Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS Collaboration

DOI
10.1016/j.physletb.2018.10.021

Publication date
2018

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):
Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

1. Introduction

Searches for diboson resonances provide an essential test of theories of electroweak symmetry breaking beyond the Standard Model (BSM). Vector resonances are predicted in various BSM scenarios, such as in extended gauge models [1,2], Little Higgs models [3], Composite Higgs models and walking technicolor [4–6], unitarized Electroweak Chiral Lagrangian models [7], as well as in theories with extra dimensions [8–10]. In addition, new scalar diboson resonances result from models with an extended Higgs sector [11,12]. This Letter reports on a search for a WZ resonance in the fully leptonic decay channel $\ell^+\ell^-\ell^+\ell^-$ ($\ell = e$ or μ), produced either by quark–antiquark (qq) fusion or by vector-boson fusion (VBF). The proton–proton collision data were collected by the ATLAS detector [13] at the Large Hadron Collider (LHC) at a centre-of-mass energy $\sqrt{s} = 13$ TeV.

Parameterized Lagrangians [14–16] incorporating a heavy vector triplet (HVT) permit the interpretation of searches for vector resonances in a generic way. Here, the simplified phenomenological Lagrangian of Ref. [15] is used. The coupling of the new heavy vector resonance, V, to the Higgs boson and the Standard Model (SM) gauge bosons is parameterized by g_Vc_H and to the fermions via the combination $(g^2/g_V)c_F$, where g is the SM SU(2) gauge coupling. The parameter g_V represents the typical strength of the vector-boson interaction, while the parameters c_H and c_F are expected to be of the order of unity in most models. The vector-boson scattering process, $pp \rightarrow Vjj \rightarrow WZjj$, is only sensitive to the gauge boson coupling and, in this case, the benchmark model used to interpret the results assumes no coupling of the heavy vector resonance to fermions.

The Georgi–Machacek model (GM) [17,18] is used as a benchmark for a singly charged scalar resonance. The model extends the Higgs sector by including one real and one complex triplet, which preserves custodial symmetry, ensuring that the parameter $\rho = M_W^2/(M_Z^2\cos^2\theta_W) = 1$ at tree level. It is less experimentally constrained [19,20] than other models with higher isospin representations, such as Little Higgs models or Left–Right symmetric models [21]. A parameter $\sin^2\theta_H$, representing the mixing of the vacuum expectation values, determines the contribution of the triplets to the masses of the W and Z bosons. The ten physical scalar states are organized into different custodial multiplets: a fiveplet ($H^+_5, H^0_5, H^0_5, H^0_5, H^0_5$), which is fermiophobic but coupled to WZ, a triplet, and two singlets, one of which is identified as the 125 GeV SM Higgs boson. Assuming that the triplet states are heavier than the fiveplet scalars, H_5 can only be produced by vector-boson fusion and the cross section is proportional to $\sin^2\theta_H$. The singly charged members of this fiveplet are the object of the present search in the VBF channel. For both models the intrinsic width of the resonance is below 4%, which is lower than the experimental resolution in nearly all the parameter space explored in the present analysis.

The VBF process ($pp \rightarrow WZjj$) is characterized by the presence of two jets with a large rapidity gap resulting from quarks from which a vector boson has been radiated. The absence of this topology is interpreted as qq production, collectively referred to here as qq. The spectrum of the reconstructed invariant mass of the WZ resonance candidates is examined for localized excesses over the expected SM background. Results are provided for the VBF and qq.
categories separately, neglecting possible signal leakage between them.

Early results from the Tevatron [22,23] have put limits on the mass of a W' boson of an extended gauge model [2] in the WZ channel between 180 GeV and 690 GeV. The present analysis extends the search for resonant WZ production beyond that in Run 1 $p p$ collision data at $\sqrt{s} = 8$ TeV performed by the ATLAS [24] and CMS [25] collaborations. Each collaboration has combined results [26–28] from searches for heavy VV and VH resonances ($V = W$ or Z) based on Run 1 data and on partial Run 2 data at $\sqrt{s} = 13$ TeV in the fully hadronic ($qqqq$), semileptonic (ℓqq, $\ell qqqq$), and fully leptonic ($\ell\ell\ell\ell$, $\ell\ell\ell\nu$, $\ell\ell\nu\nu$) final states. More recent results from VV and VH resonance searches with data at $\sqrt{s} = 13$ TeV have been reported in Refs. [29–38]. The various decay channels generally differ in sensitivity in different mass regions. The fully leptonic channel, in spite of a lower branching ratio, is expected to be particularly sensitive to low-mass resonances as it has lower backgrounds. A recent search [39] by the CMS Collaboration for a charged Higgs boson produced by vector-boson fusion and decaying into WZ in the fully leptonic mode, using 15.2 fb^{-1} of data collected at $\sqrt{s} = 13$ TeV, has yielded limits on the coupling parameter of the GM model, as a function of mass. Limits on the GM model have also been set, based on analyses of same-charge WW production by CMS [40] and opposite-charge WW production by ATLAS [41], using data at $\sqrt{s} = 13$ TeV with an integrated luminosity of 36.1 fb$^{-1}$.

2. ATLAS detector

The ATLAS detector at the LHC has a cylindrical geometry with a near 4π coverage in solid angle.1 The inner detector (ID), consisting of silicon pixel, silicon microstrip and transition radiation detectors, is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field. It allows precise reconstruction of tracks from charged particles and measurement of their momenta up to a pseudorapidity of $|\eta| = 2.5$. High-granularity lead/liquid-argon (LAr) sampling electromagnetic and steel/scintillator-tile hadron calorimeters, at larger radius, provide energy measurements in the central pseudorapidity range $|\eta| < 1.7$. In the endcap and forward regions, LAr calorimeters for both the EM and hadronic energy measurements extend the region of angular acceptance up to $|\eta| = 4.9$. Outside the calorimeters, the muon spectrometer incorporates multiple layers of trigger and tracking chambers in a magnetic field produced by a system of superconducting toroid magnets, enabling an independent precise measurement of muon track momenta for $|\eta| < 2.7$. The ATLAS trigger system consists of a hardware-based level-1 trigger followed by a software-based high-level trigger [42].

3. Data and Monte Carlo samples

The data used in this analysis were collected during 2015 and 2016 with the ATLAS detector in $p p$ collisions at a centre-of-mass energy of 13 TeV at the LHC. The minimum bunch crossing interval is 25 ns, with a mean number of 23 additional interactions per bunch crossing. The events are required to have passed combinations of single-electron or single-muon triggers. The transverse momentum threshold of the leptons in 2015 is 24 GeV for electrons and 20 GeV for muons satisfying a loose isolation requirement based only on ID track information. Due to the higher instantaneous luminosity in 2016 the trigger threshold was increased to 26 GeV for both electrons and muons and tighter isolation requirements were applied. Additional electron and muon triggers that do not include any isolation requirements with transverse momentum thresholds of $p_T > 120$ GeV with less restrictive electron identification criteria are used to increase the selection efficiency which reaches close to 100%. Events are accepted only if quality criteria for detector and data conditions are satisfied. With these conditions, the available datasets correspond to an integrated luminosity of 36.1 fb$^{-1}$.

Samples of simulated data were produced by Monte Carlo (MC) generators with the detector response obtained from the GEANT4 toolkit [43,44]. For some samples, the calorimeter response is obtained from a fast parameterized simulation [45], instead of GEANT4. Additional simulated inelastic $p p$ collisions, generated with Pythia 8.186 [46] with the A2 set of tuned parameters [47] and the MSTW2008LO [48] parton distribution function (PDF), were overlaid in order to model both the in- and out-of-time effects from additional $p p$ collisions (pile-up) in the same and neighbouring bunch crossings. The mean number of pile-up events in the MC samples was set to reflect the conditions in the data.

For the HVT interpretation, $W' \rightarrow WZ$ samples were generated. Two benchmark models, provided in Ref. [15], are used. In Model A, weakly coupled vector resonances arise from an extension of the SM gauge group [49] with an additional $SU(2)$ symmetry group and the branching fractions to fermions and gauge bosons are comparable. In Model B, the heavy vector triplet is produced in a strongly coupled scenario, as in a Composite Higgs model [50] and fermionic couplings are suppressed. The parameter g_V was set to 1 for Model A and to 3 for Model B. For both models, the parameter c_T is assumed to be the same for all types of fermions. Simulated signal samples for the HVT benchmark Model A were generated for masses of vector resonances ranging from 250 GeV to 3 TeV with MADGRAPH_AMC@NLO 2.2.2 [51], using the model file provided by the authors in Ref. [52] with the NNPDF23LO [53] PDF set. They are hadronized with Pythia 8.186. For interpretation in terms of Model B, the Model A cross sections are simply scaled. This is justified since the width remains well below the experimental resolution and the angular distributions are the same for both models.

For the VBF production channel, HVT samples were generated with $g_V = 1$ for masses ranging from 250 GeV to 2 TeV. The coupling parameter c_T was set to 1 and all other couplings of the heavy triplet, including c_f, were set to 0 in order to maximize the VBF contribution. A dijet invariant mass of at least 150 GeV was required during event generation.

For the GM signal samples, $p p \rightarrow H_{s}^{3} jj \rightarrow W^{+}Z jj$ were produced with MADGRAPH_AMC@NLO 2.2.2 for the mass range 200 to 900 GeV in the H_{s}-plane defined in [54], compatible with present limits [20,55], using GM Calc [56] and with $\sin^2\theta_W = 0.5$. They were produced at leading order, but normalized to next-to-leading order according to Ref. [11], where the cross sections and widths, which scale as $\sin^4\theta_W$, are also given. For these samples, a minimum p_T of 15 GeV (10 GeV) for the jets (leptons) was required during event generation and the pseudorapidity must be in the range $|\eta| < 5$ for jets and $|\eta| < 2.7$ for leptons.

The background sources in this analysis include processes with two or more electroweak bosons, namely VV and VVV as well as processes with top quarks, such as $t\bar{t}$, $t\bar{t}V$, single top and (Z), and processes with gauge bosons produced in association with jets or photons $(Z+j)$, $(Z\gamma)$. MC simulation is used to estimate
the contribution from background processes with three or more prompt leptons while data-driven techniques are used for the case of background processes with at least one misidentified or non-prompt lepton. Simulated events are used for cross checks and to assess the systematic uncertainties in these backgrounds.

The dominant WZ SM background process of order ($a^2 a^2$) involving colour-exchange diagrams, here referred to as QCD WZ, was modelled using SHERPA 2.2.2 [57] at next-to-leading order (NLO), and includes hard-scattering, parton shower, hadronization and the underlying events. Up to three additional partons generated at tree level were merged with the parton shower. In order to estimate an uncertainty due to the parton shower modelling, two alternative WZ samples were produced using POWHEG-BOX v2 [58] interfaced with PYTHIA 8.186 and HERWIG++ [59], respectively. A sample of the purely electroweak process $WZjj \to \ell\nu\ell\ell$ (labelled $WZjj$) with a matrix-element b-quark veto (at zero order in α_s) was generated separately with SHERPA 2.2.2. Contributions from $WZ\ell\ell \to \ell\nu\ell\ell$ (labelled $WZ\ell\ell$) are included in the $t\bar{t}$ sample described below. To estimate an uncertainty due to the parton shower modelling an alternative MADGRAPH+PYTHIA 8 sample was produced. This MADGRAPH sample includes b-quarks in the initial state and was split to provide a sample without (with) a b-quark in the final state to model the $WZjj$ ($t\bar{t} + WZjj$) background.

Samples of $qq \to ZZ \to 4\ell$ or $q\bar{q} \to ZZ \to \ell\ell \nu\nu$ were generated with POWHEG-BOX v2 at NLO, interfaced to PYTHIA 8.186 and normalized to NNLO by K-factors evaluated in Ref. [60]. The $gg \to ZZ$ and tribosons were generated with SHERPA 2.1.1. The $t\bar{t}$ events and tZ processes were generated at LO using MADGRAPH_AMC@NLO, interfaced with PYTHIA 8.186 (tV) and PYTHIA 6.428 (tZ). The tV samples were normalized to NNLO predictions [11].

Finally samples of SM backgrounds with at least one misidentified or non-prompt lepton, including $Z\gamma$, $W\gamma$, Drell–Yan $Z \to \ell\ell$, $W \to \ell\nu$ as well as top-pair and single-top were generated to assist in the fake/non-prompt lepton background estimate. Events with $Z\gamma$ and $W\gamma$ in the final state were generated with SHERPA 2.11. Drell–Yan $Z \to \ell\ell$, $W \to \ell\nu$ as well as top-pair and single-top production channels were generated with POWHEG-BOX v2 and hadronized with PYTHIA. To avoid double counting the $Z\gamma$ events, Z events produced by the Drell–Yan process with a photon from final-state radiation with $p_T > 10$ GeV were removed. The parton shower for processes with top quarks was modelled with PYTHIA 6.428. MADGRAPH_AMC@NLO and PYTHIA 8.186 were used for background processes involving a pair of top quarks accompanied by a W boson or by a pair of charged leptons. The Z and single-top cross sections were normalized to NNLO by K-factors evaluated in Ref. [60,61].

SM backgrounds with Higgs bosons ($H, t\bar{t}H, VH$) contribute less than 0.1% of the total background because of the low cross section and the requirement of a well reconstructed Z boson decaying leptonically. These backgrounds are neglected.

4. Reconstructed objects

Events are required to have at least one primary vertex with at least two associated tracks, each with transverse momentum $p_T > 0.4$ GeV. If there is more than one vertex reconstructed in the event, the one with the largest track $\sum p_T^2$ is chosen as the hard-scatter primary vertex and is subsequently used for the reconstruction of electrons, muons, jets and missing transverse momentum.

Electron candidates are reconstructed from energy deposits in the EM calorimeter which are matched to a well-reconstructed ID track originating from the primary vertex. The electron identification is based on a likelihood evaluated from a multivariate discriminant. They are categorized as satisfying the medium or the tight reconstruction quality requirements, as defined in Ref. [62]. Only electrons with transverse energy $E_T > 25$ GeV in the pseudorapidity range $|\eta| < 2.47$ are considered in this analysis. The candidate electrons are required to pass an isolation condition: an upper value of the scalar sum of the transverse momentum of the tracks with $p_T > 0.4$ GeV in a cone of size $\Delta R = \min(0.2, 10 \text{ GeV}/E_T)$ around the electron, the track of the electron itself, is chosen such that the efficiency is constant at 99% for electrons in $Z \to ee$ events. For tight electrons, an isolation requirement is imposed, based on calorimeter as well as track variables, which varies as a function of transverse energy and yields an efficiency between 95% and 99% for electrons with p_T in the range 25–60 GeV. For a pair of electrons sharing the same ID-track, the electron with higher cluster E_T is kept.

Muons are reconstructed by combining tracks from the inner detector with tracks from the muon spectrometer. They are required to satisfy medium or tight quality requirements, as defined in Ref. [63]. Only muons with $p_T > 25$ GeV and $|\eta| < 2.7$ are considered in this analysis. Isolation requirements are also applied to all muons, based on the ratio $p_T^{\text{varcone}}/p_T^{\text{true}}$, where p_T^{varcone} is the scalar sum of the transverse momenta of the tracks with $p_T > 1$ GeV in a cone of size $\Delta R = \min(0.2, 10 \text{ GeV}/p_T^{\text{true}}) < 0.3$ around the muon, excluding the muon track itself. This isolation gives 99% efficiency, independently of η or p_T^{true} in $Z \to \mu\mu$ samples.

Electron and muon candidates are required to originate from the primary vertex. Thus, the significance of the track’s transverse impact parameter calculated relative to the beam line, $|d_0/d_0^{\text{nom}}|$, must be less than three for muons and less than five for electrons, and the longitudinal impact parameter, z_0 (the difference between the value of z of the point on the track at which d_0 is defined and the longitudinal position of the primary vertex), is required to satisfy $|z_0 - \sin(\theta)| < 0.5$ mm.

Jets are reconstructed from clusters of energy deposition in the calorimeter [64] using the anti-k_t algorithm [65] with a radius parameter $R = 0.4$. Events with jets arising from detector noise or other non-collision sources are discarded [66]. This search considers jets with $p_T > 30$ GeV in the range $|\eta| < 4.5$. Furthermore, to mitigate the pile-up contamination, a jet vertex tagger [67], based on information about tracks associated with the primary vertex and pile-up vertices, is applied to jets with $p_T < 60$ GeV and $|\eta| < 2.4$. The selected working point provides at least 92% efficiency. The energy of each jet is calibrated and corrected for detector effects using a combination of simulated events and in situ methods in 13 TeV data [68].

As lepton and jet candidates can be reconstructed from the same detector information, a procedure to resolve overlap ambiguities is applied. If an electron and a muon share the same ID track, the muon is selected. Reconstructed jets which overlap with electrons or muons in a cone of size $\Delta R = 0.2$ are removed.

Jets containing b-hadrons are identified as b-jets by the MVV2c10 b-tagging algorithm [69], which uses information such as track impact-parameter significances and positions of explicitly reconstructed secondary decay vertices. A working point corresponding to 85% b-tagging efficiency on a sample of tt events is chosen [70], with a light-flavour jet rejection factor of about 34 and a c-jet rejection of about 3. Correction factors are applied to the simulated event samples to compensate for differences between data and simulation in the b-tagging efficiency for b-jets, c-jets and light-flavour jets.

The missing transverse momentum, p_T^{miss}, and its magnitude E_T^{miss}, are calculated from the imbalance in the sum of visible transverse momenta of reconstructed physics objects: electrons, muons and jets, as well as a “soft” term reconstructed from tracks.
compatible with the primary vertex and not associated with any of those objects [71,72].

5. Event selection

Preselection criteria are first applied to all the event samples. The presence of three prompt leptons is required, two of which will be associated with the Z boson, and are required to satisfy the medium quality requirement (Section 4). The Z boson candidate is reconstructed from the two leptons of same flavour and opposite charge, whose invariant mass is closest to the on-shell mass m_Z, and in the range $|m_{\ell\ell} - m_Z| < 20 \text{ GeV}$. The third lepton, associated with the W boson decay, is required to satisfy the tight quality criteria to enhance the background rejection. To ensure that the trigger efficiency is well determined, at least one of the candidate leptons is required to have $p_T > 27 \text{ GeV}$.

To suppress background processes with at least four prompt leptons, events with a fourth lepton candidate satisfying looser selection criteria are rejected. For this looser selection, the requirement on the minimum p_T of the leptons is lowered to $p_T > 7 \text{ GeV}$ and medium identification requirements are used for both the electrons and muons.

Since there is a neutrino in the signal events, $E_T^{\text{miss}} > 25 \text{ GeV}$ is also required. The third lepton and the missing transverse momentum are assumed to result from the W boson decay. The longitudinal momentum p_T^ν of the neutrino is calculated by requiring that the invariant mass of the lepton–neutrino system be equal to the W mass. The solution results in a quadratic equation which leads to two possible solutions. If they are real, the one with the smaller $|p_T^\nu|$ is chosen since it was found to provide a better agreement with the truth. Otherwise, the real part is chosen. The invariant mass, m_{WZ}, of the WZ resonance candidate is then reconstructed using the chosen solution for p_T^ν along with the four-momenta of the three charged leptons.

The selected events are then separated into two categories targeting different production mechanisms: VBF and $qq\bar{q}$. The VBF category contains events with two or more jets with $p_T > 30 \text{ GeV}$ which fail the b-tagging requirements described in Section 4. The dijet pair defined by the two highest-p_T jets in the event must also have large η separation ($|\Delta \eta_{jj}| > 3.5$) and an invariant m_{jj} above 500 GeV. If more than two jets are found in an event, the two highest-p_T jets are considered. By imposing a b-jet veto, backgrounds containing one or more top quarks, including $tt\ell\ell + W/Z$, and $t\bar{t}Z$ are suppressed.

The net acceptance times efficiency ($A \times \epsilon$) of the selection, relative to signal events generated for H^\pm_T and HVT models in the VBF category is shown in Fig. 1. The generation of the GM Model H^\pm_T events had the following requirements: $p_T (\text{jets}) > 15 \text{ GeV}$, $p_T (\text{leptons}) > 10 \text{ GeV}$, $|\eta|(\text{jets}) < 5$ and $|\eta|(\text{leptons}) < 2.7$. Decays of W bosons into all lepton flavours, and of Z bosons into e^+e^- and $\mu^+\mu^-$, were simulated. The $Z \rightarrow \tau^+\tau^-$ decays give a negligible contribution and were not included in the simulation, but the $A \times \epsilon$ shown was scaled to include all decays. For the HVT VBF samples, $m_{jj} > 150 \text{ GeV}$ was required at generator level. Decays of W and Z bosons into all flavours of leptons were included. For HVT and H^\pm_T the $A \times \epsilon$ falls in the range 2–8% and 3–12% respectively for resonance masses ranging between 200 and 900 GeV, the difference being due, with approximately equal importance, to the generator level selection and to the different angular distributions of the final products.

The remaining events are assigned to the $qq\bar{q}$ category. For this category, the W and Z bosons from a resonance produced in the s-channel with m_{WZ} larger than 250 GeV are expected to have transverse momenta close to 50% of its mass. The requirements $p_T^{W}/m_{WZ} > 0.35$ and $p_T^{Z}/m_{WZ} > 0.35$ enhance the sensitivity to the signal. The overall selection efficiency relative to generated event increases from about 15% to 25% for resonances masses ranging from 500 GeV to 3 TeV as illustrated in Fig. 2. Decays of W and Z bosons into all flavours of leptons are included at event generation. The $A \times \epsilon$ values decrease for resonance masses above approximately 2 TeV due to the collinearity of electrons from the $Z \rightarrow ee$ decays which spoils the isolation.
6. Background estimation

The dominant background in the resonance search is the SM production of WZ. Its normalization and shape are estimated from MC and validated in dedicated validation regions by comparing the data and MC distributions. Events in the validation regions are selected in exactly the same way as those in their corresponding signal categories except for the following requirements. The VBF WZ validation region is defined by inverting the requirements on the dijet variables: $100 < m_{jj} < 500 \text{ GeV}$ and $|\Delta \eta_{jj}| < 3.5$. The WZ $q\bar{q}$ validation region requires the events to have $p_T^Z/m_{WZ} < 0.35$ or $p_T^W/m_{WZ} < 0.35$. These validation regions are dominated by the WZ contribution, with a purity higher than 80%. For the benchmark models with parameters given in Section 3, the signal contamination in the $q\bar{q}$ (VBF) validation region is below 5% (1%). The reconstructed m_{WZ} mass in the validation regions is shown in Fig. 3, where good agreement of data with the background prediction is observed.

Events from $Z+$jets, $Z\gamma$, $W\gamma$, $t\bar{t}$, single top or WW where jets or photons were misidentified as leptons (here called fake/non-prompt leptons), can also satisfy the selection criteria. The distribution shapes and number of fake/non-prompt lepton events are estimated for both the $q\bar{q}$ and VBF categories by a data-driven method using a global matrix which exploits differences in object characteristics between real and fake/non-prompt leptons on a statistical basis. Details of the method, here referred to as “Matrix Method”, can be found in Ref. [73].

Other backgrounds include $t\bar{t}V$, ZZ, tZ, $WZbj$ and triple boson production. They are estimated by Monte Carlo simulation (Section 3). The tZ, $WZbj$ and VVV backgrounds are added as a single contribution, here called $tZ+VVV$.

7. Systematic uncertainties

Systematic uncertainties result from the theoretical modelling of backgrounds and from object and event reconstruction.

The uncertainty in the normalization of the SHERPA samples of SM WZ background is evaluated by taking into account the variations obtained with different PDF sets [74]. The nominal set NNPDF30loas0118 is compared with other samples generated with the CT14nlo and MMHT2014nlo68cl PDF sets and the uncertainty is evaluated from the maximum differences. It is estimated to be below 6% in all mass bins for both the VBF and $q\bar{q}$ categories. The uncertainty associated with the choice of renormalization and factorization scales, μ_R and μ_F, is taken as the maximum downward and upward variation when the scales are varied independently by factors of 1/2 and 2. While these uncertainties can in principle affect the shape of the m_{WZ} distribution, in practice the shape differences do not have a strong impact on the sensitivity of the search. The uncertainties are therefore treated as normalization uncertainties, taken to be 20% and 40% respectively. Shape systematic uncertainties associated with showering and hadronization of the QCD WZ are evaluated by comparing the POWHEG-BOX V2 samples interfaced with PYTHIA 8.186 and HERWIG. For the electroweak WZ process the SHERPA 2.2.2 and MADGRAPH+PYTHIA 8 predictions are compared. This uncertainty band ranges from 10% to 30% for both categories.

The uncertainties assigned to the cross sections of the other background sources consist of a contribution from PDF uncertainties and from QCD scale uncertainties. They are estimated to be 10% for ZZ, 13% for $t\bar{t}V$, 20% for VVV and 15% for tZ.

The theoretical uncertainties in the cross section and acceptance of the simulated signal samples are evaluated in a similar way to the background. The PDF errors are taken from the NNPDF LO PDF error set, and the NNPDF set is also compared with the CTEQ6L1 and MSTW2008lo68cl sets. The different predictions from these PDF sets are taken as an extra contribution to the overall uncertainty. For both the $q\bar{q}$ and VBF categories, the uncertainties are typically below 5%. This procedure was followed for each mass point and a generator-level event selection was chosen to closely mimic the one used in the reconstruction-level analysis. Scale and PDF uncertainties are not correlated between signal and background.

An uncertainty due to the reconstruction efficiency, momentum scales and resolution of electrons and muons is evaluated by varying correction factors applied to the MC samples [63,75] within appropriate limits.

The jet energy scale and resolution uncertainties [66] are also taken into account as they affect the shape and normalization of the background distributions. The uncertainty due to b-tagging [76] is also included.

Missing transverse momentum is calculated using the preselected leptons, jets and other reconstructed objects. The uncertainties in the reconstruction of those objects are then used to evaluate
the uncertainty in E_T^{miss} reconstruction. Those due to the p_T scale and resolution of the soft term are also considered [71,72].

An uncertainty in the prediction of the fake/non-prompt background is also taken into account as it affects the shape and normalization of the background distributions. The total uncertainty is about 20% (27%) for the $q\bar{q}$ (VBF) category. It is slightly larger for the VBF category because of the higher statistical uncertainty derived from the Matrix Method (Section 6).

The uncertainty in the integrated luminosity is 2.1%. It is derived, following a methodology similar to the one detailed in Ref. [77], from a calibration of the luminosity scale using x-y beam-separation scans performed in August 2015 and May 2016.

8. Results

The WZ invariant mass distribution, m_{WZ}, obtained as the sum of all four lepton-flavor permutations, is used as the discriminating variable, with bin widths comparable to the expected resolution of a narrow resonant signal. A binned likelihood function, constructed from the Poisson probability of the sum, in each bin, of the contributions of the background and of a hypothetical signal of strength μ relative to the benchmark model, is used to set limits on the presence of a signal. The fit is performed in the signal region for the $q\bar{q}$ and VBF categories separately. The systematic uncertainties described above (Section 7) enter as nuisance parameters with Gaussian or log-normal prior distributions, in convolution with the nominal background distribution.

The effects of systematic uncertainties are studied for hypothesized signals using the signal-strength parameter μ. The list of leading sources of uncertainty in the 95% confidence level (CL) upper limit on the μ value is given in Table 1 together with their relative importance ($\Delta \mu / \mu$). The values are quoted separately for a hypothetical HVT signal of mass $m(W') = 800$ GeV in the $q\bar{q}$ category and a GM signal of mass $m(H^\pm) = 450$ GeV in the VBF category. Apart from the statistical uncertainties in the data, the uncertainty with the largest impact on the sensitivity of the searches is related to the WZ background modelling.

The numbers of background events are extracted through a background-only fit of the data in each category. Background contributions from prompt leptons, including their shapes, are taken from MC simulations. In the case of non-prompt leptons the background shapes are taken from the Matrix Method. In the fit, the normalisation of all backgrounds are allowed to vary within their uncertainties. The post-fit background yields are summarized in Table 2 for the $q\bar{q}$ and VBF categories. The fit constrains the SM WZ background estimate to the observed data, which reduces the total background uncertainty, pulling the modelling uncertainties by less than one standard deviation from their pre-fit values. None of the nuisance parameters are significantly pulled or constrained relative to their pre-fit values in the background-only fit.

Fig. 4 shows the post-fit m_{WZ} distribution for the $q\bar{q}$ and VBF categories. The largest difference between the observed data and the SM background prediction is in the VBF category. A local excess of events at a resonance mass of around 450 GeV can be seen in Fig. 4(b). The local significances for signals of H^\pm and of a heavy vector W' are 2.9 and 3.1 standard deviations, respectively. The respective global significances calculated using the Look Elsewhere method as in Ref. [78] and evaluated up to a mass of 900 GeV, are 1.6 and 1.9 standard deviations. In the $q\bar{q}$ category the largest difference between the observed data and the SM background prediction is located around a mass of 700 GeV with a local significance of 1.2 standard deviations.

Upper limits are set on the product of the production cross section of new resonances and their decay branching ratio into WZ. Exclusion intervals are derived using the CL$_s$ method [79] in the asymptotic approximation [80]. For masses higher than 900 (700) GeV in $q\bar{q}$ (VBF) category, the small number of expected events makes the asymptotic approximation imprecise and the limits are calculated using pseudo-experiments. The limit set on the signal strength μ is then translated into a limit on the signal cross section times branching ratio, $\sigma \times B(W' \rightarrow WZ)$, using the theoretical cross section and branching ratio for the given signal model.

Fig. 5 presents the observed and expected limits on $\sigma \times B(W' \rightarrow WZ)$ at 95% CL for the HVT model in the $q\bar{q}$ category. Masses below 2260 GeV can be excluded for Model A and

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta \mu / \mu [%]$</th>
<th>VBF category</th>
</tr>
</thead>
<tbody>
<tr>
<td>WZ background modelling: scale, PDF</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>WZ background modelling: parton shower</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>MC statistical uncertainty</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Electron identification</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Muon identification</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Jet uncertainty</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Missing transverse momentum</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fake/non-prompt</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>53</td>
<td>52</td>
</tr>
</tbody>
</table>

Table 2

Expected and observed yields in the $q\bar{q}$ and VBF signal categories. Yields and uncertainties are evaluated after a background-only fit to the data in the $q\bar{q}$ or VBF signal regions after applying all selection criteria. The uncertainty in the total background estimate is smaller than the sum in quadrature of the individual background contributions due to anti-correlations between the estimates of different background sources.

<table>
<thead>
<tr>
<th>Source</th>
<th>σ [pb]</th>
<th>$B(W' \rightarrow WZ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WZ</td>
<td>521 ± 29</td>
<td>87 ± 12</td>
</tr>
<tr>
<td>Fake/non-prompt</td>
<td>64 ± 13</td>
<td>15 ± 4</td>
</tr>
<tr>
<td>$t\bar{t}V$</td>
<td>29 ± 4</td>
<td>4.9 ± 0.8</td>
</tr>
<tr>
<td>ZZ</td>
<td>18.9 ± 2.0</td>
<td>4.4 ± 1.0</td>
</tr>
<tr>
<td>$t\bar{t} + VVV$</td>
<td>14.1 ± 2.9</td>
<td>8.1 ± 1.8</td>
</tr>
<tr>
<td>Total background</td>
<td>647 ± 25</td>
<td>120 ± 11</td>
</tr>
<tr>
<td>Observed</td>
<td>650</td>
<td>114</td>
</tr>
</tbody>
</table>

73
2460 GeV for Model B. For resonance masses above 2 TeV the exclusion limits become worse due to the acceptance losses at high mass. For the VBF process, the limit on \(\sigma \times B(W' \rightarrow WZ)\) is shown in Fig. 6.

Observed and expected exclusion limits at 95% CL on \(\sigma \times B(H^±_3 \rightarrow W^±Z)\) and on the mixing parameter \(\sin\theta_H\) of the GM Model are shown in Fig. 7 as a function of \(m_{H^±_3}\). The intrinsic width of the scalar resonance, for \(\sin\theta_H = 0.5\), is narrower than the detector resolution in the mass region explored. The shaded regions show the parameter space for which the \(H^±_3\) width exceeds 5% and 10% of \(m_{H^±_3}\).

9. Conclusion

A search is performed for resonant \(WZ\) production in fully leptonic final states (electrons and muons) using 36.1 fb\(^{-1}\) of \(\sqrt{s} = 13\) TeV pp data collected by the ATLAS experiment at the LHC during the 2015 and 2016 run periods. Two different production modes are considered using quark-antiquark annihilation and vector-boson fusion.

The data in the \(q\bar{q}\) fusion category are found to be consistent with Standard Model predictions. The results are used to derive upper limits at 95% CL on the cross section times branching ratio of the phenomenological Heavy Vector Triplet benchmark Model A (Model B) with coupling constant \(g_V = 1\) (\(g_V = 3\)) as a function of the resonance mass, with no evidence of heavy resonance production for masses below 2260 (2460) GeV.

In the case of the VBF production processes, limits on the production cross section times branching ratio are obtained as a function of the mass of a charged member of a heavy vector triplet or of the fiveplet scalar in the Georgi–Machacek model. The results show a local excess of events over the Standard Model expectations at a resonance mass of around 450 GeV. The local significances for signals of \(H^±_3\) and of a heavy vector \(W'\) boson are 2.9 and 3.1 standard deviations respectively. The respective global significances calculated considering the Look Elsewhere effect are 1.6 and 1.9 standard deviations respectively.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.
Fig. 7. Observed and expected 95% CL upper limits on (a) $\sigma \times B(H_\nu^\pm \rightarrow W^\pm Z)$ and (b) the parameter $\sin\theta_M$ of the GM Model as a function of m_{H_ν}. The shaded region shows where the theoretical intrinsic width of the resonance would be larger than 5% or 10% of the mass.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFV and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMWF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MNE/IPA, Romania; MES of Russia and NRC KI, Russian Federation; JINR, MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Berne and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager Le Savoir, France; DFG and AvH Foundation, Germany; HERALD, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CERN-CPP (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [81].

References

[23] CDF Collaboration, Search for new heavy particles decaying to ZZ $\rightarrow \ell \ell \ell \ell$, $\ell \ell \ell \ell$ in pp collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. D 83 (2011) 112008, arXiv:1102.4566 [hep-ex].
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Institut de Fisica d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Physics Department, Tsinghua University, Beijing; (c) Department of Physics, Nanjing University, Nanjing;

University of Chinese Academy of Science (UCAS), Beijing, China

Institute of Physics, University of Belgrade, Belgrade, Serbia

Department for Physics and Technology, University of Bergen, Bergen, Norway

Physics Faculty, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America

Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

Centro de Investigaciones, Universidad Antonio Narico, Bogota, Colombia

(b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna; (b) INFN Sezione di Bologna, Italy

Physikalisches Institut, Universität Bonn, Bonn, Germany

Department of Physics, Boston University, Boston, MA, United States of America

Department of Physics, Brandeis University, Waltham, MA, United States of America

Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania

(faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Physics Department, Brookhaven National Laboratory, Upton, NY, United States of America

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, University of Cape Town, Cape Town; (b) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Carleton University, Ottawa, ON, Canada

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucléaires (CNESTEN), Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LITP&M, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, IL, United States of America

LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington, NY, United States of America

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

(b) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy

Physics Department, Southern Methodist University, Dallas, TX, United States of America

Physics Department, University of Texas at Dallas, Richardson, TX, United States of America

(b) Department of Physics, Stockholm University; (c) Oskar Klein Centre, Stockholm, Sweden

(b) Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany

Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Department of Physics, Duke University, Durham, NC, United States of America

SUPA – School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

INFN e Laboratori Nazionali di Frascati, Frascati, Italy

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland

(b) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova, Italy

Il. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany

SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, United States of America

(b) Institute of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (c) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (d) School of Physics and Astronomy, Shanghai Jiao Tong University, KLPMP-MoE, SKLPCC, Shanghai; (e) Tsung-Dao Lee Institute, Shanghai, China

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

(b) Department of Applied Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (c) Department of Physics, University of Hong Kong, Hong Kong; (d) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan

Department of Physics, Indiana University, Bloomington, IN, United States of America

(b) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy

(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

(a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

(b) INFN-TIFPA; (b) Università degli Studi di Trento, Trento, Italy

Institut für Astrophysik und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames, IA, United States of America

Joint Institute for Nuclear Research, Dubna, Russia

(b) Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; (b) Universidade Federal do Rio De Janeiro COPPE/EE/ST, Rio de Janeiro;

(b) Universidade Federal de São João del Rei (UFSJ), São João del Rei; (b) Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan
Also at Department of Physics, University of Malaya, Kuala Lumpur; Malaysia.

Also at National University of Singapore, Singapore, Singapore.

Also at City University of Hong Kong, Hong Kong, People's Republic of China.

Also at Academia Sinica, Taipei, Taiwan.

Also at Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA; United States of America.

Also at Universitat Pompeu Fabra, Barcelona, Spain.

Also at Hellenic Open University, Patras, Greece.

Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.

Also at Institute of Nuclear Physics, Arak, Iran.

Also at Albstadt-Schwäbisch University of Applied Sciences, Tettnang, Germany.

Also at University of California, Berkeley, CA; United States of America.

Also at Université Paris-Saclay, Orsay, France.

Also at University of Leeds, Leeds, United Kingdom.

Also at Università degli Studi di Roma “La Sapienza”, Rome, Italy.

Also at University of Chicago, Chicago, IL; United States of America.

Also at University of Sheffield, Sheffield, United Kingdom.

Also at University of Science and Technology, Beijing, China.

Also at University of York, York, United Kingdom.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Department of Physics, Moscow State University, Moscow, Russia.

Also at Nuclear Science and Technology Research Institute, Tehran, Iran.

Also at Shanghai Jiao Tong University, Shanghai, China.

Also at University of Sheffield, Sheffield, United Kingdom.

Also at University of Science and Technology, Beijing, China.

Also at National Research Nuclear University MEPhI, Moscow, Russia.