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A roadmap of the DUNE technical
design report

The Deep Underground Neutrino Experiment (DUNE) far detector (FD) technical design report
(TDR) describes the proposed physics program, detector designs, and management structures and
procedures at the technical design stage.

The TDR is composed of five volumes, as follows:

• Volume I (Introduction to DUNE) provides an overview of all of DUNE for science policy
professionals.

• Volume II (DUNE physics) describes the DUNE physics program.

• Volume III (DUNE far detector technical coordination) outlines DUNE management struc-
tures, methodologies, procedures, requirements, and risks.

• Volume IV (The DUNE far detector single-phase technology) and Volume V (The DUNE Far
Detector Dual-Phase Technology) describe the two FD liquid argon time-projection chamber
(LArTPC) technologies.

The text includes terms that hyperlink to definitions in a volume-specific glossary. These terms
appear underlined in some online browsers, if enabled in the browser’s settings.
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Chapter 1

Executive summary

1.1 Overview

1.1.1 The DUNE science program

The preponderance of matter over antimatter in the early universe, the dynamics of the supernova
neutrino bursts (SNBs) that produced the heavy elements necessary for life, and whether protons
eventually decay — these mysteries at the forefront of particle physics and astrophysics are key to
understanding the early evolution of our universe, its current state, and its eventual fate. The DUNE
is an international world-class experiment dedicated to addressing these questions.

Experiments carried out over the past half century have revealed that neutrinos are found in
three states, or flavors, and can transform from one flavor into another. These results indicate that
each neutrino flavor state is a mixture of three different nonzero mass states, and to date offer the
most compelling evidence for physics beyond the standard model. In a single experiment, DUNE
will enable a broad exploration of the three-flavor model of neutrino physics with unprecedented
detail. Chief among its potential discoveries is that of matter-antimatter asymmetries (through the
mechanism of charge-parity symmetry violation (CPV)) in neutrino flavor mixing — a step toward
unraveling the mystery of matter generation in the early universe. Independently, determination of
the unknown neutrino mass ordering and precise measurement of neutrino mixing parameters by
DUNE may reveal new fundamental symmetries of nature.

Neutrinos emitted in the first few seconds of a core-collapse supernova carry with them the
potential for great insight into the evolution of the universe. DUNE’s capability to collect and
analyze this high-statistics neutrino signal from a supernova within the Milky Way would provide
a rare opportunity to peer inside a newly formed neutron star and potentially witness the birth of a
black hole.

Grand unified theories (GUTs), which attempt to describe the unification of the known forces,
predict rates for proton decay that cover a range directly accessible with the next generation of
large underground detectors such as the DUNE far detector. The experiment’s sensitivity to key
proton decay channels will offer unique opportunities for the ground-breaking discovery of this
phenomenon.

– 2 –– 2 –– 2 –
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Chapter 1. Executive summaryChapter 1. Executive summaryChapter 1. Executive summary

1.1.2 The DUNE detectors and supporting facilities

To achieve its goals, the international DUNE experiment, hosted by the U.S. Department of Energy’s
Fermi National Accelerator Laboratory (Fermilab) in Illinois, comprises three central components:
(1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at
Fermilab, (2) a massive FD situated 1.5 km underground at the Sanford Underground Research
Facility (SURF) in South Dakota, and (3) a composite near detector (ND) installed just downstream
of the neutrino source. Figure 1.1 illustrates the layout of these components. The far detector, the
subject of this TDR, will be a modular LArTPC with a fiducial (sensitive) mass of 40 kt1 (40Gg)
of liquid argon (LAr), a cryogenic liquid that must be kept at 88 K (−185°C). This detector will
be able to uniquely reconstruct neutrino interactions with image-like precision and unprecedented
resolution [1].

Figure 1.1. Cartoon illustrating the configuration of the LBNF beamline at Fermilab, in Illinois, and the
DUNE detectors in Illinois and South Dakota, separated by 1300 km.

The Long-Baseline Neutrino Facility (LBNF) project, also hosted by Fermilab, provides the
beamline and the civil construction, called conventional facilities (CF), for the DUNE experiment.
The organization and management of LBNF is separate from that of the experiment; its design and
construction are organized as a U.S. DOE/Fermilab project incorporating international partners.

The LBNF beamline at Fermilab will deliver the world’s most intense neutrino beam to the
near and far detectors in an on-axis configuration. The upgrade to the Proton Improvement Plan
II (PIP-II) [2], a leading-edge, superconducting, linear proton accelerator under construction at
Fermilab, will deliver between 1.0 and 1.2MW of proton beam power from the Fermilab Main
Injector to LBNF, which will aim and focus the beam, whereupon the protons, in a wide energy
band of 60GeV to 120GeV, will collide with a high-power production target, creating a secondary
beam from which the intense neutrino flux will emerge, traveling in the direction of the DUNE
detectors (figure 1.2). A further planned upgrade of the accelerator complex could provide up to
2.4MW of beam power by 2030, potentially extending the DUNE science reach. The upgrade
will also increase the reliability of the Fermilab accelerator complex and provide the flexibility to
produce customized beams tailored to specific scientific needs.

The intense, wide-band neutrino beam, the massive LArTPC detector at the far site, and the
composite (i.e., multi-purpose) ND will provide a rich ancillary science program for the DUNE

1For comparison, this is nearly twice the mass of the Statue of Liberty and nearly four times that of the Eiffel Tower.
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