{\text{miss}, True} < 40$ GeV, due to the finite resolution of
the E_T^{miss} reconstruction and the fact that the reconstructed
E_T^{miss} is positive by definition. The CST E_T^{miss} has the largest
deviation from zero at low $E_T^{\text{miss}, True}$ because it has the largest
E_T^{miss} resolution.

For the events in the 0-jet sample in Fig. 11a, all
E_T^{miss} algorithms have a negative linearity for $E_T^{\text{miss, True}} >$
40 GeV, which diminishes for $E_T^{\text{miss, True}} \gtrsim 60$ GeV. The
region of $E_T^{\text{miss, True}}$ between 40 and 60 GeV mostly includes
events lying in the Jacobian peak of the W transverse mass,
and these events include mostly on-shell W bosons. For
$E_T^{\text{miss}} \gtrsim 40$ GeV, the on-shell W boson must have non-
zero p_T, which typically comes from its recoil against jets.
However, no reconstructed or generator-level jets are found
in this 0-jet sample. Therefore, most of the events with
$40 < E_T^{\text{miss, True}} < 60$ GeV have jets below the 20 GeV thresh-
old contributing to the soft term, and the soft term is not cal-

Springer
ibrated. The under-estimation of the soft term, described in Sect. 6.2.1, causes the linearity to deviate further from zero in this region. Events with $E_T^{\text{miss, True}} > 60$ GeV are mostly off-shell W bosons that are produced with very low p_T. For these events, the p_T contributions to the E_T^{miss} reconstruction come mostly from the well-measured muon p_T, and the soft term plays a much smaller role. Hence, the linearity improves as the impact of the soft term decreases with larger $E_T^{\text{miss, True}}$.

For inclusive events in Fig. 11b with $E_T^{\text{miss, True}} > 40$ GeV, the deviation of the linearity from zero is smaller than 5% for the CST E_T^{miss}. The linearity of the TST E_T^{miss} is within 10% of unity in the range of 40–60 GeV and improves for higher $E_T^{\text{miss, True}}$ values. The STVF E_T^{miss} has the most negative bias in the linearity among the object-based E_T^{miss} algorithms for $E_T^{\text{miss, True}} > 40$ GeV. The TST, CST, STVF, and EJAF E_T^{miss} algorithms perform similarly for all $E_T^{\text{miss, True}}$ values. As expected, the linearity of the Track E_T^{miss} settles below zero due to not accounting for neutral particles in jets.

6.3 The E_T^{miss} angular resolution

The angular resolution is important for the reconstruction of kinematic observables such as the transverse mass of the W boson and the invariant mass in $H \rightarrow \tau \tau$ events [51]. For simulated $W \rightarrow \ell \nu$ events, the direction of the reconstructed E_T^{miss} is compared to the $E_T^{\text{miss, True}}$ for each E_T^{miss} reconstruction algorithm using the difference in the azimuthal angles, $\Delta \phi (E_T^{\text{miss}}, E_T^{\text{miss, True}})$, which has a mean value of zero. The RMS of the distribution is taken as the resolution, which is labelled RMS ($\Delta \phi$).

No selection on the E_T^{miss} or m_T is applied in order to avoid biases. The RMS ($\Delta \phi$) is shown as a function of $E_T^{\text{miss, True}}$ in Fig. 12a for the 0-jet sample in $W \rightarrow \mu \nu$ simulation; the angular resolution generally improves as the $E_T^{\text{miss, True}}$ increases, for all algorithms. For $E_T^{\text{miss, True}} \lesssim 120$ GeV, the pileup-suppressing algorithms improve the resolution over the CST E_T^{miss} algorithm, but all of the algorithms produce distributions with similar resolutions in the higher $E_T^{\text{miss, True}}$ region. The increase in RMS ($\Delta \phi$) at around 40–60 GeV in the 0-jet sample is due to the larger contribution of jets below 20 GeV entering the soft term as mentioned in Sect. 6.2.2. The distribution from the inclusive sample shown in Fig. 12b has the same pattern as the one from the 0-jet sample, except that the performance of the Track E_T^{miss} algorithm is again significantly worse. In addition, the transition region near $40 < E_T^{\text{miss, True}} < 60$ GeV is smoother as the under-estimation of the soft term becomes less significant due to the presence of events with high-p_T calibrated jets. The TST E_T^{miss} algorithm has the best angular resolution for both the 0-jet and inclusive topologies throughout the entire range of $E_T^{\text{miss, True}}$.

6.4 Transverse mass in $W \rightarrow \ell \nu$ events

The W boson events are selected using kinematic observables that are computed from the E_T^{miss} and lepton transverse momentum. This section evaluates the scale of the m_T, as defined in Eq. (1), reconstructed with each E_T^{miss} definition. The m_T computed using the reconstructed E_T^{miss} is compared to the m_T^{True}, which is calculated using the $E_T^{\text{miss, True}}$ in $W \rightarrow \mu \nu$ MC simulation. The mean of the difference between the reconstructed and generator-level m_T, $(m_T - m_T^{\text{True}})$, is shown as a function of m_T^{True} in Fig. 13 for the 0-jet and inclusive samples. No E_T^{miss} or m_T selection is made in these figures, to avoid biases. All distributions for the E_T^{miss} algorithms have a positive bias at low values of m_T^{True} coming from the positive-definite nature of the m_T and the finite E_T^{miss} resolution. For the 0-jet sample, the CST algorithm has the smallest bias for $m_T \lesssim 60$ GeV because it includes the neutral particles with no corrections for pileup. However, for the inclusive sample the TST E_T^{miss} has the smallest bias as the E_T^{miss} resolution plays a larger role. The STVF and Track E_T^{miss} have the largest bias for $m_T^{\text{True}} < 50$ GeV in the 0-jet and inclusive samples, respectively. This is due to...
Fig. 12 The resolution of $\Delta \phi (E_T^{\text{miss}}, E_T^{\text{miss, True}})$, labelled as RMS ($\Delta \phi$), is shown for $W \rightarrow \mu \nu$ MC simulation for the a 0-jet and b inclusive samples.

Fig. 13 The $\langle m_T - m_T^{\text{True}} \rangle$ is shown versus m_T^{True} for $W \rightarrow \mu \nu$ MC simulation in the a 0-jet and b inclusive samples.

the over-correction in the soft term by α_{STVF} for the former and from the missing neutral particles in the latter case. For events with $m_T \gtrsim 60$ GeV, all of the E_T^{miss} algorithms have $\langle m_T - m_T^{\text{True}} \rangle$ close to zero, with a spread of less than 3 GeV.

6.5 Proxy for E_T^{miss} significance

The E_T^{miss} significance is a metric defined to quantify how likely it is that a given event contains intrinsic E_T^{miss} and is computed by dividing the measured E_T^{miss} by an estimate of its uncertainty. Using 7 TeV data, it was shown that the CST E_T^{miss} resolution follows an approximately stochastic behaviour as a function of ΣE_T, computed with the CST components, and is described by

$$\sigma (E_T^{\text{miss}}) = a \cdot \sqrt{\Sigma E_T}, \tag{14}$$

where $\sigma (E_T^{\text{miss}})$ is the CST E_T^{miss} resolution [1]. The typical value of a in the 8 TeV dataset is around 0.97 GeV$^{1/2}$ for the CST E_T^{miss}. The proxy of the E_T^{miss} significance presented in this section is defined as the $\frac{1}{a} E_T^{\text{miss}}/\sqrt{\Sigma E_T}$. This choice is motivated by the linear relationship for the CST E_T^{miss} between its $\sqrt{\Sigma E_T}$ and its E_T^{miss} resolution. The same procedure does not work for the TST E_T^{miss} resolution, so a value of 2.27 GeV$^{1/2}$ is used to tune the x-axis so that integral of $Z \rightarrow \mu \nu \mu$ simulation fits the multiples of the standard deviation of a normal distribution at the value of 2. Ideally, only events with large intrinsic E_T^{miss} have large values of $\frac{1}{a} E_T^{\text{miss}}/\sqrt{\Sigma E_T}$, while events with no intrinsic E_T^{miss} such as $Z \rightarrow \mu \nu \nu$ have low values. It is important to point out that in general $Z \rightarrow \mu \mu$ is not a process with large E_T^{miss} uncertainties or large $\sqrt{\Sigma E_T}$. However, when there are many additional jets (large ΣE_T), there is a significant probability that one of them is mismeasured, which generates fake E_T^{miss}.

The distribution of $\frac{1}{a} E_T^{\text{miss}}/\sqrt{\Sigma E_T}$ is shown for the CST and TST E_T^{miss} algorithms in Fig. 14 in $Z \rightarrow \mu \mu$ data and MC simulation. The data and MC simulation agree within the assigned uncertainties for both algorithms. The CST E_T^{miss} distribution in Fig. 14a has a very narrow core for the $Z \rightarrow \mu \mu$ process, having 97% of data events with $1.03 E_T^{\text{miss}}/\sqrt{\Sigma E_T} < 2$. The proxy of the E_T^{miss} significance, therefore, provides discrimination power between events.
Many analyses require large E_T^{miss} to select events with high-p_T weakly interacting particles. The selection efficiency, defined as the number of events with E_T^{miss} above a given threshold divided by the total number of events, is used to compare the performance of various E_T^{miss} reconstruction algorithms. As $Z \rightarrow \ell\ell$ events very rarely include high-p_T neutrinos, they can be rejected by requiring substantial E_T^{miss}. For events with intrinsic E_T^{miss} such as $W \rightarrow \ell\nu$, higher selection efficiencies than the $Z \rightarrow \ell\ell$ events are expected when requiring reconstructed E_T^{miss}. For both cases, it is important to evaluate the performance of the reconstructed E_T^{miss}.

The selection efficiencies with various E_T^{miss} algorithms are compared for simulated $Z \rightarrow \mu\mu$ and $W \rightarrow \mu\nu$ processes as shown in Fig. 15 using the MC simulation. The event selections discussed in Sects. 3.2 and 3.3 are applied except the requirements on E_T^{miss} and m_T for the $W \rightarrow \mu\nu$ selection.

As shown in Fig. 15a, the selection efficiency for $Z \rightarrow \mu\mu$ events is around 1% for $E_T^{\text{miss}} > 50$ GeV, for all E_T^{miss} algorithms. Thus a E_T^{miss} threshold requirement can be used to reject a large number of events without intrinsic E_T^{miss}. However, the $E_T^{\text{miss, True}}$, which does not include detector resolution effects, shows the selection efficiency under ideal conditions, indicating there may be additional potential for improvement of the reconstructed E_T^{miss}. Namely, the selection efficiency with $E_T^{\text{miss, True}}$ provides a benchmark against which to evaluate the performance of different E_T^{miss} algorithms. The STV, TST, and Track E_T^{miss} distributions have narrow cores, so for E_T^{miss} threshold $\lesssim 50$ GeV these three E_T^{miss} definitions have the lowest selection efficiencies for $Z \rightarrow \ell\ell$ events. Above 50 GeV, the Track E_T^{miss} performance is degraded as a result of missing neutral particles, which gives it a very high selection efficiency. The TST and STVF E_T^{miss} algorithms continue to have the lowest selection efficiency up to E_T^{miss} threshold ≈ 110 GeV. For 110–160 GeV, the TST E_T^{miss} has a longer tail than the CST E_T^{miss}, which is a result of mismeasured low-p_T particles that scatter and are reconstructed as high-p_T...
tracks. Such mismeasurements are rare but significant in the E_T^{miss} tail. The TST, STVF, CST, and EJAF E_T^{miss} algorithms provide similar selection efficiencies for $E_T^{miss} > 160$ GeV. Above this threshold, the E_T^{miss} is dominated by mismeasured high-p_T physics objects which are identical in all object-based E_T^{miss} definitions. Hence, the events with $E_T^{miss} \gtrsim 160$ GeV are correlated among the TST, STVF, CST, and EJAF E_T^{miss} distributions.

Figure 15b shows the selection efficiency for the $W \rightarrow \mu \nu$ simulated events passing a E_T^{miss} threshold for all E_T^{miss} algorithms. Requiring the $W \rightarrow \mu \nu$ events to pass the E_T^{miss} threshold should ideally have a high selection efficiency similar to that of the $E_T^{miss, True}$. The CST E_T^{miss} algorithm gives the highest selection efficiency between 30–120 GeV but does not agree as well as that of the other E_T^{miss} algorithms with the $E_T^{miss, True}$ selection efficiency for E_T^{miss} threshold $\lesssim 110$ GeV. This comes from the positive-definite nature of the E_T^{miss} and the worse resolution of the CST E_T^{miss} relative to the other E_T^{miss} definitions. The Track E_T^{miss} has the efficiency closest to that of the $E_T^{miss, True}$, but for Track $E_T^{miss} \gtrsim 60$ GeV, the amount of jet activity increases, which results in a lower selection efficiency because of missing neutral particles. The EJAF, STVF, and TST E_T^{miss} distributions are closer than the CST to the $E_T^{miss, True}$ selection efficiency for E_T^{miss} threshold $\lesssim 100$ GeV, but the efficiencies for all the object-based algorithms and $E_T^{miss, True}$ converge for E_T^{miss} threshold $\gtrsim 110$ GeV. Hence, for large E_T^{miss} all object-based algorithms perform similarly.

In Fig. 16, selection efficiencies are shown as a function of the E_T^{miss} threshold requirement for various simulated physics processes defined in Sect. 3.4 with no lepton, jet, or m_T threshold requirements. The physics object and event selection criteria are not applied in order to show the selection efficiency resulting from the E_T^{miss} threshold requirement without biases in the event topology from the ATLAS detector acceptance for leptons or jets. Only the efficiencies for the CST and TST E_T^{miss} distributions are compared for brevity.
In Fig. 16a, the efficiencies with the TST E_T^{miss} selection are shown. Comparing the physics processes while imposing a moderate E_T^{miss} threshold requirement of ~100 GeV results in a selection efficiency of 60% for an ATLAS search for gluino-pair production [52], which is labelled as “SUSY”. The VBF $H \rightarrow \tau\tau$ and $t\bar{t}$ events are also selected with high efficiencies of 14 and 20%, respectively. With the 100 GeV E_T^{miss} threshold the selection efficiencies for these processes are more than an order of magnitude higher than those for leptonically decaying W bosons and more than two orders of magnitude higher than for Z boson events.

The $Z \rightarrow ee$ events have a lower selection efficiency (around 20 times lower at $E_T^{\text{miss}} = 100$ GeV) than the $Z \rightarrow \mu\mu$ events. This is due to the muon tracking coverage, which is limited to $|\eta| < 2.7$, whereas the calorimeter covers $|\eta| < 4.9$. Muons behave as minimum-ionizing particles in the ATLAS calorimeters, so they are not included in the E_T^{miss} outside the muon spectrometer acceptance. The electrons on the other hand are measured by the forward calorimeters. The electron and muon decay modes of the W boson have almost identical selection efficiencies at $E_T^{\text{miss}} = 100$ GeV because there is $E_T^{\text{miss, true}}$ from the neutrino. However, the differences in selection efficiency are around a factor of four higher for $W \rightarrow \mu\nu$ than for $W \rightarrow e\nu$ at $E_T^{\text{miss}} = 350$ GeV. Over the entire E_T^{miss} spectrum, the differences between the electron and muon final states for W bosons are smaller than that for Z bosons because there is a neutrino in $W \rightarrow \ell\nu$ events as opposed to none in the $Z \rightarrow \ell\ell$ final state.

In Fig. 16b, the selection efficiencies for CST E_T^{miss} threshold requirements are divided by those obtained using the TST E_T^{miss}. The selection efficiencies resulting from CST E_T^{miss} thresholds for SUSY, $t\bar{t}$, and VBF $H \rightarrow \tau\tau$ are within 10% of the efficiencies obtained using the TST E_T^{miss}. For E_T^{miss} thresholds from 40–120 GeV, the selection efficiencies for W and Z boson events are higher by up to 60–160% for CST E_T^{miss} than TST E_T^{miss}, which come from pileup contributions broadening the CST E_T^{miss} distribution. The $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ events, which have no $E_T^{\text{miss, true}}$, show an even larger increase of 2.6 times as many $Z \rightarrow ee$ events passing a E_T^{miss} threshold of 50 GeV. The increase is not as large for $Z \rightarrow \mu\mu$ as $Z \rightarrow ee$ events because neither E_T^{miss} algorithm accounts for forward muons ($|\eta| > 2.7$) as discussed above. Moving to a higher E_T^{miss} threshold, mismeasured tracks in the TST algorithm cause it to select more $Z \rightarrow ee$ events with $120 < E_T^{\text{miss}} < 230$ GeV. In addition, the CST E_T^{miss} also includes electron energy contributions ($p_T < 20$ GeV) in the forward calorimeters ($|\eta| > 3.1$) that the TST does not.

The CST and TST E_T^{miss} distributions agree within 10% in selection efficiency for $E_T^{\text{miss}} > 250$ GeV for all physics processes shown. This demonstrates a strong correlation between the E_T^{miss} distributions for events with large $E_T^{\text{miss, true}}$, or a strong correlation between the physics objects that cause a large mismeasurement in E_T^{miss} for Z events.

6.7 Correlation of fake E_T^{miss} between algorithms

The tracking and the calorimeters provide almost completely independent estimates of the E_T^{miss}. These two measurements complement each other, and the E_T^{miss} algorithms discussed in this paper combine that information in different ways. The distribution of the TST E_T^{miss} versus the CST E_T^{miss} is shown for the simulated 0-jet $Z \rightarrow \mu\mu$ sample in Fig. 17. This figure shows the correlation of fake E_T^{miss} between the two algorithms, which originates from many sources including incorrect vertex association and miscalibration of high-p_T physics objects.

Vector correlation coefficients [53], shown in Table 5, are used to estimate the correlation between the E_T^{miss} distributions resulting from different reconstruction algorithms. The value of the vector correlation coefficients ranges from 0 to 2, with 0 being the least correlated and 2 being the most correlated. The coefficients shown are obtained using the simulated 0-jet and inclusive $Z \rightarrow \mu\mu$ MC samples. The least-correlated E_T^{miss} distributions are the CST and Track E_T^{miss} which use mostly independent momenta measurements in their reconstructions. The correlations of the other E_T^{miss} distributions to the CST E_T^{miss} decrease as more tracking information is used to suppress the pileup dependence of the soft term, with the TST E_T^{miss} distribution having the second smallest vector correlation coefficient with respect to the CST E_T^{miss} distribution. Placing requirements on a combination of E_T^{miss} distributions or requiring the difference in azimuthal direction between two E_T^{miss} vectors to be small.
can greatly reduce fake E_T^{miss} backgrounds, especially using the least-correlated E_T^{miss} distributions. Such strategies are adopted in several Higgs boson analyses in ATLAS [54–56].

7 Jet-\(p_T\) threshold and vertex association selection

Jets can originate from pileup interactions, so tracks matched to the jets are extrapolated back to the beamline to ascertain whether they are consistent with originating from the hard scatter or a pileup collision. The JVF defined in Sect. 4.1.1 is used to separate pileup jets and jets from the hard scatter. The STVF, EJAF, and TST E_T^{miss} algorithms improve their jet identification by removing jets associated with pileup vertices or jets that have a large degradation in momentum resolution due to pileup activity. Energy contributions from jets not associated with the hard-scatter vertex are included in the soft term. For the TST, this means that charged particles from jets not associated with the hard-scatter vertex may then enter the soft term if their position along the beamline is consistent with the z-position of the hard-scatter vertex.

Applying a JVF cut is a trade-off between removing jets from pileup interactions and losing jets from the hard scatter. Therefore, several values of the JVF selection criterion are considered in $Z \rightarrow \ell\ell$ events with jets having $p_T > 20$ GeV; their impact on the E_T^{miss} resolution and scale is investigated in Fig. 18. Larger JVF thresholds on jets reduce the pileup dependence of the E_T^{miss} resolution, but they simultaneously worsen the E_T^{miss} scale. Thus the best compromise for the value of the JVT threshold is chosen. Requiring JVF > 0.25 greatly improves the stability of the E_T^{miss} resolution with respect to pileup by reducing the dependence of the E_T^{miss} resolution on the number of reconstructed vertices as shown in Fig. 18a. The E_T^{miss} in $Z \rightarrow \ell\ell$ events ideally has a magnitude of zero, apart from some relatively infrequent neutrino contributions in jets. So its magnitude should be consistently zero along any direction. The \vec{p}_T^Z remains unchanged for different JVF requirements, which makes its direction a useful reference to check the calibration of the E_T^{miss}. The difference from zero of the average value of the reconstructed E_T^{miss} along \vec{p}_T^Z increases as tighter JVF selections are applied as shown in Fig. 18b. Requiring a JVF threshold of 0.25 or higher slightly improves the stability of the resolution with respect to pileup, whereas it visibly degrades the E_T^{miss} response by removing too many hard-scatter jets. Lastly, pileup jets with $p_T > 50$ GeV are very rare [4], so applying the JVF requirement above this p_T threshold is not useful. Therefore, requiring JVF to be larger than 0.25 for jets with $p_T < 50$ GeV within the tracking volume ($|\eta| < 2.4$) is the preferred threshold for the E_T^{miss} reconstruction.

In addition, the p_T threshold, which defines the boundary between the jet and soft terms, is optimized. For these studies, the jets with $p_T > 20$ GeV and $|\eta| < 2.4$ are required to have JVF > 0.25. A procedure similar to that used for the JVF optimization is used for the jet-p_T threshold using the same two metrics as shown in Fig. 19. While applying a higher p_T threshold improves the E_T^{miss} resolution versus the number of pileup vertices, by decreasing the slope, the
8 Systematic uncertainties of the soft term

The E_T^{miss} is reconstructed from the vector sum of several terms corresponding to different types of contributions from reconstructed physics objects, as defined in Eq. (2). The estimated uncertainties in the energy scale and momentum resolution for the electrons [14], muons [13], jets [44], $\tau_{\text{had}-\text{vis}}$ [47], and photons [14] are propagated into the E_T^{miss}. This section describes the estimation of the systematic uncertainties for the E_T^{miss} soft term. These uncertainties take into account the impact of the generator and underlying-event modelling used by the ATLAS Collaboration, as well as effects from pileup.

The balance of the soft term with the calibrated physics objects is used to estimate the soft-term systematic uncertainties in $Z \rightarrow \mu\mu$ events, which have very little $E_T^{\text{miss, True}}$. The transverse momenta of the calibrated physics objects, $\hat{p}_{T}^{\text{hard}}$, is defined as

$$p_{T}^{\text{hard}} = \sum p_{T}^{\ell} + \sum p_{T}^{\mu} + \sum \hat{p}_{T}^{Z} + \sum \hat{p}_{T}^{\gamma} + \sum \hat{p}_{T}^{\text{jet}},$$

(15)

where \hat{p}_{T} is the vector sum of the transverse momenta of the high-p_T physics objects. It defines an axis (with unit vector $\hat{p}_{T}^{\text{hard}}$) in the transverse plane of the ATLAS detector along which the E_T^{miss} soft term is expected to balance p_T^{hard} in $Z \rightarrow \mu\mu$ events. This balance is sensitive to the differences in calibration and reconstruction of the $E_T^{\text{miss,soft}}$ between data and MC simulation and thus is sensitive to the uncertainty in the soft term. This discussion is similar to the one in Sect. 6.2, however, here the soft term is compared to the hard term rather than comparing the E_T^{miss} to the recoil of the Z.

8.1 Methodology for CST

Two sets of systematic uncertainties are considered for the CST. The same approach is used for the STVF and EPA algorithms to evaluate their soft-term systematic uncertainties. The first approach decomposes the systematic uncertainties into the longitudinal and transverse components along the direction of $\hat{p}_{T}^{\text{hard}}$, whereas the second approach estimates the global scale and resolution uncertainties. While both methods were recommended for analyses of the 8 TeV dataset, the first method, described in Sect. 8.1.1, gives smaller uncertainties. Therefore, the second method, which is discussed in Sect. 8.1.2, is now treated as a cross-check.

Both methods consider a subset of $Z \rightarrow \mu\mu$ events that do not have any jets with $p_T > 20$ GeV and $|\eta| < 4.5$. Such an event topology is optimal for estimation of the soft-term systematic uncertainties because only the muons and the soft term contribute to the E_T^{miss}. In principle the methods are valid in event topologies with any jet multiplicity, but the $Z \rightarrow \mu\mu + \geq 1$-jet events are more susceptible to jet-related systematic uncertainties.

8.1.1 Evaluation of balance between the soft term and the hard term

The primary or “balance” method exploits the momentum balance in the transverse plane between the soft and hard terms in $Z \rightarrow \ell\ell$ events, and the level of disagreement between data and simulation is assigned as a systematic uncertainty.

The $E_T^{\text{miss,soft}}$ is decomposed along the $\hat{p}_{T}^{\text{hard}}$ direction. The direction orthogonal to $\hat{p}_{T}^{\text{hard}}$ is referred to as the per-
p_{\text{hard}}^T$ is labelled as the longitudinal direction. The projections of $E_{\text{miss}}^{\text{soft}}$ along those directions are defined as:

$$
E^\text{miss,soft}_\parallel = E^\text{miss,soft}_T \cos(\phi^\text{miss,soft} \cdot \hat{p}_{\text{hard}}^T),
$$

$$
E^\text{miss,soft}_\perp = E^\text{miss,soft}_T \sin(\phi^\text{miss,soft} \cdot \hat{p}_{\text{hard}}^T),
$$

The $E^\text{miss,soft}_\parallel$ is sensitive to scale and resolution differences between the data and simulation because the soft term should balance the \hat{p}_{hard}^T in $Z \rightarrow \mu \mu$ events. For a narrow range of p_{hard}^T values, the mean and width of the $E^\text{miss,soft}_\parallel$ are compared between data and MC simulation. On the other hand, the perpendicular component, $E^\text{miss,soft}_\perp$, is only sensitive to differences in resolution. A Gaussian function is fit to the E^miss_T projected onto \hat{p}_{hard}^T in bins of p_{hard}^T, and the resulting Gaussian mean and width are shown in Fig. 20. The mean increases linearly with p_{hard}^T, because the soft term is not calibrated to the correct energy scale. On the other hand, the width is relatively independent of p_{hard}^T, because the width is mostly coming from pileup contributions.

The small discrepancies in mean and width between data and simulation are taken as the systematic uncertainties for the scale and resolution, respectively. A small dependence on the average number of collisions per bunch crossing is observed for the scale and resolution uncertainties for high p_{hard}^T, so the uncertainties are computed in three ranges of pileup and three ranges of p_{hard}^T. The scale uncertainty varies from -0.4 to 0.3 GeV depending on the bin, which reduces the uncertainties from the 5% shown in Fig. 20 for $p_{\text{hard}}^T > 10$ GeV. A small difference in the uncertainties for the resolution along the longitudinal and perpendicular directions is observed, so they are considered separately. The average uncertainty is about 2.1% (1.8%) for the longitudinal (perpendicular) direction.

8.1.2 Cross-check method for the CST systematic uncertainties

As a cross-check of the method used to estimate the CST uncertainties, the sample of $Z \rightarrow \mu \mu$+0-jet events is also used to evaluate the level of agreement between data and simulation. The projection of the E^miss_T onto \hat{p}_{hard}^T provides a test for potential biases in the E^miss_T scale. The systematic uncertainty in the soft-term scale is estimated by comparing the ratio of data to MC simulation for $(E^\text{miss}_x, E^\text{miss}_y)$ versus ΣE_T (CST) as shown in Fig. 21a. The average deviation from unity in the ratio of data to MC simulation is about 8%, which is taken as a flat uncertainty in the absolute scale. The systematic uncertainty in the soft-term resolution is estimated by evaluating the level of agreement between data and MC simulation in the E^miss_x and E^miss_y resolution as a function of the ΣE_T (CST) (Fig. 21b). The uncertainty on the soft-term resolution is about 2.5% and is shown as the band in the data/MC ratio.

Even though the distributions appear similar, the results in this section are derived by projecting the full E^miss_T onto the \hat{p}_{hard}^T in the 0-jet events, and are not directly comparable to the ones in Sect. 8.1.1, in which only the soft term is projected onto \hat{p}_{hard}^T.

8.2 Methodology for TST and Track E^miss_T

A slightly different data-driven methodology is used to evaluate the systematic uncertainties in the TST and Track E^miss_T. Tracks matched to jets that are included in the hard term are removed from the Track E^miss_T and are treated separately, as described in Sect. 8.2.3.

The method exploits the balance between the soft track term and \hat{p}_{hard}^T and is similar to the balance method for the CST. The systematic uncertainties are split into two compo-
components: the longitudinal \((E_{\parallel}^{\text{miss,soft}}) \) and transverse \((E_{\perp}^{\text{miss,soft}}) \) projections onto \(\hat{p}_{T}^{\text{hard}} \) as defined in Eq. (16).

The \(E_{\parallel}^{\text{miss,soft}} \) in data is fit with the MC simulation convolved with a Gaussian function, and the fitted Gaussian mean and width are used to extract the differences between simulation and data. The largest fit values of the Gaussian width and offset define the systematic uncertainties. For the perpendicular component, the simulation is only smeared by a Gaussian function of width \(\sigma_{\perp} \) to match the data mean, which is set to zero in the fit, is very small in data and MC simulation because the hadronic recoil only affects \(E_{\perp}^{\text{miss,soft}} \). The fitting is done in 5 or 10 GeV bins of \(p_{T}^{\text{had}} \) from 0–50 GeV, and a single bin for \(p_{T}^{\text{had}} > 50 \) GeV.

An example fit is shown in Fig. 22 for illustration. The 1-jet selection with the JVF requirement is used to show that the differences between data and simulation, from the jet-related systematic uncertainties, are small relative to the differences in the soft-term modelling. The impact of the jet-related systematic uncertainties is less than 0.1% in the Gaussian smearing (\(\sigma = 1.61 \) GeV), indicating that the jet-related systematic uncertainties do not affect the extraction of the TST systematic uncertainties.

The Gaussian width squared of \(E_{\parallel}^{\text{miss,soft}} \) and \(E_{\perp}^{\text{miss,soft}} \) components and the fitted mean of \(E_{\parallel}^{\text{miss,soft}} \) for data and MC simulation are shown versus \(p_{T}^{\text{had}} \) in Fig. 23. The systematic uncertainty squared of the convolved Gaussian width and the systematic uncertainty of the offset for the longitudinal component are shown in the bands. While the systematic uncertainties are applied to the MC simulation, the band is shown centred around the data to show that all MC generators plus parton shower models agree with the data within the assigned uncertainties. Similarly for the \(E_{\perp}^{\text{miss,soft}} \), the width of the convolved Gaussian function for the perpendicular component is shown in the band. The ALPGEN+HERWIG simulation has the largest disagreement with data, so the Gaussian smearing parameters and offsets applied to the simulation are used as the systematic uncertainties in the soft term. The \(p_{T}^{\text{had}} > 50 \) GeV bin has the smallest number of data entries; therefore, it has the largest uncertainties in the fitted mean and width. In this bin of the distribution shown in Fig. 23(a), the statistical uncertainty from the ALPGEN+HERWIG simulation, which is not the most discrepant from data, is added to the uncertainty band, and this results in a systematic uncertainty band that spans the differences in MC generators for \(\sigma^{2}(E_{\parallel}^{\text{miss,soft}}) \) for events with \(p_{T}^{\text{had}} > 50 \) GeV.
Fig. 23 The fitted TST a $\sigma^2(E_{\text{miss,soft}}^\parallel)$, b $\sigma^2(E_{\text{miss,soft}}^\perp)$, and c $\langle E_{\text{miss,soft}}^\parallel \rangle$ in each case versus p_T^{hard} are shown in data and ALPGEN+HERWIG, POWHEG+PYTHIA8, and ALPGEN+PYTHIA $Z \rightarrow \mu\mu$ simulation. The error bars on the data and MC simulation points are the errors from the Gaussian fits. The solid band, which is centred on the data, shows the parameter’s systematic uncertainties from Table 6. The inserts at the bottom of the figures show the ratios of the MC predictions to the data.

The impact of uncertainties coming from the parton shower model, the number of jets, μ dependence, JER/JES uncertainties, and forward versus central jet differences was evaluated. Among the uncertainties, the differences between the generator and parton shower models have the most dominant effects. The total TST systematic uncertainty is summarized in Table 6.

8.2.1 Propagation of systematic uncertainties

The CST systematic uncertainties from the balance method defined in Sect. 8.1.1 are propagated to the nominal $E_T^{\text{miss,soft}}$ as follows:

$$E_{\parallel,\text{reso}}^{\text{miss,soft}} = (1 \pm R_{\parallel,\text{reso}})(E_{\parallel}^{\text{miss,soft}} - \langle E_{\parallel}^{\text{miss,soft}} \rangle)$$

$$E_{\parallel,\text{scale}}^{\text{miss,soft}} = E_{\parallel}^{\text{miss,soft}} \pm \Delta_{\text{CST}}$$

where $E_{\parallel,\text{reso}}^{\text{miss,soft}}$ and $E_{\parallel,\text{scale}}^{\text{miss,soft}}$ are the values after propagating the resolution and scale uncertainties, respectively, in the longitudinal (perpendicular) directions. The mean values of parameters are denoted using angled brackets. The Δ_{CST} is the scale uncertainty, and the $R_{\parallel,\text{reso}}$ is the fractional resolution uncertainty taken from the lower portion of Fig. 20b. Both depend on the p_T^{hard} and the average number of pileup

<table>
<thead>
<tr>
<th>p_T^{hard} range (GeV)</th>
<th>Δ_{TST} (GeV)</th>
<th>σ_\parallel (GeV)</th>
<th>σ_\perp (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>0.3</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>10–15</td>
<td>0.4</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>15–20</td>
<td>0.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>20–25</td>
<td>0.7</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>25–30</td>
<td>0.8</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>30–35</td>
<td>1.0</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>35–40</td>
<td>1.1</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>40–50</td>
<td>1.2</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td>>50</td>
<td>1.4</td>
<td>5.2</td>
<td>2.7</td>
</tr>
</tbody>
</table>
interactions per bunch crossing. Each propagation of the systematic uncertainties in Eq. (17b) is called a variation, and all of the variations are used in ATLAS analyses.

The systematic uncertainties in the resolution and scale for the CST using the cross-check method defined in Sect. 8.1.2 are propagated to the nominal $\vec{E}_T^{\text{miss,soft}}$ as follows:

$$E_{x(y),\text{reso}}^{\text{miss,soft}} = E_{x(y)}^{\text{miss,soft}} \cdot \text{Gaus}(1, \delta_{\text{CST}}), \quad (18a)$$

$$E_{x(y),\text{scale}}^{\text{miss,soft}} = E_{x(y)}^{\text{miss,soft}} \cdot (1 \pm \delta), \quad (18b)$$

where $E_{x(y),\text{reso}}^{\text{miss,soft}}$ and $E_{x(y),\text{scale}}^{\text{miss,soft}}$ are the values after propagating the resolution and scale uncertainties, respectively, in the $x(y)$ directions. Here, δ is the fractional scale uncertainty, and δ_{CST} corrects for the differences in resolution between the data and simulation.

The systematic uncertainties in the resolution and scale for the TST $\vec{E}_T^{\text{miss,soft}}$ are propagated to the nominal $\vec{E}_T^{\text{miss,soft}}$ as follows:

$$E_{\parallel,\text{reso}}^{\text{miss,soft}} = E_{\parallel}^{\text{miss,soft}} + \text{Gaus}(\Delta_{\text{TST}}, \sigma_{\parallel}), \quad (19a)$$

$$E_{\parallel,\text{scale}}^{\text{miss,soft}} = E_{\parallel}^{\text{miss,soft}} \pm \Delta_{\text{TST}}, \quad (19b)$$

The symbol $\text{Gaus}(\Delta_{\text{TST}}, \sigma_{\parallel})$ represents a random number sampled from a Gaussian distribution with mean Δ_{TST} and width σ_{\parallel}. The shift Δ_{TST} is zero for the perpendicular component. All of the TST systematic-uncertainty variations have a wider distribution than the nominal MC simulation, when the Gaussian smearing is applied. To cover cases in which the data have a smaller resolution (narrower distribution) than MC simulation, a downward variation is computed using Eq. (20). To compute the yield of predicted events in the variation, $Y_{\text{down}}(X)$, for a given value X of the E_T^{miss}, the yield is defined as the

$$Y_{\text{down}}(X) = \frac{[Y(X)]^2}{Y_{\text{smeared}}(X)}, \quad (20)$$

where the square of the yield of the nominal distribution, $Y(X)$, is divided by the yield of events after applying the variation with Gaussian smearing to the kinematic variable, $Y_{\text{smeared}}(X)$. In practice, the yields are typically the content of histogram bins before $(Y(X))$ and after $(Y_{\text{smeared}}(X))$ the systematic uncertainty variations. This procedure can be applied to any kinematic observable by propagating only the smeared soft-term variation to the calculation of the kinematic observable X and then computing the yield $Y_{\text{down}}(X)$ as defined in Eq. (20).

There are six total systematic uncertainties associated with the TST:

- Increase scale ($E_{\parallel,\text{scale}}^{\text{miss,soft}}$)
- Decrease scale ($E_{\parallel,\text{scale}}^{\text{miss,soft}}$)
- Gaussian smearing of $E_{\parallel}^{\text{miss,soft}}$ ($E_{\parallel,\text{reso}}^{\text{miss,soft}}$)
- The downward variation of the above $E_{\parallel,\text{reso}}^{\text{miss,soft}}$ computed using Eq. (20)
- Gaussian smearing of $E_{\perp}^{\text{miss,soft}}$ ($E_{\perp,\text{reso}}^{\text{miss,soft}}$)
- The downward variation of the above $E_{\perp,\text{reso}}^{\text{miss,soft}}$ computed using Eq. (20)

8.2.2 Closure of systematic uncertainties

The systematic uncertainties derived in this section for the CST and TST E_T^{miss} are validated by applying them to the $Z \rightarrow \mu\mu$ sample to confirm that the differences between data and MC simulation are covered.

Fig. 24 Distributions of a $E_T^{\text{miss,soft}}$ and b E_T^{miss} with the CST algorithm. Data are compared to the nominal simulation distribution as well as those resulting from applying the shifts/smearing according to the scale and resolution systematic uncertainties on the $E_T^{\text{miss,soft}}$. The resulting changes from the variations are added in quadrature, and the insets at the bottom of the figures show the ratios of the data to the MC predictions. The uncertainties are estimated using the balance method described in Sect. 8.1.1
The effects of these systematic uncertainty variations on the CST E_T^{miss} are shown for the $Z \rightarrow \mu \mu$ events in Figs. 24 and 25 for the primary (Sect. 8.1.1) and the cross-check (Sect. 8.1.2) methods, respectively. The uncertainties are larger for the cross-check method, reaching around 50% for $E_T^{\text{miss,soft}} > 60$ GeV in Fig. 25a.

The corresponding plots for the TST E_T^{miss} are shown in Fig. 26 using the $Z \rightarrow \mu \mu +0$-jet control sample, where the uncertainty band is the quadratic sum of the variations with the MC statistical uncertainty. The systematic uncertainty band for the TST is larger in Fig. 26a than the one for the primary CST algorithm. In all the distributions, the systematic uncertainties in the soft term alone cover the disagreement between data and MC simulation.

8.2.3 Systematic uncertainties from tracks inside jets

A separate systematic uncertainty is applied to the scalar summed p_T of tracks associated with high-p_T jets in the Track E_T^{miss} because these tracks are not included in the TST. The fraction of the momentum carried by charged particles within jets was studied in ATLAS [57], and its uncertainty varies from 3 to 5% depending on the jet η and p_T. These uncertainties affect the azimuthal angle between the Track E_T^{miss} and the TST E_T^{miss}, so the modelling is checked with $Z \rightarrow \mu \mu$ events produced with one jet. The azimuthal angle between the Track E_T^{miss} and the TST E_T^{miss} directions is well modelled, and the differences between data and MC simulation are within the systematic uncertainties.
9 Conclusions

Weakly interacting particles, which leave the ATLAS detector undetected, give rise to a momentum imbalance in the plane transverse to the beamline. An accurate measurement of the missing transverse momentum (E_T^{miss}) is thus important in many physics analyses to infer the momentum of these particles. However, additional interactions occurring in a given bunch crossing as well as residual signatures from nearby bunch crossings make it difficult to reconstruct the E_T^{miss} from the hard-scattering process alone.

The E_T^{miss} is computed as the negative vector sum of the reconstructed physics objects including electrons, photons, muons, τ-leptons, and jets. The remaining energy deposits not associated with those high-p_T physics objects are also considered in the E_T^{miss}. They collectively form the so-called soft term, which is the E_T^{miss} component most affected by pileup. The calorimeter and the tracker in the ATLAS detector provide complementary information to the reconstruction of the high-p_T physics objects as well as the E_T^{miss} soft term. Charged particles are matched to a particular collision point or vertex, and this information is used to determine which charged particles originated from the hard-scatter collision. Thus tracking information can be used to greatly reduce the pileup dependence of the E_T^{miss} reconstruction. This has resulted in the development of E_T^{miss} reconstruction algorithms that combine the information from the tracker and the calorimeter. The performance of these reconstruction algorithms is evaluated using data from 8 TeV proton–proton collisions collected with the ATLAS detector at the LHC corresponding to an integrated luminosity of 20.3 fb$^{-1}$.

The Calorimeter Soft Term (CST) is computed from the sum of calorimeter topological clusters not associated with any hard object. No distinction can be made between energy contributions from pileup and hard-scatter interactions, which makes the resolution on the E_T^{miss} magnitude and direction very dependent on the number of pileup interactions. The pileup-suppressed E_T^{miss} definitions clearly reduce the dependence on the number of pileup interactions but also introduce a larger under-estimation of the soft term than the CST.

The Track Soft Term (TST) algorithm does not use calorimeter energy deposits in the soft term and uses only the inner detector (ID) tracks. It has stable E_T^{miss} resolution with respect to the amount of pileup; however, it does not have as good a response as the CST E_T^{miss} due mainly to missing neutral particles in the soft term. Nevertheless, its response is better than that of the other reconstruction algorithms that aim to combine the tracking and calorimeter information. For large values of $E_T^{\text{miss,\,true}}$, the CST and TST E_T^{miss} algorithms all perform similarly. This is because contributions from jets dominate the E_T^{miss} performance, making the differences in soft-term reconstruction less important.

The Extrapolated Jet Area with Filter (EJAF) and Soft-Term Vertex-Fraction (STVF) E_T^{miss} reconstruction algorithms correct for pileup effects in the CST E_T^{miss} by utilizing a combination of the ATLAS tracker and calorimeter measurements. Both apply a vertex association to the jets used in the E_T^{miss} calculation. The EJAF soft-term reconstruction subtracts the pileup contributions to the soft term using a procedure similar to jet area-based pileup corrections, and the EJAF E_T^{miss} resolution has a reduced dependence on the amount of pileup, relative to the CST algorithm. The STVF reconstruction algorithm uses an event-level correction of the CST, which is the scalar sum of charged-particle p_T from the hard-scatter vertex divided by the scalar sum of all charged-particle p_T. The STVF correction to the soft term greatly decreases the dependence of the E_T^{miss} resolution on the amount of pileup but causes the largest under-estimation of all the soft-term algorithms.

Finally, the Track E_T^{miss} reconstruction uses only the inner detector tracks with the exception of the reconstructed electron objects, which use the calorimeter E_T measurement. The resolutions on the Track E_T^{miss}, such as Drell–Yan events, may require the use of more than one E_T^{miss} definition. The tails of the track and calorimeter E_T^{miss} distributions remain uncorrelated, and exploiting both definitions in parallel allows one to suppress such backgrounds even under increasing pileup conditions.

The systematic uncertainties in the E_T^{miss} are estimated with $Z \rightarrow \mu\mu$ events for each reconstruction algorithm, and are found to be small.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; RAL, Croatia; Definition of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; RAL, Croatia;
land; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-
grammes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United
Kingdom. The crucial computing support from all WLCG partners is
acknowledged gratefully, in particular from CERN, the ATLAS Tier-1
facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden),
CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy),
NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and
BNL (USA), the Tier-2 facilities worldwide and large non-WLCG
resource providers. Major contributors of computing resources are listed
in Ref. [58].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Funded by SCOAP3.

Appendix

A. Calculation of EJAF

A jet-level η-dependent pileup correction of the form

$$\rho_{\text{med}}(\eta) = \rho_{\text{med}} \cdot P_{\text{fct}}(\eta, N_{\text{PV}}, \langle \mu \rangle),$$

(21)

is used, where the N_{PV} and $\langle \mu \rangle$ are determined from
the event properties. This multiplies the median soft-term jet p_T-density, ρ_{med}, from Eq. (7) by the functional form, $P_{\text{fct}}(\eta, N_{\text{PV}}, \langle \mu \rangle)$ as defined in Eq. (9), which was fit to the
average transverse momentum density. The median transverse
momentum density ρ_{med} is determined from soft-term
jets with $|\eta| < 2$ and then extrapolated to higher $|\eta|$ as
discussed in Sect. 4.1.2 using the fitted $P_{\text{fct}}(\eta, N_{\text{PV}}, \langle \mu \rangle)$.

The pileup correction $\rho_{\text{med}}(\eta)$ from Eq. (21) is applied to
the transverse momenta of the soft-term jets passing a JVF
selection, the label of “filter-jet” is added to the catchment
area ($A_{i}^{\text{filter-jet}}$), to the transverse momentum ($p_{T,i}^{\text{filter-jet}}$), and
to the jet η ($\eta_{i}^{\text{filter-jet}}$) variables.

While all other jets used in this paper use an $R = 0.4$
reconstruction, the larger value of $R = 0.6$ is used to reduce the
number of k_t-soft-term jets with $p_T = 0$ (see Eq. (22)) in
the central detector region. While negative energy deposits
are possible in the ATLAS calorimeters, their contributions
cannot be matched to the soft-term jets by ghost-association.
Studies that modify the cluster-to-jet matching to include
negative-p_T clusters indicate no change in the $E_{\text{T}}^{\text{miss}}$ performance,
so negative-p_T clusters are excluded from the soft-
term jets. Finally, only filter-jets with $p_{T,i}^{\text{filter-jet}}$ larger than the
pileup correction contribute to the EJAF soft term.

References

1. ATLAS Collaboration, Performance of Missing Transverse
arXiv:1108.5602 [hep-ex]

2. ATLAS Collaboration, The ATLAS experiment at the CERN
1748-0221/3/08/S08003

3. ATLAS Collaboration, Luminosity determination in pp collisions
at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC. Eur. Phys.

4. ATLAS Collaboration, Performance of pile-up mitigation tech-
nique for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS

5. ATLAS Collaboration, Data-quality requirements and event clean-
ing for jets and missing transverse energy reconstruction with the
ATLAS detector in proton–proton collisions at a center of mass
cern.ch/record/1277678

6. ATLAS Collaboration, Alignment of the ATLAS inner detector and
cds.cern.ch/record/1741021

7. ATLAS Collaboration, Performance of the ATLAS inner detector
track and vertex reconstruction in the high pile-up LHC environ-
1435196

8. ATLAS Collaboration, Charged-particle multiplicities in pp inter-
actions measured with the ATLAS detector at the LHC. N. J. Phys.

9. ATLAS Collaboration, Electron reconstruction and identification
efficiency measurements with the ATLAS detector using the 2011

10. ATLAS Collaboration, Reconstruction of primary vertices at the
ATLAS experiment in Run 1 proton–proton collisions at the LHC.

ATLAS Collaboration

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, USA
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a)Department of Physics, Ankara University, Ankara, Turkey; (b)Istanbul Aydin University, Istanbul, Turkey; (c)Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA
7 Department of Physics, University of Arizona, Tucson, AZ, USA
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, USA
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin, TX, USA
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
20 (a)Department of Physics, Bogazici University, Istanbul, Turkey; (b)Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey; (c)Department of Physics, Dogus University, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a)INFN Sezione di Bologna, Bologna, Italy; (b)Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, University of Bonn, Bonn, Germany
24 Physics Department, Boston University, Boston, MA, USA
25 Department of Physics, Brandeis University, Waltham, MA, USA
26 (a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
28 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (d) University Politehnica Bucharest, Bucharest, Romania; (e) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidade de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, UK
31 Department of Physics, Carleton University, Ottawa, ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Anhui, China; (c) Department of Physics, Nanjing University, Jiangsu, China; (d) School of Physics, Shandong University, Shandong, China; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai (also affiliated with PKU-CHEP), China; (f) Physics Department, Tsinghua University, Beijing 100084, China
36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
37 Nevis Laboratory, Columbia University, Irvington, NY, USA
38 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
40 (a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
41 Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
42 Physics Department, Southern Methodist University, Dallas, TX, USA
43 Physics Department, University of Texas at Dallas, Richardson, TX, USA
44 DESY, Hamburg and Zeuthen, Germany
45 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
47 Department of Physics, Duke University, Durham, NC, USA
48 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
49 INFN Laboratori Nazionali di Frascati, Frascati, Italy
50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
51 Section de Physique, Université de Genève, Geneva, Switzerland
52 (a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy
53 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
54 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
56 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
58 Department of Physics, Hampton University, Hampton, VA, USA
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
60 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong, China; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, Indiana University, Bloomington, IN, USA

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, IA, USA

Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, UK

(a) INFN Sezione di Lecce, Lecce, Italy; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

Department of Physics, Jožef Stefan Institute, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, UK

Department of Physics, Royal Holloway University of London, Surrey, UK

Department of Physics and Astronomy, University College London, London, UK

Louisiana Tech University, Ruston, LA, USA

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, UK

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, MA, USA

Department of Physics, McGill University, Montreal, QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor, MI, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA

(a) INFN Sezione di Milano, Milan, Italy; (b) Dipartimento di Fisica, Università di Milano, Milan, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Group of Particle Physics, University of Montreal, Montreal, QC, Canada

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

(a) INFN Sezione di Napoli, Naples, Italy; (b) Dipartimento di Fisica, Università di Napoli, Naples, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands

Department of Physics, Northern Illinois University, DeKalb, IL, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia